H.S. Timmermans, J.H. van Tongeren, E.G.M Geurts, R.F.A. Marques, M.S. Correa, S. Waitz

DOI Number: N/A

Conference number: IFASD-2019-156

The aircraft manufacturer Embraer, the German Aerospace Center (DLR), the Netherlands Aerospace Centre (NLR) and German–Dutch Wind Tunnels (DNW) have tested an innovative highly flexible wing within an aeroelastic wind tunnel experiment in the transonic regime. The HMAE1 project was initiated by Embraer to test its numerical predictions for wing flutter under excessive wing deformations in the transonic regime. A highly elastic fiberglass wing-body pylon nacelle wind tunnel model, which is able to deform extensively, was constructed for the experiment. The model was instrumented with a large number of pressure orifices, strain gauges, stereo pattern recognition markers and accelerometers. The wing was tested from M = 0.4 till M = 0.9 for different angles of attack and stagnation pressure. The HMAE1 model was tested in two different test campaigns in which the Mach number was increased. This paper will focus on the first test campaign of the HMAE1 project in which the windtunnel model is tested up to M = 0.7 and will describe the development of the physical numerical structural dynamic MSC Nastran model representing the manufactured windtunnel model in order to perform numerical aeroelastic analyses.

Read the full paper here

Email
Print
LinkedIn
The paper above was part of  proceedings of a CEAS event and as such the author has signed a publication agreement to have their paper published in the repository. In the case this paper is found somewhere else CEAS always links to the other source.  CEAS takes great care in making the correct content available to the reader. If any mistakes are found  in the listings please contact us directly at papers@aerospacerepository.org and we will correct the listing promptly.  CEAS cannot be held liable either for mistakes in editorial or technical aspects, nor for omissions, nor for the correctness of the content. In particular, CEAS does not guarantee completeness or correctness of information contained in external websites which can be accessed via links from CEAS’s websites. Despite accurate research on the content of such linked external websites, CEAS cannot be held liable for their content. Only the content providers of such external sites are liable for their content. Should you notice any mistake in technical or editorial aspects of the CEAS site, please do not hesitate to inform us.