Ulf Ringertz, David Eller, Donald F. Keller, Walter A. Silva

DOI Number: N/A

Conference number: IFASD-2017-169

An aeroelastic wind tunnel model has been designed and built for testing in the Transonic Dynamics Tunnel. The aircraft configuration represents a modern light weight fighter with a swept wing and canards. The model is designed using composite materials for all lifting surfaces and the fuselage shell. The lifting surfaces are attached to an internal backbone structure using aluminum spars and bulkheads to transfer the aerodynamic loads to the sting. The wing design is also made with a strong internal frame to provide strong support for external stores without giving too stiff overall wing properties. External stores interfaces in the form of pylons, sway braces and pre-tension arrangements are modeled with additional detail to provide realistic kinematics. The model is heavily instrumented with accelerometers, strain gauges, and pressure taps. A unique feature of the test set-up was the use of an optical motion tracking system that made it possible to accurately measure model deformations during wind tunnel testing. A new system for unsteady pressure measurements was also used for the test providing accurate unsteady pressure data from almost 200 pressure taps on the wing surfaces. Wind tunnel testing was performed both in air and heavy gas with the model tested in three different configurations. A large amount of unique data was obtained for both static and dynamic aeroelasticty with simultaneous measurements of model deformation and wing surface pressures.

Read the full paper here

Email
Print
LinkedIn
The paper above was part of  proceedings of a CEAS event and as such the author has signed a publication agreement to have their paper published in the repository. In the case this paper is found somewhere else CEAS always links to the other source.  CEAS takes great care in making the correct content available to the reader. If any mistakes are found  in the listings please contact us directly at papers@aerospacerepository.org and we will correct the listing promptly.  CEAS cannot be held liable either for mistakes in editorial or technical aspects, nor for omissions, nor for the correctness of the content. In particular, CEAS does not guarantee completeness or correctness of information contained in external websites which can be accessed via links from CEAS’s websites. Despite accurate research on the content of such linked external websites, CEAS cannot be held liable for their content. Only the content providers of such external sites are liable for their content. Should you notice any mistake in technical or editorial aspects of the CEAS site, please do not hesitate to inform us.