William Mansey, Fintan Healy, Huaiyuan Gu, Djamel Rezgui, Jonathan Cooper

DOI Number: N/A

Conference number: IFASD-2024-125

In this paper, a two degree of freedom mathematical model was used to analyse active flutter suppression on wings featuring flared folding wingtips, via an additional control surface on the wingtip. The active control system took the wingtip fold angle as the input parameter. Using a proportional controller gain, the flutter onset speed could be increased by 25%, and a proportional controller can also be used to recreate the effect of a flare angle. Using a derivative controller, it was found that flutter could be prevented across all reasonable airspeeds. Both benefits could be realised without a significant change in the gust load alleviation provided by the flared folding wingtip. However, the control surface angular rates required to achieve flutter suppression were very high under certain conditions. If these control surface velocities are limited to realistic values, then the controller can no longer suppress the growth of instabilities for larger gust amplitudes.

Read the full paper here

Email
Print
LinkedIn
The paper above was part of  proceedings of a CEAS event and as such the author has signed a publication agreement to have their paper published in the repository. In the case this paper is found somewhere else CEAS always links to the other source.  CEAS takes great care in making the correct content available to the reader. If any mistakes are found  in the listings please contact us directly at papers@aerospacerepository.org and we will correct the listing promptly.  CEAS cannot be held liable either for mistakes in editorial or technical aspects, nor for omissions, nor for the correctness of the content. In particular, CEAS does not guarantee completeness or correctness of information contained in external websites which can be accessed via links from CEAS’s websites. Despite accurate research on the content of such linked external websites, CEAS cannot be held liable for their content. Only the content providers of such external sites are liable for their content. Should you notice any mistake in technical or editorial aspects of the CEAS site, please do not hesitate to inform us.