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Abstract: In this paper, a two degree of freedom mathematical model was used to analyse active 

flutter suppression on wings featuring flared folding wingtips, via an additional control surface on 

the wingtip. The active control system took the wingtip fold angle as the input parameter. Using a 

proportional controller gain, the flutter onset speed could be increased by 25%, and a proportional 

controller can also be used to recreate the effect of a flare angle. Using a derivative controller, it 

was found that flutter could be prevented across all reasonable airspeeds. Both benefits could be 

realised without a significant change in the gust load alleviation provided by the flared folding 

wingtip. However, the control surface angular rates required to achieve flutter suppression were 

very high under certain conditions. If these control surface velocities are limited to realistic values, 

then the controller can no longer suppress the growth of instabilities for larger gust amplitudes. 

1 INTRODUCTION 

The induced drag created by a fixed wing aircraft can be reduced by increasing aspect ratio, 

providing a clear incentive to increase the wingspan of civilian aircraft. The limits imposed by 

standard aircraft gate sizes have recently been overcome in aircraft such as the Boeing 777X by 

using ground folding wingtips, where the wingtips are folded up while on the ground but are locked 

in position before take-off. However, the aspect ratio of this aircraft is still limited by the greater 

load as wingspan increases, and the consequent weight penalty [1]. 

One of the major structural requirements for aircraft wings is for them to be able to withstand gust 

loads, which are typically modelled using a series of 1-cosine gusts across a variety of gust lengths 

[2]. One possible solution to reduce the loads experienced during gust encounters is flared folding 

wingtips (FFWT). The presence of a flare angle produces a coupling between the angular rotation 

of the wingtip and the wingtip’s angle of attack, which allows the FFWT to be used to reduce the 

peak loads experienced during a gust encounter, reducing the wing root bending moment, and 

therefore reducing the required wing weight [3].  

One of the drawbacks of FFWTs is the introduction of a new mode of vibration, which can lead to 

the early onset of flutter. Flutter is the growth of an unstable mode of vibration caused by the 

interaction of the inertial, elastic, and aerodynamic forces above a critical onset speed. The growth 

of these violent oscillations can lead to structural failure; however, in certain instances the 
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exponential growth of these oscillations may be bounded by nonlinearities in the system, leading 

to limit cycle oscillations [4]. Wings featuring FFWTs are susceptible to flutter at speeds within 

the flight envelope, occurring primarily due to the coalescence of the FFWT and wing out of plane 

bending modes [5]. 

Previous research has investigated fitting the wingtip with an additional control surface, and 

statically varying the deflection angle of this tab has been shown to affect the flutter onset speed 

of the wing [6], however flutter was still encountered during some parts of the flight envelope. 

Applying prescribed sinusoidal deflections of this tab has also been previously researched and, if 

implemented correctly, this can further reduce the peak wing root bending moment associated with 

a gust encounter [7]. 

Another area of research is the use of active control for flutter suppression. This involves the use 

of a closed loop control system to suppress flutter when operating at speeds above the natural 

flutter onset speed, however this technology still lacks maturity and further research is needed 

before this can be adopted [8]. In addition, this research has not looked at applying these techniques 

to wings featuring FFWTs. 

In this work, a numerical model is developed to examine the feasibility of using  an active flutter 

suppression system on wings featuring FFWTs.  In other words, the study will explore if using 

active tabs is a feasible solution to delay the low flutter onset speeds, which might be seen in wings 

featuring FFWTs. Furthermore, the effects of the use of an active flutter suppression system on 

the gust load alleviation provided by the FFWTs are also considered. 

2 METHODOLOGY 

A two degree-of-freedom (DoF) numerical model was created to model the aeroelastic behavior 

of the system, assuming a flexible inner wing and rigid flared folding wingtip. One DoF was used 

for the inner wing bending, represented as the inner wing tip deflection, and a second DoF was 

used for the wingtip fold angle. These were used as previous research indicated that the interaction 

between the wingtip flapping and inner wing bending mode was the primary flutter mechanism in 

systems incorporating FFWTs [5]. To validate the model, it is based off a wing used in previous 

research for experimental wind tunnel testing [6]. The numerical model was produced in 

MATLAB [9], and the ode45 solver, which uses a 4,5-Runga-Kutta method, was used for time 

domain simulations. Figure 1 shows the wing used in the previous experimental testing, and the 

definition of the inner wing, wingtip, and flare angle. 

 

Figure 1: The wing used in the previous experimental testing [19]. 
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2.1 Structural Model 

The simplification to a 2 DoF model means that the structural model becomes a sprung pendulum, 

as shown in figure 2. 𝑚𝑒𝑞 is the inner wing mass, 𝑚𝑊𝑇 is the wingtip mass, and keq is the inner 

wing equivalent stiffness. z represents the tip deflection of the inner wing, and theta represents the 

fold angle of the wingtip, as shown in figure 2, where an upwards fold is defined as positive.  

The aerodynamic forces are shown in grey. 𝐹𝑍𝐼𝑊
 is the lift from the inner wing, 𝐹𝑍𝑊𝑇

 is the vertical 

component of the wingtip lift forces, and 𝑀𝜃 is the moment from the lift acting on the wingtip. 

 

 

Figure 2: The 2 DoF structural model used to represent the wing, with aerodynamic forces shown 

in grey. 

The value in the structural model for wingtip length (LWT) is the distance from the tip of the inner 

wing to the centre of mass (COM) of the wingtip, which is assumed to be halfway along the 

wingtip. To determine the equivalent stiffness of the inner wing, it was assumed the load on the 

inner wing is approximately uniformly distributed, and therefore the inner wing stiffness can be 

calculated as 

 
𝑘𝑒𝑞 =  

8 𝐸𝑒𝑞 𝐼𝑒𝑞

𝐿𝐼𝑊
3  (1) 

where Eeq is the inner wing spar’s young’s modulus, Ieq is the spar’s second moment of area, and 

Leq is its length. Equation 1 is derived by taking the equation for tip deflection under a uniformly 

distributed load [10], and then defining stiffness as the load required to obtain a deflection of 1m. 

The values used for the structural model are shown in Table 1 and come from the properties of the 

wing previously used for experimental testing [6]. 

Table 1: The values used for the structural model. 

Wing Properties Value 

Inner Wing Mass Meq  (kg) 2.533 

Wingtip Mass Meq  (kg) 0.563 

Wingtip Moment of Inertia IWT  (𝐤𝐠 𝐦𝟐) 0.0067 

Wingtip Length (to COM) LWT  (m) 0.1560 

Inner Wing Equivalent Stiffness kWT (N/m) 482.5 
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2.2 Dynamic Model 

From the diagram in figure 2, the equations of motion of the system were then derived. The 

equations of motion take the form 

 𝑴 [
𝒛̈
𝜽̈

] = 𝑭 (2) 

The mass matrix can be determined by inspection of figure 2 where the z-direction inertial term is 

simply the sum of the two masses, and the theta inertial term can be determined to be  𝑚𝑊𝑇𝐿𝑊𝑇
2 +

𝐼𝑊𝑇, using the parallel axis theorem. The coupling term will then be the wingtip mass, multiplied 

by the horizontal distance away from the inner wing position. This leads to the 2x2 mass matrix 

such that  

 
𝑴 =  [

𝑚𝐼𝑊 + 𝑚𝑊𝑇 𝑚𝑊𝑇𝐿𝑊𝑇𝑐𝑜𝑠𝜃 

𝑚𝑊𝑇𝐿𝑊𝑇𝑐𝑜𝑠𝜃 𝑚𝑊𝑇𝐿𝑊𝑇
2 + 𝐼𝑊𝑇

] (3) 

 

To determine the force vector, a provision is made for the inclusion of the aerodynamic forces. 

The aerodynamic forces are returned as two values, a force in the z direction, which comes from a 

sum of the vertical force on both the wing and the wingtip, and a moment around the wingtip hinge 

due to wingtip lift. The remaining forces come from the weight of the two masses, the moment 

from the wingtip mass, the force from the wing stiffness, modelled as a spring, and finally a term 

to represent the force on the spring because of the wingtip rotating. The forces are the expressed 

in the force vector 

 
𝑭 =  [

𝐹𝑧𝐼𝑊
+ 𝐹𝑧𝑊𝑇

+ 𝑘𝐼𝑊𝑧 − (𝑚𝑊𝑇𝐿𝑊𝑇𝑠𝑖𝑛𝜃)𝜃̈ − 𝑚𝐼𝑊𝑔 − 𝑚𝑊𝑇𝑔  

𝑀𝜃 − 𝑚𝑊𝑇𝑔𝐿𝑊𝑇𝑐𝑜𝑠𝜃
] (4) 

To verify the derived equations of motion, they were compared to previous research that had 

modelled a flared folding wingtip in this way [11] and the equations were found to match. A python 

library, moyra [12], was then used to generate the initial MATLAB functions needed to carry out 

time domain simulations of these equations, and the basic stability analysis, described further in 

section 2.4. 

2.3 Aerodynamic Model 

The aerodynamic model used dimensions from the wing used in previous experimental testing [6], 

and these are shown in figure 3. The flare angle (Λ) is 10 degrees, and a NACA 0015 aerofoil is 

used.  

 

Figure 3: The dimensions of the wing used in the numerical model, with all dimensions in mm, 

and the sign convention for control surface deflection 𝛽. 
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To calculate the aerodynamic forces acting on the wing and the wingtip, the wing was split into 

two sections, the inner wing, and the wingtip. As the deflections of the folding wingtip are assumed 

to be relatively small, the fold angle is assumed not to influence the local lift in the inner wing 

section. Both the inner wing and wingtip were split into 50 equal width spanwise strips. As the 

wingtip is shorter than the inner wing, this results in a closer spacing on the wingtip. This is 

preferred, as the control surface means the variation in spanwise lift will be greater, and the wingtip 

moment is also used, not just the vertical lift, and therefore accurately placing the forces on the 

spanwise axis is more important on the wingtip.  

To calculate the aerodynamic forces, the wing was modelled in XFLR 5 [13], and then 2D aerofoil 

analysis on the NACA 0015 aerofoil was carried out in the XFOIL direct analysis module. To 

model the 3D effects, a vortex lattice method (VLM) was used to generate a spanwise lift 

distribution. This was run at multiple angles of attack, and as expected, produced a linear 

relationship between angle of attack, and the local lift coefficient at each spanwise location. The 

data was processed to find the gradient (local lift curve slope), and then linear interpolation was 

used to calculate the local lift curve slope at the centre of each spanwise strip. 

To model the effect of the control surface, its effect on the wing’s lift was again examined in 

XFLR5. As shown in figure 3, a positive control surface deflection, 𝛽, is defined as an upwards 

control surface deflection. Under a VLM model, the effect of the control surface was to shift the 

zero-lift angle of attack but had no effect on the lift curve slope. The control surface primarily 

effected spanwise strips over the control surface but was still significant on those strips nearby to 

it, so these strips were also included when calculating the effect of control surface deflection. The 

effect of changing control surface deflection on the zero-lift angle of attack was again a linear 

relationship, meaning that the effect of the control surface could be calculated from the deflection 

angle and the rate of change of zero-lift angle of attack with respect to control surface deflection. 

These results were all generated using the vortex lattice method, and therefore have the inherent 

limitations arising from that method. Of key relevance is the inability to predict where partially or 

fully detached flow will occur, and therefore the flow is assumed to be attached at all points [14]. 

This explains the completely linear relationships established and means that the model will not be 

valid at high local angles of attack, or at high control surface deflections. For this reason, the 

control surface was limited to maximum deflection angles of ± 30 degrees. 

Finally, the effective angle of attack on the wingtip must be calculated. To account for the coupling 

between the wingtip fold angle and the angle of attack on the wingtip, it has been previously shown 

that  

 Δ𝛼𝑊𝑇𝑓𝑙𝑎𝑟𝑒
=  −arctan (sinθ sinΛ) (5) 

can be used as an appropriate model if only small fold angles are considered [11]. The effective 

angle of attack also needs to consider the induced angle of attack from the motion of the two 

degrees of freedom. Using a small angle approximation, the change in angle of attack as a function 

of local vertical velocity, v, and forward flight velocity, U, can be approximated as 

 
Δ𝛼 =  −

𝑣̇

𝑈
 (6) 

For the wingtip, as this is assumed to be rigid, this relationship can be used to calculate the change 

in effective angle of attack at each spanwise strip as 
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Δ𝛼𝑊𝑇𝑖𝑛𝑑𝑢𝑐𝑒𝑑

=  −
𝑧̇

𝑈
𝑐𝑜𝑠𝜃 −

𝜃̇𝑦𝑓𝑤𝑡

𝑈
 (7) 

Where the first terms represents the induced angle of attack due to the plunging motion of the 

hinge and the second term represents that due to the folding of the wingtip about the hinge. The 

structural model only captures the tip deflection, and therefore to get a better estimation of the 

induced velocity from bending across the entire wing, an assumed shape is used. As it is assumed 

that the load is approximately uniformly distributed along the wing, the following shape can be 

used [15],  

 
Δ𝛼𝐼𝑊𝑖𝑛𝑑𝑢𝑐𝑒𝑑

= −
𝑧̇

𝑈
(2𝑦𝑛𝑜𝑟𝑚

2 −
4

3
𝑦𝑛𝑜𝑟𝑚

3 +
1

3
𝑦𝑛𝑜𝑟𝑚

4 ) (8) 

where 𝑦𝑛𝑜𝑟𝑚 is the normalised position along the wing (
𝑦

𝐿𝐼𝑊
). The relationship between upwards 

force and tip deflection assumes a uniform distribution, but this is clearly not the case for this load, 

and hence this force must be scaled appropriately. To choose an appropriate scale factor, the results 

when using the unscaled force were compared to previous experimental data [6], and a scale factor 

of 0.375 was found to provide a good match to the data shown in figure 4. The overall angles of 

attack for positions on the inner wing and wingtip are shown respectively in equations 9 and 10 

[11]. 

 𝛼𝐼𝑊(𝑦𝑛𝑜𝑟𝑚) = 𝛼0 + 𝛼𝐼𝑊𝑖𝑛𝑑𝑢𝑐𝑒𝑑
(𝑦𝑛𝑜𝑟𝑚) (9) 

 𝛼𝑊𝑇(𝑦𝑓𝑤𝑡) =  𝛼0 cos 𝜃 + 𝛼𝑊𝑇𝑓𝑙𝑎𝑟𝑒
+ 𝛼𝑊𝑇𝑖𝑛𝑑𝑢𝑐𝑒𝑑

(𝑦𝑓𝑤𝑡) (10) 

2.4 Stability Analysis 

To determine the natural frequencies, and damping ratios under a given airspeed, angle of attack 

and controller settings, the equilibrium position was first calculated for these conditions. For linear 

stability analysis, a linear model was created around the equilibrium position for those conditions, 

the Jacobian of this linear model was determined, and the eigenvalues and eigenvectors of the 

Jacobian were then calculated. The natural frequencies and damping ratios could then be found. 

Additionally, time domain simulations were used, and in these simulations time domain 

simulations, the output was inspected for stability. 

2.5 Gust Model 

As part of the project, the wing’s response to discrete gust loads was analysed, and these were 

modelled using the method set out in EASA CS-25 [16]. The model specified in these 

specifications, and used in this project, is set out in equations (11) and (12) below. The load 

alleviation factor, Fg, is assumed to be 1. 𝑈𝑟𝑒𝑓 is designated as the peak vertical velocity of the 

gust, H is the gust length, and s is the distance into the gust. 

 

𝑈𝑑𝑠 = 𝑈𝑟𝑒𝑓𝐹𝑔 (
𝐻

107
)

1
6
 (11) 
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𝑈𝑧 =
𝑈𝑑𝑠

2
[1 − cos (

𝜋𝑠

𝐻
)]  

𝑈𝑧 =  0 

for 0 ≤ 𝑠 ≤ 2𝐻 

for 𝑠 > 2𝐻 
(12) 

2.6 Controller Model 

A wingtip tab controller was investigated using both a derivative gain, Kd, and a proportional gain, 

Kp, for the target control surface deflection.  

Assuming a desired wingtip deflection of zero degrees, the error term used to drive the controller 

was equal to −𝜃. Therefore, the control function was defined as 

 𝛽𝑡𝑎𝑟𝑔𝑒𝑡 = −𝐾𝑝𝜃 − 𝐾𝑑𝜃̇ (13) 

where 𝛽𝑡𝑎𝑟𝑔𝑒𝑡 is the target control surface deflection in degrees. The possible target deflections 

were capped at  ± 30 degrees. Initially, an ideal control surface actuator was modelled, meaning 

that the control surface deflection was always exactly equal to the target control surface deflection. 

Clearly this is not a true assumption, so a simple control surface model was built into the 

simulation. This involved adding a third degree of freedom for the control surface deflection, 𝛽, 

which was modelled as an angular spring, of stiffness kt, and damper, with damping coefficient ct, 

with a second moment of inertia It. This results in the 3x3 mass matrix 

 

 

𝐌 = [

𝑚𝐼𝑊 + 𝑚𝑊𝑇 𝑚𝑊𝑇𝐿𝑊𝑇𝑐𝑜𝑠𝜃 0

𝑚𝑊𝑇𝐿𝑊𝑇𝑐𝑜𝑠𝜃 𝑚𝑊𝑇𝐿𝑊𝑇
2 + 𝐼𝑊𝑇 0

0 0 𝐼𝑡

] 

 

(14) 

and updated force vector 

 

𝑭 =  [

𝐹𝑧𝐼𝑊
+ 𝐹𝑧𝑊𝑇

+ 𝑘𝐼𝑊𝑧 − (𝑚𝑊𝑇𝐿𝑊𝑇𝑠𝑖𝑛𝜃)𝜃̈ − 𝑚𝐼𝑊𝑔 − 𝑚𝑊𝑇𝑔

𝑀𝜃 − 𝑚𝑊𝑇𝑔𝐿𝑊𝑇𝑐𝑜𝑠𝜃

𝑘𝑡𝛽 + 𝑐𝑡𝛽̇

] 

 

(15) 

 

The first method to develop a more realistic model for a control surface involved implementing a 

model for a control surface actuator. There has been previous research on active flutter suppression 

systems, although not related to flared folding wingtips, that have instead used a transfer function 

to model a control surface actuator [18]. Therefore, the transfer function developed in this previous 

research,  

 

 
𝐺(𝑠) =  

96710

𝑠2 + 840𝑠 + 96710
 (16) 
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was also implemented, as this represents a model for an actuator suitable for active flutter 

suppression. By carrying out a reverse Laplace transform, the coefficients can be determined for 

the mass, spring, damper system implemented into the FFWT model, and these are shown in table 

2. 

However, these both this and the ideal control surface actuator allow unlimited angular velocities, 

so the second method to simulate a more realistic control surface was to prescribe a rate limit for 

the controller, specifying the maximum angular velocity the control surface can obtain. A rate of 

50 deg/sec was chosen to be suitable maximum angular velocity. To ensure that this was the only 

significant change effecting the system, values for It, kt and ct had to be chosen that ensured that 

at the frequencies used, there was no noticeable difference between the demanded and performed 

control surface response before the rate limit was imposed. This was achieved by selecting values 

such that the damping ratio of this mode would be close to critically damped (0.95), and that the 

damped natural frequencies would be significantly higher than the oscillations present in the 

control surface demand. These values were then checked by running simulations to ensure that 

there was no discernible difference between the response and demand. The values used are 

presented in table 2 below. 

Table 2: The coefficients used to model both the rate limited model, and the actuator transfer 

function model. 

 Actuator Transfer Function 

Model 

Rate Limited Model 

It 1 / 96710 0.00001 

kt 1 1 

ct 840 / 96710 0.006008 

 

The rate limit was then installed into the code and was enforced by capping the maximum ‘control 

force’ applied to the system to be that required to obtain a velocity of 50 deg/sec, based on the 

spring stiffness. As the second moment of inertia, It, is comparatively small, it was considered 

negligible in this calculation. To achieve this, the numerical ode solver method had to be changed 

to one with a constant time-step rather than variable time step. A first order Euler method was 

used, using the MATLAB function ode1 [17], and a time-step of 0.1ms was selected, as this 

produced almost identical results to the ode45 solver used before, and still ran simulations in a 

reasonable time. When the rate limit is imposed, using the model developed, modelling can only 

be done in the time domain, as the methods previously used to find the natural frequencies and 

damping ratios will no longer be valid. 

3 RESULTS AND DISCUSSION 

3.1 Model Evaluation 

First, simulations were run to validate the numerical model. As the model is of a wing analysed in 

previous research, a simulation was conducted to recreate the numerical results shown in earlier 

research [6], which were generated with a more sophisticated model for inner wing bending. The 

variation in the natural frequencies and damping ratios with velocity, for the two numerical 

models, at an angle of attack of 2.5 degrees, is shown in figure 4. As airspeed changes, the 
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equilibrium tip deflection and fold angle vary, and hence the equilibrium position that the model 

is linearized around to calculate these natural frequencies and damping ratios are calculated also 

varies. The equilibrium position as airspeed is varied is shown in figure 5. 

 

 

Figure 4: The natural frequencies and damping ratios of the wing at a 2.5 degrees angle of attack. 

 

Figure 5: The equilibrium wingtip fold angle as airspeed is varied at a constant 2.5-degree angle 

of attack. 

Comparing these to results from the previous research [6], they are mostly similar, however there 

are some differences. When comparing the trend in natural frequencies, the results are similar up 

until the intersection airspeed, and these frequencies intersect at the expected location. The major 

difference with the natural frequencies is the modes fail to coalesce at airspeeds above this 

intersection point, and therefore the behaviour at speeds significantly above the peak flutter speed 

are not accurately modelled. This is unsurprising given the relative simplicity of the numerical 

model used and is not a particularly relevant region for this study. The damping ratios individually 

show the expected behaviour as flight speed increases; however, they are quantitatively somewhat 

different, with the changes in the values less pronounced than those seen in previous reaserch. 

Again, these differences are expected due to the 2DoF simplification, and both models predict very 

similar flutter onset speeds, at a speed slightly below where the natural frequencies of the two 

modes cross. 

The sensitivity of the model to two key parameters was also measured, the inner wing stiffness 

and the wingtip mass. The effect on changing these parameters on the natural frequencies and 
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damping ratios of the model was examined and are shown in figure 6 below. The angle of attack 

was fixed at 2.5 degrees, and the airspeed at 25 m/s.  

 

Figure 6: The results of the parameter study, changing wingtip mass and inner wing stiffness, at 

an angle of attack of 2.5 degrees, and an airspeed of 25 m/s. The natural frequencies and 

damping ratio’s for both modes are shown on the graph. 

Figure 6 shows that the natural frequencies are relatively sensitive to both parameters, and that at 

this condition, which is below the flutter onset speed for this angle of attack, the changes only 

significantly affect the mode they most relate too, with little change to the coupled characteristics. 

The natural frequency primarily for wing bending increases as stiffness increases, as expected, and 

as the wingtip mass increases, the natural frequency gets closer to the zero-airspeed natural 

frequency for this mode, again as expected, providing further validation to the model. The damping 

ratios don’t deviate as much as these parameters are varied, however both damping ratios change 

when one of the parameters is changed, showing the coupling between the modes is more important 

for the damping characteristics. 

3.2 Natural Frequency and Damping Ratio Analysis with The Ideal Control Surface 

Actuator 

The active controller tested features two gains, a proportional gain Kp and a derivative gain Kd. 

The proportional gain has the effect of adding stiffness to the folding wingtip mode, while the 

derivative gain acts by adding damping to the wingtip mode, however this is a slight simplification 

as the wingtip forces due to the airflow are also affected to produce this effect. 

The derivative gain was examined to see its effect on the wingtip flapping mode, and this was 

achieved by modelling the wingtip in isolation. At a fixed airspeed and angle of attack, the 

relationship between the derivative gain and wingtip damping coefficient was found to be entirely 

linear. Therefore, the remaining relationships can be examined by discussing how this gradient 

changes. 

As angle of attack is varied, this gradient does experience some changes, however these are not 

significant, and so this gradient can be assumed to be constant as angle of attack changes. However, 

the effect of airspeed on this gradient varies greatly, and this relationship is shown in figure 7. 
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Figure 7: The difference in damping ratio when comparing a derivative gain of 0 and 1, on an 

isolated wingtip at an angle of attack of 2.5 degrees. 

The increase caused by a derivative gain of one, shown on figure 7 as the ‘effect of derivative 

gain’, can be approximated to be a straight line for airspeeds above 10 m/s. As it can be 

approximated linearly, when assessed in isolation from the inner wing, an expression can be made 

to approximate the effect of adding a positive derivative gain on the wingtip damping coefficient 

𝜁𝑊𝑇, and can be shown to be equal to 

 Δ𝜁𝑊𝑇 = (0.0078 𝑈 − 0.0149)𝐾𝑑 (16) 

 

Now, returning to the full system, with the wingtip attached to the flexible inner wing, the effect 

of altering these gains on the natural frequency and damping characteristics of the system are 

examined. Figure 8 shows the effect of applying a proportional gain, Kp, of 5. 

 

Figure 8: The effect of applying a proportional gain on the damping ratios and natural 

frequencies, at an angle of attack of 5 degrees. 
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As can be seen in figure 8, applying a proportional controller gain has no significant effect on the 

natural frequency associated primarily with inner wing bending, but delays the rise in the natural 

frequency primarily associated with the wingtip mode to higher airspeeds, pushing the point at 

which the two frequencies intersect to a higher airspeed. As these modes crossing is the primary 

flutter mechanism, this has the effect of pushing the flutter onset speed to a higher speed, which is 

the speed at which the damping ratio becomes negative, hence allowing the aircraft to operate to 

higher speeds before flutter occurs. The relationship between proportional gain and flutter onset 

speed, at a fixed angle of attack, is shown in figure 9. 

 

Figure 9: The effect of the controller proportional gain on the flutter onset speed, at an angle of 

attack of 5 degrees. 

The use of a proportional gain is effective at pushing up the flutter onset speed, and therefore 

improving the stability characteristics of the wing. The gains examined were limited to -10 

degrees, as using controller gains below this produces unrealistically high control surface 

deflection demands during a gust encounter. This shows that the proportional gain can push up the 

flutter onset speed by approximately 20%, however it cannot alleviate flutter completely. 

The use of a non-zero flare angle creates a coupling between the local angle of attack of the wingtip 

and the wingtips current fold angle. As the control surface changes the zero-lift angle of attack, 

the use of a proportional gain creates a similar coupling. This was investigated by reducing the 

flare angle from 10 degrees to 5 degrees, and then adding a proportional controller gain to recreate 

the 10 degree flare angle results using the new model with a 5 degree flare angle. To determine if 

the effect had been matched, the equilibrium wingtip fold angle was considered as both airspeed 

and angle of attack were varied, as shown in figures 10 and 11, after a suitable controller gain had 

been identified.  
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Figure 10 – The equilibrium fold angle as airspeed varies, at a constant angle of attack of 2.5 

degrees, with the initial model, and the Λ = 5𝑜model with a proportional controller gain. 

 

Figure 11 - The equilibrium fold angle as angle of attack varies, at a constant angle of airspeed of 

25 m/s, with the initial model, and the Λ = 5𝑜model with a proportional controller gain. 

These figures show that the required controller gain is independent of the aircrafts airspeed and 

angle of attack, which makes the system easier to implement. Figures 10 and 11 also show that the 

equilibrium positions can be matched almost exactly using a proportional controller gain. 

Therefore, this shows that the effective flare angle can be changed using a proportional controller, 

and therefore this allows tailoring of the effective flare angle during the flight. 

 

To analyse the stability changes created by this change, the natural frequencies and damping ratios 

were analysed for both models, and these are shown in figure 12. 
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Figure 12 – The natural frequencies and damping 

ratios of the two models, at an angle of attack of 2.5 

degrees. 

Figure 13: The effect of applying a derivative controller 

gain to the natural frequencies and damping ratios at an 

angle of attack of 5 degrees. 

 

Figure 12 shows that, under the model using a proportional gain to recreate flare angle, the 

intersection of the natural frequencies is increased slightly. However, the hump mode created in 

the inner wing’s damping characteristics is significantly reduced in magnitude, resulting in an 

increased flutter onset speed under the model using proportional gain to recreate the flare angle. 

The damping ratio of the wingtip mode is only slightly reduced. Additionally, by adding a slight 

derivative gain of 0.2, the model becomes stable at all airspeeds at this angle of attack.  

By using a proportional gain to recreate the flare angle, flutter performance of the wing is 

significantly improved, and much lower derivative gains are needed to prevent flutter. 
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The other gain examined was the derivative gain Kd. Figure 13 shows the effect of applying this 

gain at a fixed angle of attack, and figure 14 shows just the critical damping ratio, that becomes 

unstable without a controller response, for multiple controller gains Kd. 

 

Figure 14: The effect of changing derivative gain on the critical damping ratio at an angle of 

attack of 5 degrees. 

 

The results in figure 13 show that while applying a derivative controller gain has no significant 

effect on the natural frequencies of the system, it does have the slightly undesirable effect of 

gradually reducing the airspeed at which the two natural frequencies cross, which will slightly 

reduce the airspeed at which the minimum damping ratio is observed. However, as this is very 

gradual, this is not a particular cause for concern. 

In contrast, the effects on the damping characteristics of the model by adding a derivative gain are 

much more significant. As expected, adding a derivative gain significantly increases the damping 

ratio for the mode primarily associated with the wingtip folding DoF, as it creates an aerodynamic 

force opposing the motion of the wingtip. 

As shown in figure 14, adding a derivative gain also influences the damping ratio for the mode 

primarily associated with inner wing bending, particularly around the unstable section. This can 

be explained because the flutter occurs due to the interaction between the modes as the natural 

frequencies approach and then cross each other, meaning that in this region anything effecting the 

wingtip mode will also significantly affect the inner wing mode.  In the natural response, there is 

a significant dip in damping ratio for the inner wing mode around the airspeed where the modes 

interact, however adding the derivative gain reduces this dip. In figure 14, it’s shown that a 

derivative gain of 1.5 is sufficient to fully prevent the unstable behaviour at this angle of attack, 

and that a derivative gain of 5.0 almost completely removes the effect of this interaction on the 

inner wing damping ratio. 

To examine the derivative gain necessary to fully prevent the onset of flutter, a parameter study 

was run where the effect of changing derivative gain was examined. In figure 15, this is presented 

as the derivative gain versus the minimum damping ratio seen across the range of possible 

airspeeds, where the possible airspeeds are those between 15 and 50 m/s. This was tested across 

multiple angles of attack, and these are presented as the different lines on the figure. 
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Figure 15: The effect of adding a derivative gain on the minimum damping ratio. 

A negative damping ratio shows that flutter is present, whereas a positive damping ratio shows 

that any oscillations will instead gradually decay. As shown in figure 15, up to a certain point, 

increasing the derivative gain increases the minimum damping ratio, and allows flutter onset to be 

prevented. Above a certain point, adding additional derivative gain stops increasing the minimum 

damping ratio any further. At this point, the dip in damping ratio shown in figure 14 due to the 

interaction between the two modes has been eliminated.  

As demonstrated when creating equation 16, the angle of attack has no significant effect on the 

change in damping ratio for an isolated wingtip due to controller derivative gain. Despite this, in 

the coupled system, there are significant differences as to how much derivative gain effects the 

damping ratio primarily associated with the inner wing mode as the angle of attack is changed, 

with the same derivative gain having less effect at higher angle of attacks. This coupled with the 

already more unstable system at higher angles of attack, which can be seen from the values of 

minimum damping ratio at zero derivative gain, means that the derivative controller gain required 

to prevent flutter increases significantly as angle of attack increases. Where flutter still occurs, the 

change in flutter onset speed due to derivative gain (below the gains required to fully prevent 

flutter) is minimal. 

From the analysis of the effect of both proportional and derivative gain on the natural frequencies 

and damping ratios, proportional gains can be used to provide limited increases in the flutter onset 

speed, whereas the derivative gain can be used to fully prevent the onset of aircraft flutter, 

assuming the derivative gains required can be implemented. 

3.3 Time Domain Response with the Ideal Control Surface Actuator 

To assess whether these controller gains are feasible, the response of the model in the time domain 

needs to be considered. As one of the main use cases for wings fitted with FFWTs is for gust load 

alleviation, the gust response of the model was considered. At sea level, EASA specifies that the 

aircraft must be able to withstand gust with a maximum vertical velocity of up to 17.07m/s [16]. 

As the numerical model is based on a wing designed for wind tunnel testing, and not a passenger 

aircraft, then this value clearly must be reduced. The maximum gust velocity is roughly one quarter 

of a passenger aircraft landing speed, so the value used for gusts in these simulations was 25% of 
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the forward flight speed. Figure 16 shows the gust response of the model to a gust without active 

control being used, where the 1-cosine shaped gust starts 0.5 seconds into the simulation and is 

fully complete 1 second into the simulation. 

 

Figure 16: The natural response of the model to a 5m/s reference gust velocity, and gust length of 

5m, during a 20 m/s flight speed, at a 2.5 degree angle of attack. 

Figure 16 shows the interaction between the wingtip and wing bending mode of the model, and 

that once the gust has passed, they oscillate out of phase with each other. It also shows in the time 

domain the gradual damping out of the oscillations in both modes.  

To consider how the control surface will respond to a gust encounter, the time domain response to 

the same gust as shown in figure 16 was considered for both a proportional gain of 10, shown in 

figure 17, and a derivative gain of 3, shown in figure 18. The derivative gain of 3 was selected, as 

this provides a positive damping ratio for all the examined angles of attack, as shown in figure 11. 

 

Figure 17: The control surface response under the same conditions as figure 16, with a 

proportional gain Kp of 10. 
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Figure 18: The control surface response under the same conditions as figure 16, with a derivative 

gain Kd of 3. 

As can be seen in figures 17 and 18, under these conditions, the required control surface deflections 

are reasonable, and the maximum deflection limit of ± 30 degrees was never exceeded for either 

of the controller gains. However, due to the relatively large control surface deflections, and the 

relatively high frequency of the oscillations, the angular velocities experienced by the control 

surface are likely higher than what could be reasonably implemented. While this is true for both 

controller gains, with an angular velocity of 90 deg/sec likely being too high, the derivative 

controller scenario sees angular velocities exceeding 200 deg/sec. The angular velocities 

experienced did decay to a more reasonable rate over time, and it is mainly during the immediate 

aftermath of the gust encounter that they are unreasonably high. However, when operating above 

the flutter onset speed, the oscillations would grow instead of decay, so the system must be able to 

work enough to prevent flutter even at the large inner wing and wingtip oscillations initially 

experienced. The peak angular velocities experienced vary depending on the gust length 

encountered, and this relationship is shown in figure 19.  

For this simulation, the peak gust vertical velocity has been reduced to 3 m/s. This is because for 

speeds larger than this, at some gust lengths, the maximum wingtip deflection exceeds 90 degrees 

when under a proportional gain, and therefore the model is no longer valid. Additional tailoring of 

the control logic could be used to prevent this happening, for example by reducing the control 

surface deflections once above a critical wingtip angle, however adding this non-linearity could 

affect the stability characteristics of the wing. 
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Figure 19: The peak control surface angular velocities as the gust length varies, under a vertical 

gust of 3m/s, forward flight speed of 20 m/s, and an angle of attack of 2.5 degrees, with both a 

derivative gain Kd = -10, and a proportional gain of Kp = 3 shown separately. 

Figure 19 shows that the derivative gain produces the highest rotational velocities of the control 

surface, and that at low gust lengths these are high deflection rates, even at the reduced vertical 

gust of 3 m/s. It also shows that, for both controllers, the peak control surface deflection rates were 

observed during guest lengths of around 5m, as this corresponds with a 2 Hz gust frequency, which 

is the same as the inner wings natural frequency. As gust length increases, under both controllers 

the control surface angular velocities decrease and become much more reasonable. This shows 

that, while for larger gust lengths the angular velocities are reasonable, the demanded angular 

velocities at lower gust lengths could not be implemented in practice, and therefore it is necessary 

to examine the effect of limiting the control surfaces angular velocity on the wing’s stability 

characteristics. 

3.4 Wing Root Bending Moment with The Ideal Control Surface Actuator 

The purpose of flared folding wingtips is to provide load alleviation, and therefore it is necessary 

to consider the impact that these controllers would have on the peak wing root bending moment 

(WRBM) observed during the gust encounter. Similarly to the control surface angular velocity, 

these will vary significantly as gust length varies. The model does not provide WRBM, however 

the degree of freedom for the inner wing deflection is an indicator of the relative amounts of 

WRBM experienced. Figure 20 shows the maximum change in inner wing deflection from the 

equilibrium position due to the gust encounter as the gust length is changed. To allow comparison 

to the natural response, the flight speed was selected to be below the natural flutter onset speed.  
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Figure 20: The effect of adding proportional and derivative control gains to the peak tip 

deflection from the equilibrium position, as gust length varies, under the same conditions as 

figure 19. 

Figure 20 shows that adding a proportional gain increases the tip deflection due to the gust, and 

therefore the WRBM at all gust lengths. This is similar to results in previous research, which 

examined varying the hinge stiffness and found that a stiffness of zero provided optimal gust load 

alleviation [3]. Importantly, at the gust lengths where WRBM is highest, the increase in WRBM 

due to adding the control surface with proportional gain is small, and therefore the increased 

WRBM because of it is not that significant. As the gust length that produces the highest WRBM 

would be the design case for the wing structure, this also means that the increase in wing weight 

due to the slightly higher WRBM would not be significant. 

The same logic also follows for the derivative gain, however here the peak change in tip deflection 

is slightly lower, but not by a significant margin. This means that there would be no increase in 

wing weight required due to the addition of a derivative gain. This result is expected, as the peak 

observed is due to the excitation of the aircrafts inner wing modes, and as such this gust length 

corresponds to a frequency of roughly 2 Hz, the inner wings natural frequency. As the derivative 

gain increases the inner wing damping ratio at these frequencies, then it is expected that the 

maximum deflection observed is reduced slightly by adding a derivative gain. At larger gust 

lengths, the response is much more dominated by following the gust, rather than the wings 

frequencies, and adding a derivative gain will reduce the maximum wingtip deflection, and 

therefore reduce the gust load alleviation effectiveness of the wingtip.  

3.5 Time Domain Response with The Rate Limited Control Surface 

As is shown in the above sections, the derivative controller was significantly more effective at 

flutter suppression, so only this is considered with the alternative control surface models. 

Two time-domain simulations were run using the control surface, with an angular velocity limit of 

50 deg/sec enforced. The first simulation was run to correspond with the same conditions as figure 

17 above, allowing a comparison to be made. The control surface deflections, and velocities, 

associated with the gust encounter are shown in figure 21 below. 



IFASD-2024-125 

 21 

 

Figure 21: The control surface response of the rate limited control surface to a 5m/s reference 

gust velocity, and gust length of 5m, during a 20 m/s flight speed, at a 2.5 degree angle of attack, 

and a derivative gain Kd = 3. 

The very high demanded angular velocities mean that, when a rate limit is imposed, the actual 

control surface angular velocity very quickly results in a square wave, rather than the sinusoid seen 

without the rate limit. This then has the effect of creating a triangular wave for the control surface 

deflection, instead of the sinusoidal demand signal applied. This triangular wave also features a 

significant phase shift from the input demand, which will affect the flutter suppression 

performance of the system. The maximum deflection amplitudes reached are also lower.  

A limitation of this method of control surface simulation is that the almost square waveform for 

control surface angular velocities implies a near infinite acceleration on the control surface to 

achieve this, which is clearly not realistic. Additionally, this model does not account for any time 

delay due to the processing of the data. As there are obvious limitations in this model, it cannot be 

assumed to provide an accurate quantitative measure of the systems effectiveness, but it does 

provide a useful qualitative indication as to whether the demanded gains are realistic.  

To examine whether these changes prevent the system from still being able to fully supress flutter, 

the second time domain simulation run with the rate limiter present was chosen to represent a 

reasonable worst-case scenario for the system. From figure 14, an airspeed of 32m/s was selected 

as a suitable worst-case airspeed, as this is where flutter onset is greatest. A high angle of attack 

of 10 degrees was also selected, to maximise the flutter present. Finally, the simulation to look at 

maximum demanded control surface velocity, as a function of gust length, was re-run to determine 

the gust length at these conditions that causes the maximum control surface velocity demand, 

which was found to be a gust length of 6.6m. The peak gust vertical velocity was increased to 

8m/s, to keep it the same proportion of flight speed. The results of this simulation are presented in 

figure 22 below. 
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Figure 22: The control surface demand, position, and angular velocity over the simulation. 

As expected, this simulation again features a triangular waveform for the control surface position, 

and a square waveform for the control surface velocity. The median control surface position 

becomes negative during this simulation, due to the more negative demands during the first couple 

of seconds of the simulation. Also, compared to the previous simulation, in this more extreme case, 

the phase difference between the demanded and supplied control surface deflection is now 

significantly greater, at almost 45 degrees, further reducing the control surface efficacy. To 

examine if the control system is still effective at preventing flutter, the response of the wing must 

be examined. As it is the mode that typically becomes unstable first, the inner wing tip deflection 

is presented in figure 23 below and is compared with that of the ideal control surface model. 

 

Figure 23: The Inner Wing Tip Deflection, comparing the result when simulating with both the 

ideal and rate limited control surface. 

As shown in figure 23, the rate limited control surface performs very differently to the ideal control 

surface. The ideal control surface is effective at damping out the oscillations, whereas with the rate 

limited controller, the oscillations are not fully damped out, and instead enter a limit cycle 

oscillation. This is expected, as from looking at figure 22, as well as the phase shift, the demanded 

derivative gain is unable to be provided. At this worst-case scenario, an effective derivative gain 

of close to 3 must be provided by the system to adequately prevent flutter, and the far smaller 
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oscillations provided by the control surface are inadequate to do this. There is some positive effect 

of having the control surface present, as the positive deflection reached in the limit cycle is 0.321m 

with the controller active, compared to 0.332m under the natural response of the system. However, 

these oscillations are still too large for a limit cycle oscillation to be experienced safely in flight, 

as they have an amplitude of 0.18m on an inner wing only 0.875m long, therefore the system does 

not function sufficiently well under the reasonable worst-case scenario when using the rate limited 

controller model.  

There are some design changes that could be made that may improve the performance of the system 

under the rate limited condition. The largest issues with this system occur with higher frequency 

oscillations, and so reducing the natural frequency of the oscillations would improve the 

performance of the control system. After the initial gust, the control surface is oscillating at the 

inner wing natural frequency, as this is the mode driving the behaviour after the gust has passed. 

In the parameter studies shown in figure 6, by reducing the inner wing stiffness, the natural 

frequency of the inner wing oscillations would be reduced, and hence the control surface would 

perform better. However, as wing stiffness is reduced the magnitude of the oscillations would be 

increased, so it is unclear if overall this would have a positive effect. Additionally, if a larger 

control surface was used, then the magnitude of the deflections needed to prevent flutter would be 

reduced, and therefore the control surface angular velocities demanded would also be reduced. 

However, this would come with a weight penalty. 

3.6 Response with The Control Surface Actuator Model 

Figure 24 shows the control surface response, using the actuator model instead of the rate limited 

model, under the same worst case scenario conditions described above. 

 

Figure 24: The control surface response using the control surface actuator model under the same 

conditions used to generate figure 22. 

Figure 24 shows very little difference between the control surface demand and response induced 

by this actuator model. This is expected, as from the Bode plot of the transfer function, the phase 

difference at the 2Hz frequency is only -6 degrees. To examine the effect of this change on the 

model’s behaviour, a calculation was run on the minimum damping ratio across the flight speeds, 

as derivative gain is changed, at a 10-degree angle of attack, following the same methodology as 

figure 15, and is shown in figure 25 below. 
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Figure 25: The effect of the transfer function for the actuator on the minimum damping ratio 

observed as derivative gain is changed. 

As can be seen in figure 25, the non-ideal actuator does reduce the effect of the derivative gain 

when compared to the ideal control surface, however by using a slightly larger derivative gain, 

flutter suppression is still possible under this model at all points in the flight envelope. 

However, this model is again not fully representative of a real control surface, as the high angular 

velocities observed are largely unchanged under this model compared to those for the ideal control 

surface. This means that under worst case gust loads the predicted performance under this model 

may not be achievable. Again, the flight control surface model used does not account for any 

controller delay, and therefore this is another factor that would likely reduce the flutter suppression 

performance in a real aircraft. 

 

4 CONCLUSIONS 

A two-degree of freedom model to represent a wing featuring flared folding wingtips (FFWT) was 

created, with an additional control tab on the wingtip. This controller used the wingtip deflection 

angle as an input signal, and the use of both proportional and derivative gains was investigated. 

Initially, an ideal control surface was used, where the control surface position was always the same 

as the demanded position. Using this ideal control surface, adding a proportional gain is effective 

at increasing the flutter onset speed by up to 5 m/s, by increasing the airspeed at which the wingtip 

flapping and inner wing bending modes cross. The use of a proportional gain was also shown that 

it could be used to change the effective flare angle of the wingtip. However, when using the ideal 

control surface model, adding a derivative gain was successful at fully preventing flutter at all 

reasonable airspeeds, and therefore was selected as the much more promising solution. For both 

the derivative and proportional controller gain, the benefits in preventing flutter, or increasing 

flutter onset speed, were achieved without any significant change to the amount of gust load 

alleviation provided by the FFWT.  

However, these conclusions are built on the assumption of an ideal controller. This paper also 

showed that accounting for controller dynamics and nonlinearities such as limiting maximum 

control surface deflection and angular velocity can mitigate the observed benefits under worst case 

gust encounters.  
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Other dynamics which were considered in this paper are also likely of importance in considering 

the stability of these systems, such as the full dynamics of a control surface and considering the 

effects of controller delay and noise. Additionally, the simplification to a two degree of freedom 

model reduces the accuracy of the model, and so it is not known whether active control could cause 

instabilities in modes other than the wingtip flapping and first bending modes. 

However, overall, the active control of a wingtip tab was shown to have significant influence on 

flutter mechanisms involving FFWTs meaning they are a potentially viable system to augment 

such instabilities. 
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