Kiran Ramesh, Tiago Priolli Monteiro, Flávio José Silvestre, Antônio Bernardo Guimarães Neto, Thiago de Souza Siqueira Versiani, Roberto Gil Annes da Silva

DOI Number: N/A

Conference number: IFASD-2017-161

Futuristic aircraft designs and novel aircraft such as High Altitude Long Endurance (HALE) involve a higher level of structural flexibility than in conventional aircraft. Even at present, the trends in the aviation industry are to increase wing length (to reduce induced drag) and maximize use of composites, which lead to increased structural flexibility. This necessitates a rethink of conventional (linear) aeroelastic analysis, since the increased flexibility results in coupling between the flight dynamic and aeroelastic dynamics, and consequently, limit-cycle oscillations of the structure. In this paper, a new three-dimensional low-order model for unsteady aerodynamics that accounts for large oscillation amplitudes and nonplanar wakes is developed. An experiment with a cantilevered flat plate at low Reynolds number is set up and used to validate the low-order model, as well as to study post-flutter limit-cycle oscillations. Results from the low-order model are promising, but show that aerodynamic nonlinearities such as flow separation and leading-edge vortex shedding must also be modeled in order to predict all possible limit-cycle oscillations of the aeroelastic system.

Read the full paper here

Email
Print
LinkedIn
The paper above was part of  proceedings of a CEAS event and as such the author has signed a publication agreement to have their paper published in the repository. In the case this paper is found somewhere else CEAS always links to the other source.  CEAS takes great care in making the correct content available to the reader. If any mistakes are found  in the listings please contact us directly at papers@aerospacerepository.org and we will correct the listing promptly.  CEAS cannot be held liable either for mistakes in editorial or technical aspects, nor for omissions, nor for the correctness of the content. In particular, CEAS does not guarantee completeness or correctness of information contained in external websites which can be accessed via links from CEAS’s websites. Despite accurate research on the content of such linked external websites, CEAS cannot be held liable for their content. Only the content providers of such external sites are liable for their content. Should you notice any mistake in technical or editorial aspects of the CEAS site, please do not hesitate to inform us.