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Abstract:

Futuristic aircraft designs and novel aircraft such as High Altitude Long Endurance (HALE)
involve a higher level of structural flexibility than in conventional aircraft. Even at present, the
trends in the aviation industry are to increase wing length (to reduce induced drag) and maxi-
mize use of composites, which lead to increased structural flexibility. This necessitates a rethink
of conventional (linear) aeroelastic analysis, since the increased flexibility results in coupling
between the flight dynamic and aeroelastic dynamics, and consequently, limit-cycle oscillations
of the structure. In this paper, a new three-dimensional low-order model for unsteady aerody-
namics that accounts for large oscillation amplitudes and nonplanar wakes is developed. An
experiment with a cantilevered flat plate at low Reynolds number is set up and used to validate
the low-order model, as well as to study post-flutter limit-cycle oscillations. Results from the
low-order model are promising, but show that aerodynamic nonlinearities such as flow sepa-
ration and leading-edge vortex shedding must also be modeled in order to predict all possible
limit-cycle oscillations of the aeroelastic system.

1 INTRODUCTION

Flutter is an aeroelastic phenomenon in which the interaction of flowing air with aircraft sur-
faces (usually wings) results in a dynamic instability. In classical linear flutter, the wing’s oscil-
lations increase in amplitude until structural failure occurs (typically within a few cycles) [1,2].
A number of modern aircraft, for example F-16s, have also experienced limit cycle oscillations
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(LCOs) in which the wing’s oscillation amplitude does not keep increasing, but instead settles
at a constant value [3]. Nonlinearities in the system, such as geometric, aerodynamic, stiffness,
or structural damping, act to limit the motion amplitude [4]. If the amplitude is large enough,
the oscillatory motion can damage the wing/aircraft.

The aerospace industry worldwide is seeking to develop green aircraft which are cleaner, qui-
eter and more efficient, based on demands for reduction of fuel burn, emission of pollutants and
costs of operation. This has motivated studies into new aircraft designs and configurations by
leading aircraft manufacturers such as Airbus, Boeing and Embraer. Most of these futuristic
designs involve a higher level of structural flexibility than in conventional aircraft. Even cur-
rently, the trends in the aviation industry are to increase wing span (to reduce induced drag)
and maximize use of composites, which lead to increased structural flexibility. Flexible aircraft
structures result in the aeroelastic behavior becoming closer in frequency to that of the flight
dynamics. Current procedures for flight control laws which are based on decoupling between
flight dynamics (rigid-body) and aeroelastic dynamics, are thus not valid for flexible aircraft [5].

Flutter has typically been modeled with linear analysis, using linear aerodynamic theories such
as those by Theodorsen [6, 7] and Wagner [8]. As LCOs are by their very nature nonlinear,
these linear models are not capable of predicting all occurring LCOs and their features. This
inability to fully predict LCOs creates the need for extensive flight testing, which is an expensive
and time-consuming endeavor. These problems are present all the more in flexible aircraft like
High Altitude Long Endurance (HALE) or futuristic aircraft with large aspect ratios. In these
aircraft structures, the aeroelastic behavior may be strongly influenced by the flight dynamics.
A nonlinear aeroelastic analysis tool capable of predicting all aspects of LCO behavior is hence
desirable [9].

A combined formulation of aeroelasticity and flight dynamics, using Computational Fluid Dy-
namics (CFD) for aerodynamics and Finite Element Method (FEM) for structural dynamics is
an expensive problem, requiring several hours of computational time even with High Perfor-
mance Computing (HPC) resources. Hence semi-empirical methods such as the well-known
Beddoes-Leishman [10] or ONERA dynamic stall model [11] are typically employed for inex-
pensive aeroelastic analysis in such regimes. While these are computationally fast, they do not
provide insight into the flow phenomena and are only valid in regimes where they have been
previously validated. Recognizing the need for a new class of low-cost, physics-based meth-
ods, many low-order unsteady flow solvers such as those by Ramesh et al. [12] and Eldredge &
Wang [13] have been developed recently.

Structural nonlinearities in the aeroelastic system can arise from large deformations, material
properties, or loose linkages [4]. The effects of structural nonlinearities on airfoil aeroelasticity,
focusing on different types of nonlinear spring behavior such as bilinear or cubic variation
in stiffness have been studied by several authors and are comprehensively reviewed in Lee et
al. [4]. In these studies, it is assumed that the aerodynamics are linear, that is, the flow is
incompressible, inviscid and attached to the airfoil. The onset and type of bifurcation, and the
amplitude and frequency of the ensuing limit-cycle oscillations are investigated. Hard springs
(positive cubic stiffening) are seen to result in a supercritical Hopf bifurcation, where LCOs
occur only at freestream velocities greater than the linear flutter velocity and are independent
of initial conditions. Soft springs (negative cubic stiffening) on the other hand, result in a
subcritical Hopf bifurcation where LCOs may arise at velocities below the linear flutter velocity,
and are dependent on the initial conditions. Further, chaotic oscillations are observed in a range

2



IFASD-2017-161

of freestream velocities for some configurations.

Aerodynamic nonlinearities may result from compressibility or viscous effects [4]. Tang et
al. [14] have studied flutter and LCOs of 2D panels through linear theory and experiment, and
concluded that there are significant differences between the two methods for large-amplitude
LCOs owing to aerodynamic nonlinearities. Nonlinear aerodynamics resulting from viscous
flow phenomena are largely dependent on the Reynolds number and the reduced frequencies
involved, and leading-edge vortices (LEVs) have been seen to play a crucial role. In helicopter
and wind-turbine applications, which are necessarily associated with large Reynolds numbers
and low reduced frequencies, LEVs and the resulting dynamic stall phenomenon might lead to
violent vibrations and mechanical failure [15]. Conversely, LEVs in high-frequency flows have
been credited with contributing toward the success of high-lift flight in insects [16–19], and
high propulsive [20] and power-extraction [21] efficiencies.

The type of nonlinearity in the system may result in either subcritical (below the flutter velocity)
or supercritical (above the flutter velocity) LCOs. In structural nonlinearities for example, it is
known that soft cubic stiffening results in subcritical LCOs that depend on initial conditions
while hard cubic stiffening results in supercritical LCOs that are independent of initial condi-
tions. In aerodynamic nonlinearities, Dowell and Tang [22] have reported that trailing-edge
flow separation results in subcritical LCOs that depend on initial conditions. On the other hand,
Ramesh et al. [23] have shown that 2D LEVs cause supercritical LCOs that are independent of
initial conditions.

In this research, we are specifically concerned with aerodynamic nonlinearities and consequent
limit-cycle oscillations resulting from leading-edge vortex shedding at low Reynolds numbers.
In order to develop a suitable 3D low-order model for this regime, the nonlinearities in both fluid
and structure must be suitably modeled for accurate prediction of LCOs in nonlinear aeroelastic
systems [24]. The problem of a cantilevered flat plate undergoing LCOs has been well docu-
mented in the literature [25–27] and is used as a test case in this research for experiments and
for development of a new 3D low-order model.

Ramesh et al. [28] have developed an unsteady airfoil theory based on potential flow, which
holds valid uniformly regardless of amplitude and reduced frequency of motion, and shape of
trailing wake. The method was seen to predict aerodynamic forces well even under condi-
tions of large amplitude and high reduced frequency. To successfully model flows with leading
edge vortices(LEVs), the Leading Edge Suction Parameter(LESP) was developed by Ramesh
et al [29] to predict the onset of LEV formation. This parameter is a measure of the suction at
the leading edge and it was shown that initiation of LEV formation always occurred at the same
critical value of LESP, regardless of motion kinematics so long as the airfoil and Reynolds
number of operation were the same. Using this criterion, a 2D discrete-vortex method was
developed in which the LESP criterion was used to modulate the initiation, growth and termi-
nation of leading-edge vortices [12]. The method is abbreviated as LDVM (LESP-Modulated
Discrete-Vortex Method).

In this paper, the 2D discrete-vortex method described above is first extended to 3D using a
correction based on quasi-steady lifting line theory. This model is first validated against estab-
lished potential flow methods. Then, it is validated against an experiment with a cantilevered
flexible flat plate that undergoes prescribed oscillations. The flow physics in this regime are ex-
pected to be dominated by apparent-mass effects, large deflections and nonplanar wakes, flow
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separation and LEV shedding. The ability of the model to account for these phenomena is dis-
cussed. Finally, an experiment with a cantilevered flexible flat plate is designed so as to exhibit
high-frequency limit-cycle oscillations at speeds just above the flutter velocity, and results from
post-flutter LCOs of the plate are presented.

2 METHODOLOGY

2.1 Numerical Model

The LDVM aerodynamic model which is based on the 2D discrete-vortex method is used as the
basis for the numerical model employed in this research. The model is extended to 3D using a
quasi-steady correction based on lifting line theory. The 2D LDVM method is first summarized
below. The interested reader may refer to Refs. [12, 28] for further details.

2.1.1 LDVM: 2D discrete-vortex method

Large-angle unsteady thin-airfoil theory

Figure 1: Depiction of time-stepping scheme. Figure 2: Airfoil velocities and pivot location.

At the foundation of the LDVM is a large-angle unsteady thin-airfoil theory detailed in Ramesh
et al. [28]. This theory is based on the time-stepping formulation given by Katz & Plotkin [30],
but eliminates the traditional small-angle assumptions in thin-airfoil theory which may be in-
valid in flows of current interest. At each time step, a discrete vortex is shed from the airfoil
trailing edge (referred to as TEV) as depicted in figure 1. When dictated by the LESP-based
shedding criterion (section 2.1.1), a discrete vortex is also shed from the leading edge at some
time steps. The vorticity distribution over the airfoil at any given time step is taken to be a
Fourier series truncated to r terms:

γ(θ) = 2U

[
A0

1 + cos θ

sin θ
+

r∑
i=1

Ai sin(iθ)

]
(1)

where the transformation variable θ relates to the chordwise coordinate as: x = c(1− cos θ)/2,
with x measured from the leading edge; that is, 0 ≤ x ≤ c and 0 ≤ θ ≤ π. A0, A1, ..., Ar are
the time-dependent Fourier coefficients, and U is the freestream velocity. The Kutta condition
(zero vorticity at the trailing-edge) is enforced implicitly through the form of the Fourier series.
The Fourier coefficients are calculated by enforcing the boundary condition of zero normal flow
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through the airfoil camberline as

A0 = − 1

π

∫ π

0

W (θ)

U
dθ, (2)

Ai =
2

π

∫ π

0

W (θ)

U
cos(iθ)dθ, (3)

where W (θ) is the induced velocity normal to the airfoil camberline. This value is calculated
from components of motion kinematics, depicted in figure 2, and induced velocities from all
vortices in the flowfield.

When there is no LEV shedding in a time step, the only unknown is the strength of the last-shed
trailing-edge vortex and this is calculated iteratively such that Kelvin’s circulation condition is
satisfied [28].

LESP criterion for LEV formation and shedding

The LESP is a measure of the suction peak at the leading edge, which in turn is caused by the
stagnation point moving away from the leading edge when the airfoil is at an angle of attack.
From Garrick [31] and von Kármán & Burgers [32], the suction at the leading edge in potential
flow may be expressed as

S = lim
x→LE

1

2
γ(x)

√
x. (4)

Evaluating using the current formulation, S =
√
cUA0. The Leading Edge Suction Parameter

is defined as a nondimensional value of suction at the leading edge, and is hence simply set
equal to the first coefficient from Eq. (1), A0.

As noted by Katz [33], real airfoils have rounded leading edges which can support some suction
even when the stagnation point is away from the airfoil leading edge. The amount of suction
that can be supported is a characteristic of the airfoil shape and Reynolds number of operation.
When these quantities are constant, it was shown in Ramesh et al. [12] that initiation of LEV for-
mation always occurred at the same value of LESP regardless of motion kinematics and history.
This threshold value of LESP, which is a function of the airfoil shape and Reynolds number,
is termed the critical LESP. This value, for any given airfoil and Reynolds number (and other
specific operating conditions such as freestream turbulence and the presence of roughness), can
be obtained from CFD or experimental predictions for a single motion [12], and can then be
used for any other motion to predict LEV formation. In the LDVM model, a discrete vortex
is shed is from the leading edge at those time steps when the instantaneous LESP (A0 value)
is greater than the critical LESP value. The strength of the LEV is determined such that the
the instantaneous LESP value, which would have otherwise exceeded the critical LESP value,
is made equal to the latter. This condition, along with Kelvin’s condition, is used to determine
shed vortex strengths iteratively in time steps where both TEV and LEV are shed. In this paper,
we only use the LESP to predict LEV shedding and not to model it.

Vortex method details

In the current approach, the vortex-core model proposed by Vatistas et al. [34], which gives an
excellent approximation to the Lamb-Oseen vortex, is used to represent the discrete vortices as
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vortex blobs. Using this core model with order two, the velocities induced at X and Z (u and
w) by the kth vortex in the X and Z direction are:

[u,w] =
γk
2π

[(Z − Zk) , (Xk −X)]√[
(X −Xk)

2 + (Z − Zk)
2]2 + v4core

. (5)

Hald [35] has showed that the vortex-blob method is convergent (stable when run over long
periods) so long as the vortex-core radius is larger than the average spacing between vortices.
The average spacing between the vortices, d, is calculated as d = c∆t∗. The vortex core
radius is taken to be approximately 1.3 times the average spacing between the vortices (as
suggested by Leonard [36]): vcore = 0.02c. Convergence studies have been performed during
the development of this method, and the numerical parameters have been selected such that the
simulation results are not improved by either increasing or decreasing their values.

To control vortex count, and thus limit the computational cost, vortices which are a distance
greater than ten chord lengths from the airfoil are deleted. When vortices are deleted from
the domain, Kelvin’s circulation condition which is used to iterate for shed vortex strengths
is updated accordingly. Test simulations showed that results did not change when the cutoff
distance was increased beyond ten chord lengths, implying that the velocity induced by vortices
at a distance greater than ten chord lengths is negligible in comparison with other velocities
acting on the airfoil.

2.1.2 Extension of discrete-vortex method to 3D

The classical lifting line theory is used in a quasi-steady sense in order to extend the LDVM to
3D for large aspect ratio unswept wings such as those considered in this research. The spanwise
circulation distribution is modeled in the form of a Fourier series such that it goes to zero at the
wingtips.

Γ(y) = 2bUΣBn sinnψ (6)

where b is the wing span. The variation of circulation along the span results in vortex filaments
being shed down the flow in accordance with Helmholtz theorem. The shed filament has a
strength equal to the spanwise derivative of circulation distribution and results in upwash and
downwash on the outboard and inboard wing sections respectively.

dΓ

dψ
= 2bUΣnBn cosnψ (7)

The downwash at a specific spanwise station resulting from all the shed filaments is given by,

wi =

∫ b/2

−b/2

dΓ

y − yo
= UΣ

nBn sinnψ

sinψ
(8)
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This 3D downwash is is addition to the other components of downwash resulting from the wing
motion and vortices in the flowfield (shown in figure 2). The influence of the 3D downwash on
the 2D chordwise solutions are calculated using eqn. 3.

A03D = −Σ
nBn sinnψ

sinψ
(9)

A13D = A23D = An3D
= 0 (10)

Thus the only influence of the 3D downwash on the chordwise solution is on the A0 term which
is equivalent to an effective angle of attack and also serves to modulate LEV shedding. The
chordwise circulation at each strip is now given by,

Γ(y) = Ucπ(A0 + A03D +
A1

2
) (11)

Equating this equation for spanwise circulation with the assumed Fourier series distribution for
circulation gives the lifting line equation.

ΣBn sinnψ
(
sinψ +

πn

2AR

)
=
π sinψ

2AR

(
A0 +

A1

2

)
2D

(12)

This equation is solved at all spanwise locations in conjunction with the TEV strengths at each
spanwise location through a Newton-Raphson iteration.

2.1.3 Limitations of the current approach

As shown in [12], the predictions from the current LDVM are in excellent agreement with those
from CFD and experiments. Because the LDVM does not model thick or separated bound-
ary layers, the method is restricted to motions where the LEV formation occurs without being
accompanied by significant trailing-edge separation or stall. For most rounded-leading-edge
airfoils, the LDVM is most reliable for high-reduced-frequency motions, with k > 0.4.

Another disadvantage, which is characteristic of vortex methods, is the exponential increase in
computational time with number of vortices in the flow field (O(n2)). Fast summation meth-
ods [37], amalgamation of vortices, or deletion of vortices that exit the field of interest could be
used to control the vortex count. As mentioned previously, vortices that are at a distance greater
than ten chord lengths from the airfoil are deleted in the current implementation.

The lifting-line approach employed for the 3D correction in this paper is only valid for unswept,
high-aspect ratio wings with planar wakes. Vortices shed for a spanwise station are assumed
have a negligible effect on vortices shed from other spanwise stations. modeled. Further, the
shedding of LEVs from the airfoil’s leading edge is not modeled in this paper, though this may
be implemented using the LDVM methodology outlined above.
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Feature Value Unit
Wing chord 0.04 m
Wing span 0.35 m
Wing width 0.001 m
Wing mass 0.0472 kg
1st bending mode natural frequency 7.6394 Hz
Tip deflection during test 0.022 m
Angle of attack 8.0 deg
Freestream velocity 4.0 m/s

Table 1: Test parameters for prescribed motion of cantilevered flat plate.

2.2 Experiments

The focus of these experiments was to produce tests that generated aerodynamic nonlinearities
by means of leading-edge vortex formation. Two tests were executed: the first test representing
a prescribed movement with leading-edge vortex influence, and a the second test representing
a flutter condition with limit-cycle oscillations. Both experiments were conducted on an open-
section wind tunnel configuration with the wing positioned in the center of the flow with the
desired angle of attack. The wing was attached to an aerodynamic balance capable of measuring
forces in three directions. This balance is them connected to a signal conditioner device that
amplifies the signal. The acquisition system was connected to a electrical no-break to prevent
noise produced by the wind tunnel’s inverter interfering with the results. Figure 3 shows a
picture of the test setup.

Figure 3: Test setup for experiments.

Before conducting the experiments, the aerodynamic balance was hooked up to the signal con-
ditioner and characterized using standard weights ranging from 5g to 500g.
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Figure 4: Depiction of prescribed movement of the cantilevered flat plate.

2.2.1 Prescribed oscillations

The prescribed movement test used a flat plate, positioned against a steady free-flow at a de-
fined angle of attack. The fate plate was excited by PZTs attached to its root. These PZTs, when
activated close to the plate’s natural frequency for the first bending mode, generate high ampli-
tude bending motion, that, with the freestream, produce an unsteady aerodynamic condition.
Figure 4 shows a schematic of the test, and the relevant parameters are summarized in table 1.

The test results presented some noise compatible with the electrical grid. Figure 5 shows the
frequency spectrum of the measured force signal.

Figure 5: Frequency spectrum of force signal from the prescribed motion experiment.

To filter these results a moving median and a low-pass filter were used. Table 2 contains the
parameters used in the filters.

The baseline measurements are used to measure the DC offset of the sensors. It is also used to
quantify the delay between actuation on the PZT and wing movement. Figure 6 (left) shows the
results from signal filtering.

Analyzing both baseline and lift signal it is possible to see in figure 6 (right) the average lift
value for a steady 8 deg angle of attack, as well as the slight aerodynamic lag introduced by the
flow, the reduced range between maximum and minimum is due to the reduced inertial forces,

9



IFASD-2017-161

Feature Value Unit
Moving Median Window 50 Samples
Filter Order 15 -
Cut-Off Frequency 12 Hz
Pass Band 1 dB

Table 2: Parameters used for filtering force signal.

Figure 6: Force signal from experiment after filtering is applied (left), Comparison of baseline and processed force
signal (right).

caused by the aerodynamic damping, and the generated lift that works against the inertial force.

2.2.2 Post-flutter limit-cycle oscillations

The Flutter condition test was designed to visualize Leading-Edge Vortexes influence when
Limit-Cycle Oscillations are achieved. A more flexible flat plate, with a tip weight was used
to achieve flutter in lower velocities, and the test consisted of increasing the tunnel velocity
until flutter is achieved and Limit-Cycle Oscillations are sustained. Two configurations were
tested by changing the tip weight position in regards to the center of chord. Table 3 details this
experiment.

Feature Value Unit
Wing chord 0.026 m
Wing span 0.40 m
Wing width 0.0008 m
Wing mass 0.0257 kg
Angle of attack 0.0 deg
Tip mass 0.0328 kg
Tip mass position 0.003 m from center
Flutter velocity found 6.068 m/s
Tip mass 0.0328 kg
Tip mass position 0.006 m from center
Flutter velocity found 6.9305 m/s

Table 3: Test parameters for post-flutter limit-cycle oscillations of cantilevered flat plate
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Feature Value Unit
Moving Median Window: 50 Samples
Filter Order: 15 -
Cut-Off Frequency: 55 Hz
Pass Band: 1 dB

Table 4: Parameters used for filtering force signal is post-flutter tests.

In both flutter results, noise was observed throughout the measurements, with the power spec-
trum showing several frequencies with similar magnitude.

Figure 7: Power spectrum for measured force signal in post-flutter tests.

To filter these results, a moving median and a low-pass filter were used again. However, the
cur-off frequency of the lowpass filter had to be changed to account for the other flexibility
modes, that become stronger in flutter conditions. Table 4 contains the parameters used in the
filters.

The baseline measurements are, again, used to measure the DC offset of the sensors. Figure 8
(left) shows the results from filtering the signal. By changing the position of the tip weight we
were able to achieve a higher flutter velocity. Figure 8 (right) shows the results from filtering
the second test signal.

Figure 8: Comparison of baseline and processed force signal for the first (left) and second (right) flutter tests.
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Feature Value Unit
Wing chord: 0.2 m
Wing span: 6 m
Wing section: Flat plate
Built incidence: 5 deg
Pitch-axis location 0.25
Reduced frequency 0.0558
Freestream velocity: 10.0 m/s

Table 5: Test parameters for validation of low-order model against DBL.

3 RESULTS AND DISCUSSION

In this section, the newly developed low-order model is first validated against an established
potential-flow method. The model is then used the study the same kinematics as the prescribed-
oscillation experiment described in table 1, and results from the two methods are compared.
Finally post-flutter limit-cycle oscillations of the plate are studied using experiment.

3.1 Validation and demonstration of low-order model

A planar high-aspect-ratio wing undergoing oscillations in pitch is considered for validation
and demonstration of the low-order model developed in this research. Validation is carried out
against the doublet-lattice method (DBL) [38] which is a well-established tool for aerodynamic
(potential flow) prediction of such scenarios. The parameters used in the simulation are listed
in table 5.
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Figure 9: Comparison of lift coefficient prediction between the low-order model and DBL for three pitching kine-
matics of amplitudes 5, 10 and 30 deg (from left to right).

Figure 9 shows the comparison of lift coefficient between the two methods for oscillation am-
plitudes of 5, 10 and 30 deg (left to right). For low amplitudes of motion (5 deg and 10 deg), we
see an excellent match between the two methods. This confirms that the newly developed low-
order model is able to successfully account for 3D effects through the quasi-steady lifting line
approximation. For the higher amplitude of 30 deg, the prediction from the low-order model is
lower than that from DBL. This is expected, as the DBL is a linear method that is inaccurate at
high angles of attack, whereas the current model account for nonlinearity from high angles of
attack.

Figure 10 shows the nondimensional spanwise circulation distribution on the wing, at the be-
ginning of the oscillation cycle and halfway through the oscillation cycle (left and right respec-
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tively). The figure shows the expected circulation distribution for a rectangular high-aspect ratio
wing, peaking at the root and going to zero at the wingtips.
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Figure 10: Comparison of circulation distribution on the wing at t∗/T ∗ = 0.0 (left) and t∗/T ∗ = 0.5 (right).

Figure 11 shows the distribution of LESP across the wing span, at the beginning of the oscil-
lation cycle and halfway through the oscillation cycle (left and right respectively). The critical
LESP which indicates LEV shedding (taken equal to 0.11 for a flat plate [12]) is also marked
on these plots. At t∗/T ∗ = 0, we see that the LESP is greater than the LESPcrit on almost the
full span. At t∗/T ∗ = 0.5, the LESP is negative, but doesn’t cross the LESPcrit value. From
these plots, we can conclude that LEV shedding on the upper wing surface is expected for part
of the oscillation cycle.
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Figure 11: Comparison of LESP distribution on the wing at t∗/T ∗ = 0.0 (left) and t∗/T ∗ = 0.5 (right). Dashed
blue line shows the critical LESP value denoting LEV formation.

Figure 12 shows the vorticity in the wake, at the beginning of the oscillation cycle and halfway
through the oscillation cycle (top and bottom respectively). The wake shows insignificant
rollup, which is expected for the low reduced frequency considered in this case.
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Figure 12: Comparison of wake vorticity at t∗/T ∗ = 0.0 (top) and t∗/T ∗ = 0.5 (bottom).

3.2 Prescribed oscillations

In this section, the experiment described in table 1 is presented along with results from the
low-order method.

0 0.2 0.4 0.6 0.8 1

t/T

-1

0

1

2

C
L

Experiment
Low-order

Figure 13: Test setup for experiments.

Figure 13 shows comparison of lift coefficient between the experiment and low-order model.
We note that there is a level of uncertainty in the experiment, owing to the method used to
remove the inertial loads. The general trend in lift is seen to agree, though the peak amplitudes
of lift from experiment are significantly higher than those from the numerical model. Results
from the low-order model are analyzed in further detail below.

Figure 14 shows the nondimensional spanwise circulation distribution on the wing, at the be-
ginning of the oscillation cycle and halfway through the oscillation cycle (left and right respec-
tively).

Figure 15 shows the distribution of LESP across the wing span, at the beginning of the oscil-
lation cycle and halfway through the oscillation cycle (left and right respectively). The critical
LESP which indicates LEV shedding (taken equal to 0.11 for a flat plate [12]) is also marked on
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Figure 14: Comparison of circulation distribution on the wing at t∗/T ∗ = 0.0 (left) and t∗/T ∗ = 0.5 (right).

these plots. We see that at both instants during the cycle, the LESP value on almost the whole
wing is higher than LESPcrit. This indicates the aerodynamics is dominated by LEV formation
and shedding, which must be model led for better prediction by the numerical method.
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Figure 15: Comparison of LESP distribution on the wing at t∗/T ∗ = 0.0 (left) and t∗/T ∗ = 0.5 (right). Dashed
blue line shows the critical LESP value denoting LEV formation.

Figure 16 depicts the vorticity in the wake, at the beginning of the oscillation cycle and halfway
through the oscillation cycle (top and bottom respectively). In this case, the wake shows a higher
degree of deformation owing to the different type of motion (bending as opposed to pitching)
and the higher reduced frequency.

3.3 Post-flutter limit-cycle oscillations

The final results from the post-flutter experiment, after applying the appropriate filters, are
presented here. In both cases, we clearly see evidence of persistent limit-cycle behavior after
the flutter velocity is reached. Small deformations were registered, pointing to a structural
behavior still in the linear regime. The oscillations however were not of the same amplitude
and period as expected. Noise presents a significant problem for this case, and mechanisms
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Figure 16: Comparison of wake vorticity at t∗/T ∗ = 0.0 (top) and t∗/T ∗ = 0.5 (bottom).

to reduce this will be studied in future research. The preliminary results point to the presence
of significant aerodynamic nonlinearities associated with flow separation and LEV shedding,
which much be accounted for in numerical models to simulate all limit-cycle characteristics of
the system.

Figure 17: Post-flutter limit-cycle oscillations observed in the two experiments.

4 CONCLUSIONS

Aeroelastic behavior of a cantilevered flat plate in a low Reynolds number regime is studied nu-
merically and experimentally in this paper. Experiments were developed for the case of the plate
undergoing prescribed oscillations, and for the case of the plate undergoing post-flutter limit-
cycle oscillations. A new low-order numerical model based on a quasi-steady lifting-line correc-
tion to the LDVM discrete-vortex method was developed. This model was seen to successfully
account for nonlinearites such as nonplanar wake structures and large oscillation amplitudes.
The model was also capable of predicting the occurrence of LEV formation over the wing sur-
face using the LESP theory. The prescribed oscillation experiment was compared against the
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newly developed numerical model. The results indicated that additional aerodynamic nonlin-
earities such as leading-edge vortex shedding and trailing-edge flow separation must also be
modeled to achieve accurate results in this regime. The post-flutter experiment showed limit-
cycle oscillations, through they were not single-period and were influenced by noise. A more
precise experiment for post-flutter LCOs, as well as modifications to the low-order model to
account for flow separation and LEV shedding will be developed in future research.
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