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Abstract

Hypersonic airbreathing vehicle is a promising candidate for high-speed point-to-point transportation
and first stage of space transportation system. The airbreathing engine is often mounted to utilize the
compression through the vehicle body. However, the design of airbreathing engine and vehicle airframe
are often conducted in a separated manner. This may limit the performance of scramjet engine and vary
the vehicle longitudinal stability. The present study aims to develop the methodology for simultaneous
design of vehicle airframe and scramjet engine. Deep-learning perdiction is employed to accurately
evaluate scramjet flowfields and local surface inclination method is for vehicle airframe. The developed
approach has been employed for multi-objective design optimization of hypersonic airbreathing vehicles,
demonstrating the co-design of scramjet engine and vehicle airframe.
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1. Introduction

Hypersonic vehicles with air-breathing engines are a promising candidate for high-speed point-to-point
transportation as well as space transportation. Various hypersonic airplanes have been proposed and
investigated until today, including HYTEX, which is equipped with pre-cooled turbojet engines, pro-
posed by JAXA [1, 2], and VISR, which uses scramjet engines, proposed by an Australian company
Hypersonix [3]. Designing such hypersonic air-breathing vehicles requires appropriate integration of a
vehicle airframe with air-breathing engines to simultaneously satisfy the requirement for flight stability
and efficient thrust generation. While it have not been a significant problem in case with the design of
conventional airplanes, this problem is caused by the requirement from high-speed airbreathing engines
to effectively utilize the body surface to compress the incoming airflow.

However, the current design process of hypersonic air-breathing vehicles is usually divided into airframe
design and engine design because the simultaneous design of vehicle airframe and engine is compli-
cated due to a large number of design parameters, consideration of engine operation with complicated
aero-thermodynamics, and necessity of evaluations at various flight conditions, attitudes, and engine
operations. The process limits the performance of hypersonic vehicles and may incur the risk of design
modifications, repeatedly. Several preseding studies have taken the influence of engine operation on
vehicle stability into account. Bowcutt have reported a multidisciplinary optimization study of airbreath-
ing hypersonic vehicle [4]. In this study, pitching moment caused by scramjet has been considered
to evaluate the longitudinal stability of the vehicle, but the scramjet flowpath has been fixed. Riggins
and Bowcutt have also been developed analytical approach to design hypersonic vehicle considering the
mission of the vhielce. However, it is difficult to accurately evaluate scramjet performance [5]. Dalle et
al. reported similar methodology yet the approach allows to calculate combustion efficiency based on a
fuel-air mixing model [6].

Although research effort has been paied to improve the design approach of hypersonic airbreathing vehi-
cle, it is yet to be a problem that the accurate evaluation of engine performance and its influence on ve-
hicle characteristics. The present study, thus, report a new approach to simultaneously evaluate vehicle
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and engine flowfields by employing a deep-learning technique. Surface pressure ans shears stress pro-
files are predicted using deep-learning flowfield prediction for two-dimensional hydrogen-fueled scramjet
with enabling accurate prediction over various geometries and operating condition (angle of attack and
injection pressure). A multi-objective design optimization of airbreathing hypersonic vehicles has been
conducted by combining the deep-learning model for engine and local surface inclination method for
vehicle aerodynamics.

2. Methodology

2.1. Integrated evalutaion of airframe and airbreathing engine

2.1.1. Overview

The present study develops an approach for evaluating airframe aerodynamic characteristics and en-
gine performance simultaneously combining a low-fidelity approach for vehicle aerodynamics and a
deep-learning approach for engine operations. This approach allows to evaluate vehicle aerodynamic
characteristics considering influences of engine operation within a few seconds. Overview of the eval-
uation approach is schematized in Fig. 1, including 4 parts, (1) modeling, (2) surface mesh generation,
(3) evaluation of pressure coefficients on vehicle surface, and (4) evaluation of pressure coefficients on
scramjet engine surface. Aerodynamic coefficients are then calculated based on the surface pressure
coefficients. This framework mainly relies on a local surface inclination (LSI) method framework UNLSI,
which has been developed at the University of Tokyo [7], and the capability of evaluating pressure co-
efficients under engine operation is added by employing deep-learning flowfield prediction techniques.

(1) Modeling (2) Mesh generation
Design variables
v ’ x v ] x
OpenVSP OpenVSP

(4) Evaluation of engine flow (3) Evaluation of vehicle flow

[ e— [ e—
Aerodynamic ~ 1
coefficients - Ag\ / j /

Deep-learning prediction UNLSI

Fig 1. Overview of approach for Integrated evaluation of vehicle aerodynamics and engine propulsion

The 3D modeling and surface mesh generation has been conducted using an open source parametric
geometry and analysis tool OpenVSP [8]. This allows to generate vehicle airframe shape in a parametric
manner based on script files. Surface mesh is generated using OpenVSP and then is used for both LSI
analysis and deep-learning flow prediction. LSI analysis is performed for whole of the airframe but the
pressure coefficients of the fuselage and engine is replaced by those evaluated by using deep-learning
flowfield prediction.

2.1.2. Evaluation of vehicle aerodynamics

Local surface inclination method has been employed to evaluate vehicle aerodynamic characteristics
without considering the effect of engine operation on vehicle aerodynamics. The calculation of pres-
sure coefficient is conducted by using Tangent-Cone method for compression waves and Prandtl-Meyer

HiSST-2025-96 Page | 2
C. Fujio and H. Taguchi Copyright © 2025 by the author(s)



HiSST: International Conference on High-Speed Vehicle Science & Technology

method for expansion waves.

Angles between flow and vehicle surface is culculated as below:

§ = arccos <nv"‘f> (1)
Vinf

where n is a vector nomal to surface and Vi, is @ mainstreem velocity vector. In case with § > 0,
Tangent-Cone method is employed to estimate pressure coefficients usign following equations:

M, = 1.090909M,, s + exp (—1.090909M;,,f Sin §) )

2sin’ §
1— 5 (M2+5)/(6M2)

Cp = (3)

In case with § < 0, Prandtl-Meyer method is employed and expansion waves are calculated as fol-
lows:

v(M) = 7_1arctan( H(M2—1)>—arctan( (M2—1)) 4)

v (Ming) =v (M) —0 (5)

where M, is a local Mach number for each panel. Pressure coefficients are calculated using following
equations with an assumption of adiabatic process:

T, 2+ (y+ )M

— 6
Ty~ 25 (T D7 (©)
DI T, 1
p— 7
Dinf Tinf ( )
¢, = Nowr —1) (Gt -1) (8)
P ’YMznf

2.1.3. Evaluation of engine flowfield

Fast and accurate evaluation of engine flowfields has been conducted by employing deep-learning flow-
field prediction. The present study employes a multi-layer perceptron (MLP)-based flowfield prediction
appraoch proposed by Fujio and Ogawa [9]. While the original model employs to predict whole of the
flowfields, this study employ to only predict wall pressure coefficients and skin friction coefficients. Fig-
ure ?? schematizes the model configuration. The MLP model consists of an input layer which passes
input data, hidden (fully-connected) layers which plays a main role of data fitting, and an output layer
which outputs prediction results from MLP. In the present study, 8 variables are feed as input data
including 4 design variables, 2 control variables, and coordinate on fuselage surface, and 3 variables,
static pressure and wall shear stress 7, and 7, are provided by the MLP model. In the present study, the
number of hidden layers is set to be 5 and the size of each hidden layer to be 1024, and Relu function
is used for the activation function, based on the preceding studies [10, 11]. The training of the model
is conducted by using a gradient-based optimization method Adam (adaptive momentum estimation)
with their default values of hyperparameters [12]. Mean square error is selected as the loss function
with Dropout to mitigate the risk of overfitting and increase the prediction accuracy. Dropout rate is set
to be 5% in the present study. 1000 CFD results, which are obtained via Latin Hypercube sampling,
are prepared for training the MLP model and 100 CFD results for validating the model prediction accu-
racy. CFD solved RANS equations with SST k& — w turbulence model [13]. Supersonic combustion of
hydrogen is calculated using a reduced reaction mechanism proposed by Boivin et al. [14]. The model
configuration and setups for model training are summarized in Table 1.
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Fig 2. Schematic of present flowfield prediction model

Table 1. Model configuration and setups

Number of layers 5
Number of units 1024
Dropout rate 5%
Activation function Relu
Optimizer Adam [12]
Max epoch 1000
Learning rate 10—°

2.2. Configuration

The present study considers a wedge-shaped waverider with a scramjet engine which is mounted on
the vehicle bottom. The vehicle consists of wedge-shaped fuselage, a main wing with dehedral and
sweepback angle, and a vertical tail. Parameterization of the vehicle geometry is summarized in Fig. 3.
The planform is determined by root chord of main wing C,., sweepback angle A, main wing span b,,,
taper ratio A, and fuselage span b,. The variables of cross section includes vehicle upper-wall leading-
edge angle ;. ., lower-wall leading-edge angle 6. ;, engine location z., and increment of intake ramp
angle A¢;. In the present study, main wing dehidral T' has also been considered. The shape of the
vertical tail is fixed in the present study because it does not largely influence longitudinal stability.

The flight condition is set to be Mach 5 at the dynamic pressure of 50 kPa as a basic scramjet flight
condition. The other parameters are summarized in Table. 2.

Table 2. Mean absolute errors of wall-profile prediction

Mach number Dynamic pressure Altitude Static pressure Static temperature
5 50 kPa 24.3 km 2857.1 Pa 220.8 K
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Fig 3. Parameterization of wedge-shaped waverider

2.3. Optimization

2.3.1. Optimization problem

Multi-objective optimization is conducted to simultaneously optimize both airframe and scramjet engine
of a hypersonic cruise vehicle. The present study considers lift coefficient and fuel mass flow rate at
the cruise (trim flight) condition as the objective functions. Lift coefficient is employed to maximize the
cruise payload mass and fuel mass flow rate is minimized to increase cruise range for a given amount
of fuel. Constraint functions are determined to ensure stable cruise flight. Longitudinal static stability
against angle of attack is taken into account around the trim condition. The solutions that do not
have trim angle of attack and injection pressure have also been considered as infeasible solutions. The
optimization problem is summarized below:

Minimize: —-C,
my
Subject to:  max (2£22) < 0 at cruise injection pressure
min (|Cpl|) < 10~* at trim conditions
min (|Cas]) < 1074
C, > 0 at cruise condition

In the present study, 10 geometric parameters shown in Fig. 3 have been considered as the decison
variables. The ranges of decision variables are summarize in Table 3.

2.3.2. Optimization method

The present study employs a genetic algorithm, NSGA-II proposed by Deb et al. [15] to deal with
multi-objective optimization problem and explore a wide variety of Pareto optimal solutions. NSGA-II
determines the decision variables based on the values of objective functions and the control variables
(angle of attack and fuel injection pressure) for each individual are determined through a gradient-
based optimization. The optimization loop is schematized in Fig. 4. The inner optimization is conducted
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Table 3. Ranges of decision variables

Name Variable Unit Lower bound Upper bound
Upper-wall leading-edge angle Oreu deg 5 10
Lower-wall leading-edge angle O deg 0 3
Engine location Te m 2 4
Intake ramp angle increment Ab; deg 2.5 5
Body span by m 1 2.5
Dehidral r deg -5 5
Root chord C, m 3 5.5
Wing span buy m 0.5 3.5
Sweepback angle A deg 45 60
Taper ratio A - 0 0.75

by using sequential quadratic programming (SQP). The ranges of control variables are summarized in
Table 4

Decision Solution evaluation
Genetic algorithm variables Explore cruise condition
(NSGA-II)
A
Performance evaluation
Objective/constraint functions at cruise condition

Fig 4. Schematic of optimization procedure

Table 4. Ranges of control variables

Name Variable Unit Lower bound Upper bound
Angle of attack @ deg 0 5
Fuel injection pressure Dinj Pa 150000 450000

The evolutionary process is continued until the 50" generation with a population size of 48. Simulatd
binary crossover (SBX) and polynomial mutation are employed for crossover and mutation, respectively.
Both crossover index and mutation index is set to be 10 and the probility of mutation is 10% in the
present study.

3. Results

3.1. Flowfield prediction

Accuracy of flowfield prediction has been assessed over 100 test data, which is not used for model
training. Mean absolute errors (MAEs) of flowfield prediction has been summarized in Table 5. The
predicted profiles of the case with the largest MAE of static pressure have been compared with those
obtained via CFD (correct data) in Fig. 5. Even with the largest MAE, flow profiles on the vehicle surface
have been accurately predicted while prediction errors have been observed around the pressure rise
related to shock waves inside combustor.
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Table 5. Mean absolute errors of wall-profile prediction
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Fig 5. Comparison of pressure profiles between prediction (MLP) and correct (CFD) data
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Performance parameters calculated using predicted profiles have been compared with those calculated
using CFD results (correct data) in Fig. 6. All performance parameters (drag, lift, pitching moment) have
been found to be estimated with a reasonable accuracy using predicted wall profiles. The coefficient of

determination has also been assessed and shown in Fig. 6.
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Fig 6. Comparison between predicted (MLP) and correct (CFD) performance parameters

3.2. Optimization results

3.2.1. Overview

Multi-objective design optimization has been conducted over 50 generations with a population size of 48,
resulting in 33 non-dominated solutions. Figure 7 (a) displays the Pareto optimal front in the objective
function, and relative values of objective functions and decision variables are shown in the form of a
parallel coordinate plot in Fig. 7 (b). Additionally, fuel injection pressure and angle of attack at the cruise
condition have also been shown in Fig. 7 (b). It has been observed that the non-dominated solutions
have been concentrated on a part of the design space with minor variations of decision variables, as
seen in Fig. 7 (b). In particular, the decision variables that determines cross-sectional shape of fuselage
exists within narrow ranges for feasible and non-dominated solutions. Figure 8 shows the cross-sectional
shape of fuselage for feasible and non-dominated solutions. The angle of vehicle upper surface 6,. .,
has been settled in the vicinity of 5 deg, which is the lower bounds of the range of 6. ., to be feasible
solutions, because larger 0,. ,, results in larger negative pitching moment.

a® [ ] e  Feasible
- W
v =% 'h- = Infeasible
2.0 N, ] +  Non-dominated
L

Relative values

0.00 0.05 0.10

—Cy

—0.10 —0.05

(@) Objective functions (b) Parallel coordinate plot

Fig 7. Overview of optimization results

Control variables (angle of attack « and injection pressure p;,;) at the cruise condition are displayed
in Fig.9. It has been found that the variations of control variables are responsible for the variations of
objective functions on the Pareto optimal front. Larger angle of attacks at trim conditions resulting in
larger lift coefficients. Injection pressure directly determines the mass flow rate of fuel and is closely
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Fig 8. Cross-sectional shapes of feasible and non-dominated solutions

related to the amount of force generated via combustion. Therefore, higher injection pressure has
resulted in larger fuel mass flow rate and larger lift coefficient.
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Fig 9. Control variables at trim conditions

0

m [kg/s]

3.2.2. Characterization of non-dominated solutions
There are two different islands of non-dominated solutions in Fig. 7 (a). Three non-dominated solutions
have been selected, as seen in Fig. 10 to further investigate characteristics of non-dominated solutions.
Geometries of selected solutions are displayed in Fig. 11 and the decision variables values are summa-
rized in Table 6. Minor difference is observed for body span, wing span, sweepback angle, and dihedral.
Aerodynamic coefficients over various angle of attack and injection pressure are displayed for S; in
Fig. 12 as an example. A red dot in Fig. 12 represents the cruise condition of the vehicle. It is inter-
esting to note that the injection angle has less influence on pitchning moment coefficients (Fig. 12 (c)),
whereas drag coefficients clearly decrease as the injection pressure hence fuel mass flow rate increases

(Fig. 12 (a)).

Feasible

+  Non-dominated

440000

420000
o]

&

400000
=

380000

360000

0.00

(b) Injection pressure

\ ¢  Non-dominated
¢
¢ vy S
4 5
> 5
A7)
¢
t. .
A J 0‘
¢ LYY
—0.08 —0.06 —0.04
7CL

Fig 10. Clusters and selected non-dominated solutions
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Fig 11. Objective function values of selected non-dominated solutions

Table 6. Decision variable values of selected solutions

Ore,u [deg]  Oicy [deg]  x. [m] Af; [deg] b, [m] I'[deg] C,[m] b, [m] Afdeg] A[-]

Sy 5.016 2.038 2.344 2.616 1.245 0.282 3.300 2.987 48.08 0.580
Sa 5.000 2.048 2.251 2.794 1.065 -0.328 3.318 3.134 52.27 0.654
S3 5.017 2.028 2.809 2.616 1.002 0.852 3.311  2.563 53.72  0.599

0.1

=

a [deg a [deg] a [deg] Ppinj [Pa

(a) Drag (b) Lift (c) Pitching moment

Fig 12. Aerodynamic coefficients over angle of attack and injection pressure for S;

4. Conclusions

The present study has developed an approach to evaluate vehicle aerodynamic performance taking
scramjet flowfield accurately into consideration. This appraoch combines a local surface inclination
method and deep learning. Deep-learning flowfield prediction has been employed to predict surface flow
profiles of the vehicle fuselage and scramjet engine over various angle of attack and injection conditions
while local surface inclination has been applied for evaluating the other component of vehicles such as
a main wing and a vartical tail.

Multi-objective design optimization of hypersonic airbreathing vehicle has been conducted using the
developed evaluation appraoch and an evolutionary algorithm. Deisng parameters of both vehicle and
scramjet geometires have simultaneously been optimized to maximize lift coefficient and to minimize
the fuel consumption for cruise. Control parameters (angle of attack and injection pressure) for the trim
flight have been determined through gradient-based optimization. It has been found that the cruise
angle of attack and injection pressure are responsible for the variations of objective function values
among the non-dominated solutions, whereas the geometries are similar to each other. Aerodynamic
coefficients over angle of attack and injection pressure have been displayed indicating that the present
optimization framework has successfully explore feasible design of hypersonic vehicle considering the
effect of engine operation.

The present study have proposed a new appraoch to design hypersonic airbreathing vehicle. While a
simple wedge-shape waverider has been considered as the design target of the present study, further
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research will be conducted to extend the applicability of this approach to enable more global design
exploration.
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