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Abstract

Base-flow computations, resolvent, and sensitivity analyses are performed for a hypersonic wind tunnel
nozzle at Mach 6. This research precisely identifies, through resolvent analysis, the locations and mech-
anisms governing the development of the Gortler instability, as well as the first and second Mack modes,
within a hypersonic wind tunnel nozzle. Additionally, sensitivity analysis of the resolvent optimal gain
provides a pathway to mitigate instability growth, and consequently delay the transition, through wall
temperature variation. This methodology can be extended to other forms of control, such as nozzle wall
displacement and other key control parameters. Using the sensitivity results, an optimal profile is also de-
signed to simultaneously control several unstable modes. These findings contribute to the advancement
of quiet wind tunnels and ground testing facilities for hypersonic flows.
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1. Introduction

During the design phase of hypersonic vehicles, wind-tunnel testing plays a critical role in validating and
studying key factors such as aerodynamic performance, laminar-to-turbulent transition of the boundary
layer on the test model, etc. Accurate prediction of this transition is crucial as the turbulent boundary
layer leads to a significant increase in wall heat flux. However, the vast majority of current hypersonic
wind tunnels are not sufficiently representative of atmospheric flight conditions, particularly in terms
of enthalpy and freestream noise levels [1]. This study specifically focusses on reducing fluctuation in
the test section (="noise level”) of these facilities to support the development of quiet hypersonic wind
tunnels. Such fluctuations are important to study because they drastically alter the laminar-to-turbulent
transition of the boundary layer on the test model due to the receptivity process [2]. There can be various
sources of these disturbances in wind tunnels [1], but above Mach 2.5 the primary source of noise is the
eddy-Mach-wave radiation from the turbulent boundary layer that develops on the nozzle wall [3]. This
noise is around 1 to 2 orders of magnitude above flight levels [1, 4]. Therefore, one of the main issues in
quiet hypersonic wind tunnels is to control the laminar-to-turbulent transition of the boundary layer on
the nozzle wall. Such quiet wind tunnels, in which the laminarity of the boundary layers along the wall
is maintained to significantly reduce the noise levels, do exist for Reynolds numbers up to 20 x 10® m~1
at Mach 6 (e.g. BAM6QT at Purdue) [1]. However, such facilities are rare, non-existent in Europe [4],
and remain limited in both Mach and Reynolds numbers [1, 5].

This research does not aim to investigate the nonlinear interactions that lead to transition, but rather
to identify the linear instabilities present in the boundary layer and explore ways to reduce their growth
in order to delay the transition along the nozzle wall. A sketch of all potential instabilities in hypersonic
nozzle flows is provided in Fig. 1. First, Gortler instability can arise over the concave walls of the nozzle
[6]. This instability occurs across all Mach numbers, from incompressible to hypersonic flow conditions,
and results from a centrifugal instability mechanism related to the concave curvature of the streamlines
[7]. Gortler instability is known to be significant and is considered in wind tunnel nozzle design [1, 8,
9]. A second class of instabilities is composed of the first and second Mack modes. Stability analysis has
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Fig 1. Schematic of all instabilities within a hypersonic nozzle.

shown that such instabilities can grow within hypersonic wind tunnel nozzles [8, 10]. The oblique first
Mack mode corresponds to a viscous inflectional mode, in which fluctuations are localised around the
generalised inflection point (GIP). In addition to this viscous first mode, Mack [11] found that multiple
inviscid instability modes can exist in the supersonic boundary layer, referred to as the second Mack
mode and higher-order modes. The second Mack mode corresponds to a 2D trapped acoustic wave
close to the wall and becomes unstable above M =~ 4 [11]. Lastly, recirculation bubbles can form at
the convergent inlet [12] or at the suction lip upstream of the nozzle throat [13]. These bubbles can
lead to new instabilities including exponential instability (global modes) [14] and non-normal input-
output amplification (resolvent mode) such as the Kelvin-Helmholtz (KH) instability that arises from the
separated shear layer [15].

In this study, the global linear stability tool [16, 17] is chosen to provide valuable insights on the
development of instabilities and to support nozzle optimisation. There are four main reasons why global
stability analysis is chosen over local stability methods (which are currently used in the design of quiet
hypersonic wind tunnels [8, 18]) in this study. First, local stability analyses are difficult to apply in
complex configuration, such as when the nozzle includes a suction lip upstream of the throat. Second,
local approaches rely on the assumption that the flow is quasi-parallel, an assumption that may fail in
regions with strong pressure gradients, flow separation, or high wall curvature, conditions commonly
encountered in nozzle flows. Third, local methods completely fail to capture global modes in the flow.
As a result, relying solely on local stability methods to optimise quiet wind tunnel nozzles can lead to
suboptimal designs due to an incomplete physical representation of the instability mechanisms. So, to
address more general configuration and have more information on the various instabilities, we have
chosen to use global stability analysis. This framework relies solely on the assumption of linearity, thus
the non-parallel effects are fully accounted for. Additionally, this method also takes into account the
non-modal phenomena arising from the non-normality of the Navier-Stokes operator [19]. Moreover,
these methods provide direct access to the gradients of various flow quantities, such as the sensitivity
of the resolvent optimal gain. This enables the identification of regions where small modifications to the
base-flow have the most significant impact on flow stability [20, 21, 22].

The global linear stability analysis of the hypersonic nozzle flow was already performed in one of
our previous studies [23], allowing detailed identification and characterisation of all the instability mech-
anisms shown in Fig. 1 and discussed above (including both global and resolvent modes). Therefore,
in the present study, we will only briefly revisit the analysis of these modes and instead focus on the
sensitivity results of the resolvent mode. The objective of this study is to compute and validate the
sensitivity of the resolvent optimal gain, in order to identify pathways for mitigating instability growth,
and consequently delaying the transition, through control method: variations in wall temperature, nozzle
wall displacement, and other key parameters. These sensitivity results will serve, in future work, as op-
timal gradients to inform gradient-based optimisation strategies. Thereby supporting the development
of next-generation quiet wind tunnels and advanced ground testing facilities for hypersonic flows.

2. Methods
2.1. Governing equations

The objective of this section is to introduce the wall control parameter methods (such as wall tempera-
ture variation, suction/blowing, etc.) applied to a small 3D perturbations (called resolvent modes) that
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develop around a 2D base-flow due to the presence of a forcing term in the flow domain (f # 0).
The amplification of these resolvent modes at specific frequencies arises from the non-normality of the
Jacobian operator J [16], and can occur even if the flow is globally stable. These instabilities depend on
receptivity mechanisms and thus require external forcing (fr # 0) to be amplified. The flow is governed
by the compressible Navier-Stokes equations written in conservative form, in the cylindrical coordinate
system (x, r, ) (axisymmetric nozzle):

{atCIt=R(CIt)+Pft, )

B(qt, pc) (x) =0.

with g; the state vector of conservative variables, R(q) the discrete residual, f; a small amplitude
harmonic forcing term (P is a prolongation matrix used to restrict the domain or components of the
forcing field) and B the boundary condition (for example, the isothermal wall). The wall control parameter
pc = po + €Cp is invariant in time and in 6-direction as the base-flow is assumed to remain steady and
2D [21]. Here, pg = 0 as the control is not at the same order than the base-flow, and C is a vector used
to select the control component, so the following section can be applied either to temperature control
or wall suction/blowing control or other wall control parameters. In this study, we will use the "weakly
nonlinear formalism” approach introduced by Kitzinger [24] to derive the sensitivity of the solution, rather
than using the traditional adjoint or Lagrangian-based methods. This choice facilitates the mathematical
treatment of wall deformation, which will be addressed in subsequent work. It is important to note
that “weakly nonlinear” here refers to interactions at infinitesimal orders of magnitude and does not
imply magnitudes large enough to cause nonlinear effects that would prevent the use of linear theory.
The first objective is to recover the sensitivity results previously obtained via the Lagrangian approach
by Poulain et al. [21], but now using this alternative formalism. In this context, the total solution and
volume forcing are expanded as follows:

qt(X, ) =q0x, y) + € (dr(x, y) e(MO+@D 4 c.c. + §c) + €2 (Jilx, y) e(MO+@D 4 c.c. +...) + o(€?),
()
fi(x,y, z,t)=€ (}v‘r ellmé+wt) c.c.) + €2 (ﬁ ellmé+wt) c.c.), (3)

where, g is the 2D base-flow, define as R7(q) = 0 (see § 2.2.1.). §,(x, y) ei(mé+wt) js the response
to volume forcing f, el(mé+@t) (classic resolvent, see § 2.2.2.). dc is the response to the wall control
parameter pc. Ji(x, y) el(m8+wt) s the perturbation due to the nonlinear interaction of (g, g¢), and
]‘; el(mé+wt) js the associated forcing. And, ”...” gathers all the interaction terms that are not proportional
to ellmé+wit) (higher-order harmonic). The objective now is to derive the equations governing the linear
dynamics of the system in response to the forcing and its associated flow response. To achieve this, we
linearise Eq. (1) around the base-flow, as perturbations are assumed to be small, i.e., ||eq’|| < ||q]|-

2.1.1. Development of the residual equation

We perform a Taylor expansion of R around the base-flow g. Expanding to order € = o(e?2, ei(mé+wt))
yields:

3tqt = R(q) + (V4RIg)(gt —q) + ;(vq,quq)(qt —3q,qt—Qq) + Pft 4)
& eiwdreme+ed) 4 g2y, elme+wd 4 ¢ c = R(Q)
+€ [(qu|E)mélr el(mo+wt) 4 (qu|E)OCvIc] + ez(qub)méi glmé+wt)
+€2eMo+et (g, JRIG)° (Gr, Gc) + €Pfr e MO+WD 4 2pf MB+@l) 4 cc 4 .+ 0(e?)  (5)
where, (VgR|g)o is the Jacobian written with 8, = 0 (i.e. 2D Jacobian), (V4R|g)m is the Jacobian
written with 9, — im (i.e. 3D Jacobian), (Vq,qua)gq is the Hessian but with 3, — im in the first term

and o, = 0 for the second term. By identification in the two developments, i.e. by identification in the
Taylor development (€ by €) and the Fourier development (harmonic by harmonic):

£=0(0,0):R(@) =0,
£=0(1,0): (V4RIg)odc =0,
£=o0(1, eMo+¥D) : iwg, = (V4RIg)mdr + Pfr,
£=0(2, eMe*eDy : i = (VgRIg)mdi + (Vq,qRI)% (dr, dc) + Pfi,

(6)
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2.1.2. Development of the boundary condition

We perform also a Taylor expansion of B around the base-flow (g, po). By developing with € = o(e2, eilmé+wi))y.

[B(a) + € ((VgBlg)dr Mo+ + c.c. + (VgBlg)dc + (VpBIg)Cp) + €2((VgBlg)di emo+wt)

+(Yq,qBlg)(dr, 4c) eMO+9D) 1 (Vg pBl5)(gr, Cp) eMO+@D 4 c.c.) + ...](x) =0 7)

By identification in the two developments, i.e. by identification in the Taylor development (e by €) and
the Fourier development (harmonic by harmonic):

£=0(0,0):B(gq)=0
£=0(1,0): (V4Blg)dc + (VpBlg)Cp = 0 .
g=o0(1, eMe+wh)y . (V4Blz)d, =0 ®

£=o0(2, ei(me+wt)) : (VqB|a)Cvli + (Vq,qB|E)((v7r, dc) + (Vq,pBb)(Cvlr, p)=0
2.2, Base-flow, Resolvent analysis and Sensitivity analysis
2.2.1. Base-flow equation

The equation at € = (0, 0) in (6) & (8) corresponds to the base-flow g, which is a steady solution of the
governing equation satisfying Rt(q) = 0. Hereafter, the notation (-)7 will be used to denote the total
residual, including both the residual R and the application of boundary conditions B.

2.2.2. Resolvent analysis - Forcing/Response equation

The equation at € = (1, ellm8+w)) in (6) & (8) corresponds to the input/output problem: g, =
’Rw,mP]‘r, where, Ry,m = (iwl — Jm)~! is the input volume force Resolvent, and Jm = (VqRT1lg)
is the 3D Jacobian of the total residual. This resolvent operator represents a linear transfer function
between the incoming forcing ]v‘r (input) and the flow response ¢, (output). Note that the Jacobian op-
erator J(m) depends on the azimuthal number m to analytically account for the 6-direction, thereby
extending the flow stability analysis to 3D, for more details refer to [25, 23]. Then, for a given (w, m),
the most amplified resolvent modes is found by solving an optimisation problem defined as a ratio be-

tween two energy: u? = supy (lldrllé/ |[)v‘r||§), where u? is the gain, ||-||le and ||-||r are the norms used

to evaluate the energy amplitude of . and ]‘r. Using a discrete scalar product norm, these norms can be
expressed with their Hermitian matrix Qe and Qf such as ||dl|2 = §*Qe¢ and ||f]|2 = f* Q¢f, where
g* is the conjugate transpose of . The Chu energy norm is used to account for the compressibility
effects in the energy measure [26]. The resulting optimisation problem can be viewed as a Rayleigh
quotient and can be recast as a generalised Hermitian eigenvalue problem:

ropt vopt
P*R} QeRwmPIT = LI QT 9)

where 2, i € [[0,...]], are the eigenvalues sorted by energy such that 2 > u2 .. The FoP are the

ri
optimal forcing, while c“yf’?t = ’RPfroft are the optimal responses. This eigenvalue problem (9) allows to

map the linear system a'mplificatiorll of the base-flow by solving it for a range of (w, m).

2.2.3. Control equation

The equation at € = (0, el(m8+@1)) in (6) & (8) corresponds to the control/response problem: §c =
Ro,oPWan, where, Ro,0 is the Resolvent at 0 frequency and 0 azimuthal wavenumber. Pwa =
(VpRTlg)o goes form wall quantities to g in the volume.
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2.2.4. Non-linear interaction equation

The equation at € = (2, el(m8+wD)) jn (6) & (8) corresponds to the response equation due to the non-
linear interaction of (qr, gc): 4i = Ruw, m?-tm i Ge+ Re,mPfi+ R, mPw3,s,CP- Where, ?-LO (dr. 4c) =

(Vq,qR7l§)(dr, Gc) is the Hessian of the total residual, such as ’ng(qr, q) = ’ng,érq, Vq.And, Py, 54, =

(Vq,pera)g7 4 is the Hessian that goes from wall quantities to g in the volume, such as (Vq,pBl5)(dr, p) =

(Vq,pBlg),4,p, Yp. Note that the Hessian operator depends on the azimuthal wavenumber m to ana-
lytically account for the 6-direction [25, 23].

2.2,5. Sensitivity analysis - Full gain expansion

To derive the sensitivity expression of the optimal resolvent gain, we define a new gain G (as introduced
in § 2.2.2.) based on the harmonic ei(m8+wt) 1t is important to note that variations of the metric
Q are also accounted for, since Q is defined with respect to the total solution g:. Therefore: Q(q¢) =
Q(q)+€60Q+0(e, el0*(Mo+w)y with 5Q = 34(Qdc)lg. The expansion is truncated at this order so that
G includes only harmonics of the same order (higher order harmonics are neglected in the expansion).
Consequently, the full gain expansion for the harmonic ei(mé+wt) jg:

g2 (r+€40" (Qe + €60£)(dr + €4)
(Fr + €F)* (QF + €8QF)(Fr + €f)

After a mathematical development using a Taylor expansion of 1/(1 + x), as well as the normalisation
condition fr* Qffr =1, we obtain the following expression:

(10)

G2 = + €[2 Re(d; Qedi— k*f* Qrfi) + 47 5Qedr — 12f, 60+ | (11)
We finally obtain an expression of the following form:
G*(p) = G*(0) + (VpG*)* Qpp, (12)

with G2(0) = u?, i.e. an expression that gives the new optimal resolvent gain G2 (after control) as a
function of the previous gain u? (without control p = 0) and the gain gradient (which corresponds to
the sensitivity of the solution). In the above expression, Qp denotes the scalar product associated with
wall-parameter control variations p, defined as: (pa, Pp)o, = P;QpPb = frw Pa(s)pp(s)ds. Using
the results from § 2.2.2., 2.2.3. and 2.2.4., it is then possible to show that Eq. (11) leads to:

VpG? , . Vi.G® 2
2 =% [ wg e~ 5 — Re(Py2 R

V. G2 2 3(Qedr) 2(Qrf) ",
f =_QE_1P*t70_1* L? Re ((H%,ér)*R* QEq,') IJZ ( EYr ) qr_ Flr fr

R?, 1 ctt) | v, (13)

u? 3q 3q

(14)
where, Vsz/u2 represents the sensitivity of the optimal resolvent gain to a wall control parameter
control p, and Vf,.G 2/ corresponds to the sensitivity to a volume forcing. Therefore, we recover exactly
the result obtained by Poulain et al. [21], but using a different formalism which will allow us to introduce
more easily wall displacement control. Indeed, for wall displacement control, it is sufficient to modify the
wall boundary condition in Eq. (1) by applying a perturbation eh = €(hx, hr, hg)', which corresponds
to a wall deformation that controls the flow. This condition is expressed as: B(qt, Xo + €h) = 0 where
Xo denotes the initial position of the wall (i.e. the base-flow). In analogy to the wall control parameter
pc, we obtain the same total solution and forcing from Egs. (2) and (3), but this time controlled by a
wall displacement of eh. By applying the same mathematical reasoning as before, we can derive an
expression for the sensitivity of the solution with respect to wall displacement.

2.2.6. Numerical methods

In this study, the open-source CFD code BROADCAST [25] is used. This toolbox provides all the tools
and numerical methods needed to compute the base-flow and the discrete operators (using Algorithmic
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Fig 2. Base-flow Mach number field. Zoom: recirculation bubble at the convergent inlet.

Differentiation (AD), the AD tool accurately computes the n-order derivatives of the various operators
needed in this study), as well as to perform global linear stability analysis of 2D Cartesian or axisymmetric
flows. For more information on this code (structured high-order scheme used, AD, methods, etc.) refer
to Poulain et al. [25], and for validation of this code see [25, 27, 23].

For the boundary condition : inlet = subsonic stagnation inlet (P¢, T¢), outlet = extrapolate order 0,
axis = axisymmetric condition, wall = isothermal wall at T.,q. Note that before the isothermal wall a
very small zone (1% of the settling chamber length lsettiing = 0.2 m) is added to ensure a smooth
variation between the inlet boundary condition T; and the wall temperature T, Using a tanh function
for the wall boundary condition. The base-flow obtained (Nx x N = 5780 x 400) is converged with
a decrease close to 12 orders of magnitude of the L2 norm of the residuals. For further details on the
numerical setup (including the mesh, base-flow convergence, and other implementation aspects), the
reader is referred to the detailed description provided in our previous study [23].

3. Baseflow computation

The geometry of the hypersonic wind tunnel nozzle used in this study is shown in Fig. 2. It is an
axisymmetric nozzle from ONERA at a Mach number of 6. The nozzle consists of three parts: the settling
chamber, the convergent, and the divergent. Note that the settling chamber length has been increased to
accommodate the inlet boundary condition, the dimensions used in this study are therefore not exactly
representative of the real configuration. Nevertheless, this part can be seen as a simplified model of a
real settling chamber commonly used in this type of wind tunnel. The value of the boundary condition
used is summarised in here : Py = 4 bar, Tt = 550K, Tiso = 300K, Moo = 6.0, Reco = 2.8-10% m—1.
The evolution of the Mach number of the base-flow is shown in Fig. 2. An boundary layer separation is
observed at the convergent inlet. This flow feature is important because recirculation bubbles can trigger
global modes and resolvent modes. The presence of this recirculation bubble here is likely because this
wind tunnel was designed to operate at higher stagnation pressures than those used in this study.

4. Resolvent analysis

The resolvent analysis of the nozzle flow is conducted to investigate resolvent modes. A detailed study
of all resolvent and global modes throughout the nozzle was presented in our previous work [23]. Here,
we provide only a brief identification, as the main objective is to focus on the sensitivity analysis and its
validation. This previous study showed that the base-flow is globally unstable due to the recirculation
bubble at the convergent section inlet. As a result, the resolvent analysis would typically not be valid
in such a case, since such analyses are normally performed on a globally stable flow (i.e. the Jacobian
does not exhibit unstable eigenvalues) [16]. However, our goal here is not to characterise the exact
transition mechanism, but rather to validate sensitivity tools to evaluate the gradient to optimise these
nozzles in a complex configuration. Additionally, in our case, we limit our analysis to the divergent section
of the nozzle, deliberately avoiding the upstream region. The latter is assumed to be stabilised via an
appropriately designed and implemented suction lip. Under this assumption, resolvent analysis is applied
to examine how such flow would behave if there were no global unstable mode.

For this resolvent analysis, the restriction matrix P (see Eq. (9)) is used to limit the forcing to the
region where x > 0.4 m, a domain that includes both the throat and the divergent section of the nozzle.
This setup reflects a realistic configuration for quiet wind tunnel design, where a suction lip is assumed to
stabilise the upstream flow. In such cases, the primary objective is to mitigate instabilities downstream
of the suction lip (see Fig. 1). Fig. 3, shows the evolution of the optimal gain 2 = ”Cviopt,O”E/”fOpt,O”,z:
as a function of (f, m). Three regions of maximum gain can be observed, indicating four dominant
mechanisms: the Gortler instability, the first and second Mack modes.
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Fig 3. (Left): Optimal gain map u(z) in (f, m) space with the forcing field restricted to x > 0.4 m. (e):
Gortler instability peak. (e): first and (e): second Mack mode peak. (Right): Simplified overview.
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Fig 4. (—) Evolution of the quantity Ecpy of the optimal forcing (left) and response (right) com-
puted along the gridlines in the r-direction by integrating the local Chu energy contribution. (f, m) =
(OHz, 200): Gortler instability. (f, m) = (12 kHz, 60): first Mack mode. (f, m) = (45kHz, 0): second
Mack mode.
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Fig. 4 shows the streamwise evolution of Ecp, [26], computed along the wall normal direction for the
three leading mechanisms. Blue areas indicate where the flow is unstable and can develop centrifugal
instabilities since the Rayleigh discriminant A < 0 [28], these zones correspond exactly to the regions
with concave wall: the first part of the convergent and the second part of the divergent (see Fig. 2). The
first region does not affect stability since the analysis is downstream. The first identified mechanism is the
stationary Gortler instability, peaking at m = 200, and constitutes the dominant mechanism. The wall
curvature due to the relatively short design of the nozzle induces this centrifugal instability. Fig. 4 shows
that the forcing peak upstream of the concave part of the divergent section, and the response peak at
the divergent exit, with response growth occurring in concave regions (A < 0). Unlike Lemarquand et
al. [23], the optimal gain map exhibits a single "bump” as the instability develops only in one concave
region where A < 0. The second mechanism is the second Mack mode, axisymmetric (m = 0) around
f =~ 45 kHz, consistent with Mack [11] estimation f = Ue/26. It is the least amplified instability here,
which is consistent with findings from previous Mach 6 wind tunnel investigations [8, 10]. Indeed, this
mode is known to develop above M =~ 4 [11], a condition reached in a limited portion of the divergent
section due to the short length of the studied nozzle. The third identified mechanism is the first Mack
mode, which peaks around (f, m) = (12kHz, 60). As (f, m) are non-zero, this corresponds to an
obligue mode. From the resolvent analysis, the N factors of each instability can be computed using the
definition provided by [29]. We obtain: Nggrtler = 13.0, Nist mode = 6.37 and Nand mode = 4.07.

5. Wall temperature sensitivity analysis

Having identified the dominant resolvent modes, we compute their sensitivity to nozzle wall temperature
by solving Eq.(13) with p = T for each leading mode. Since the objective is to reduce their amplification
(i.e. to achieve G2 < 2, see Eq. (12)), we examine in Fig. 5 the opposite of the sensitivity of the optimal
resolvent gain, defined as —(V+G2/u2). A positive value indicates that increasing the wall temperature
of the base-flow would help stabilise the mode, whereas a negative value suggests that decreasing
the wall temperature would be beneficial. This figure therefore represents the optimal wall temperature
gradient required to mitigate the growth of flow instabilities.
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Fig 5. (Left): Optimal wall temperature control profile to damp the three main instabilities, i.e. opposite
of the sensitivity of the optimal resolvent gain for the three dominant instabilities: —(V+G2/u?), since
the objective is to achieve G2 < u? in Eq. (12). (Right): Smoothed control profile near the throat
region. First Mack mode at (f, m) = (12 kHz, 60), second Mack mode at (f, m) = (45 kHz, 0), Gortler
instability at (f, m) = (0 Hz, 200).

The strong oscillations observed near the nozzle throat, particularly for the second Mack mode
(Fig. 5), are subsequently smoothed in order to derive a more practically feasible temperature con-
trol profile from the sensitivity analysis. Indeed, such abrupt temperature variations would be extremely
difficult to implement in an experimental setup. During the gradient validation step, we quantify the
performance loss associated with this smoothing and demonstrate that it has only a limited impact on
the reduction of the resolvent gain. An explanation for the origin of these oscillations is provided in § 7..

We observe that heating the wall near the nozzle throat contributes to the stabilisation of all three
dominant resolvent modes. However, further downstream, the different instability mechanisms begin to
compete with each other. Among these modes, the first Mack mode is found to be the most sensitive
to wall temperature control (|[V7G2[I%, .. > IVTG?lI2 ;.. > [IVTG?|IZ.,.,)- Whereas, the Gortler
instability is the least sensitive, consistent with the findings of Schneider [8]. For the first Mack mode,
our results align with the behaviour described by Mack [30], who demonstrated that a uniformly cooled
wall stabilises this mode. Although the cooling in our study is non-uniform, we similarly find that cooling
the divergent section downstream of the throat reduces the amplification of this mode. When comparing
the temperature sensitivity profiles of the two Mack modes, we find that they generally exhibit opposite
trends with respect to wall temperature variations [30], although in some regions they exhibit similar
behaviour, as also noted by Poulain et al. [21]. It is also interesting to note that Schneider [8] has
observed a similar reduction in flow instability, achieved by increasing the wall temperature near the
throat and cooling downstream. However, in their study, the main purpose of heating the throat was
to mitigate the effects of surface roughness on transition. Nonetheless, the present work demonstrates
that heating the wall at the throat also has a beneficial effect on the growth of linear instabilities.

5.1. Gradient validation

To validate the linear sensitivity results described above, we now prescribe a new wall temperature profile
defined as Tyau = Tiso—€(VTG2) = Tiso—E x (V1 G2/1u?) where € (or equivalently E = eu?) quantifies
the intensity of the applied control. A new base-flow is then computed using this new temperature profile,
and the resolvent analysis is repeated for the same (f, m) values. Fig. 6 (Left) shows the modified
wall temperature profiles used for the new base-flows, while Fig. 6 (Right) shows the corresponding
resolvent gains as a function of the control intensity. These gains are compared to the linear prediction
provided by the sensitivity analysis: G2 = u? — ellerzlléT (from Eq. (12) under the assumption of

optimal control based on the direction of the sensitivity, i.e. p = —€V7rG?). The degree of agreement
between the actual resolvent gain and the linear prediction indicates the validity of the linear sensitivity
approximation. Significant deviations suggest the onset of nonlinear effects in the base-flow, leading to
inaccuracies in the sensitivity estimate solely from the original uncontrolled base-flow.

For low control intensities E applied to the initial base-flow, we observe excellent agreement between
the linear prediction and the new resolvent gain computed on the modified base-flows. This confirms
the successful stabilisation of the mode and validates the wall-temperature sensitivity results, as the
relative error between the prediction and the new resolvent value remains small. Additionally, the linear
prediction remains accurate across a relatively wide range of control amplitudes for all three modes, even
in cases involving strong control that results in significant gain reduction. This is a highly encouraging
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(c) Gortler instability at (f, m) = (0Hz, 200).

Fig 6. (Left): New nozzle wall temperature: Twau = Tiso — E(VTG2/u?), imposed to compute the new
base-flows for the three dominant flow instabilities. (Right): Validation of the gradients obtained from
the sensitivity analysis by comparing the linear prediction: ?(p = 0) — €[[VrG?||Z,  (with and without
smoothing near the throat, see Fig. 5) to the new optimal resolvent gain computed on the modified base-
flows (at the same (f, m)). The relative error is defined as the difference between the linear prediction
and the computed resolvent gain. The temperature values indicated at each point correspond to the
maximum temperature difference, ATmax, between the base-flow with and without control.

outcome for future nozzle optimisation efforts, as it suggests that convergence towards an optimal wall
temperature distribution may require only a few optimisation iterations thanks to the ability to apply
relatively large control values E without compromising prediction accuracy.

Interestingly, a given reduction of the optimal gain results in a relative deviation between the linear
prediction and the real resolvent gain of similar magnitude across all three modes considered. For exam-
ple, a gain reduction by a factor of 0.6 corresponds to a relative error of approximately 10% for each
mode, as shown in Fig. 6. This observation suggests that nonlinear effects on the base-flow begin to
manifest at a similar threshold of initial gain reduction, regardless of the specific mode analysed.

We also note that the smoothing applied to the sensitivity near the throat, introduced to address
the irregular behaviour of the adjoint solution near the sonic line (see Appendix § 7.), results to only
a negligible deviation in the computed gradient and therefore has minimal impact on the predicted
reduction of the optimal resolvent gain. This smoothed sensitivity profile provides a more physically
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realisable temperature distribution without compromising the accuracy or reliability of the sensitivity-
based predictions.

5.2. Optimal profile designed to simultaneously control several unstable modes

In this section, our goal is to determine the optimal wall temperature profile to simultaneously reduce
multiple modes. Using the sensitivity results obtained for each mode, we aim to define a gradient di-
rection that effectively minimises the combined growth of these modes. To do this, we define a cost
function that minimises the Euclidean norm of the combined ratios between the gains after and before
wall-temperature control. A lower value of this cost function indicates a stronger overall reduction of the
set of modes considered. However, it should be noted that there is no unique choice for such a cost
function. In the present study, we propose two possible formulations:

AT optimal,i = arg ATmin Fi(AT) (15)

< max

rmin<(GZ/u2), Yk

Nmodes GZ(AT) 2 Nmodes GZ(AT) 2
with, F1(AT) = [ = ] or R(AT)=4| >. Ni{k—z}
k=1 My k=1 Hi
and, GZ(AT) = u2 + (VpG?)} QpAT (16)

The first definition 77 is the simplest form, it consists of minimising the Euclidean norm of the optimal
gain ratios after and before control for the different modes. However, this approach does not take into
account which modes are dominant in the flow. Thus, the optimisation tends to favour the most sensitive
mode for a given maximum control intensity. Since it is more important to stabilise the instabilities that
are responsible for the transition rather than simply the most sensitive modes, we propose to weight each
term of the cost function by the N factor of the corresponding mode (see F2). This factor reflects the
ability of each instability to trigger transition, thereby prioritising modes with greater physical impact.
Regarding optimisation constraints, it was observed that errors from the linear sensitivity approach
become significant when the instability is reduced by a factor of rmin = 0.6. Consequently, this value is
chosen as the maximum allowable reduction for each mode. Moreover, since Mack's first mode is the most
sensitive, this reduction factor corresponds to a maximum wall-temperature variation of approximately
ATmax = 10 K, which constitutes an additional constraint on the desired temperature profile. The two
optimisation problems described above are solved using a trust-region method [31] implemented in
scipy.minimize, which enables the incorporation of both constraints and bounds within the optimisation
domain. The resulting temperature profiles after optimisation are shown in Fig. 7 using only the three
dominant modes

Tab. 1 and Fig. 7 show that, in all cases, it is possible to find a solution that stabilises all the modes.
As expected, the cost function F; tends to locally favour the most sensitive mode of the flow. This
highlights the advantage of 7, which instead targets the dominant instability, even if it is less sensitive
to control, as is the case for the Gortler instability in our configuration. In both cases, we observe that
heating at the nozzle throat is required to stabilise the three dominant modes. This finding suggests that
the heating commonly applied to the throat in quiet wind tunnels, primarily to mitigate the influence
of roughness on transition by thickening the boundary layer, may also have the beneficial effect of
mitigating the growth of these modes, thus helping to maintain laminar boundary layers over longer
distances.

However, in our case, we observe that downstream of the nozzle throat, it is preferable not to
modify the wall temperature if one wishes to avoid adversely affecting the dominant mode relative
to the others. It is important to note that this conclusion strongly depends on the formulation of the
optimisation problem, particularly the choice of the cost function F;. In this study, we focus only on
wall-temperature control, but other control strategies could be considered, such as nozzle geometry
optimisation. For example, future work could demonstrate that stabilising the Gértler instability may be
more effectively achieved by acting solely on the geometry, given that this mode is directly linked to
the concave curvature of the wall, whereas the first Mack mode might be better controlled via wall-
temperature adjustment, even if this slightly compromises the Gortler instability, which would remain
primarily stabilised by geometric modifications of the nozzle.

Moreover, it would also be valuable to extend the analysis beyond the dominant modes alone, i.e.
those corresponding to the peaks on the gain map, by also considering other frequencies and azimuthal
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Fig 7. Optimal wall temperature profile designed to simultaneously control the maximum amplification
of the Goértler instability and the first and second Mack modes using the cost function 71 and 7>. (—),
(=) and (—) correspond to the maximum bounds of the optimisation problem for each mode.

(Gz/uz)lst mode (Gz/uz)an mode (GZ/NZ)gdrtler
maximum bounds | 0.595 0.886 0.928
using F1 0.596 0.887 0.946
using F1 0.689 0.920 0.928

Table 1. Optimal gain ratios after and before control for the different modes obtained after optimisation.
The first row corresponds to the maximum bounds of the optimisation problem for each mode.

wavenumbers. This would ensure that the selected temperature profile effectively stabilises the entire
gain map. Indeed, focussing exclusively on the dominant modes could inadvertently destabilise other
previously less critical regions.

6. Conclusion

To conclude, the resolvent analysis enabled the identification of three dominant resolvent modes within
the nozzle, encompassing the throat and divergent sections: the Gortler instability, along with the first
and second Mack modes. Subsequently, a wall temperature sensitivity analysis was performed and vali-
dated for the three dominant modes within the nozzle. The results revealed that heating the wall near
the throat effectively stabilises all three resolvent modes. However, further downstream, the different
instability mechanisms begin to compete with each other. Among these modes, the first Mack mode
exhibits the highest sensitivity to wall temperature variations. Using the sensitivity results, an optimal
profile is also designed to simultaneously control several unstable modes. The resulting optimal pro-
file for a new step of nozzle optimisation strongly depends on the definition of the cost function, and
consequently on the relative priorities assigned to stabilising one mode versus another.

With additional validation as discussed in this paper, these sensitivity and optimal profile results could
soon serve as optimal gradients to inform gradient-based optimisation strategies. However, appropriate
constraints must be incorporated within the optimisation process to ensure the desired Mach number at
the nozzle exit and maintain a uniform Mach profile at the model location. This constrained optimisation
loop could then be employed to design a nozzle that effectively reduces instability growth, thereby
delaying the onset of turbulent boundary layers, and therefore supporting the development of next-
generation quiet wind tunnels and advanced ground testing facilities for hypersonic flows.

7. Appendix

The strong oscillations observed near the nozzle throat originate from perturbations generated at the
root of the sonic line (close to the wall), which then propagate along characteristic lines, forming a
"wave" pattern throughout the nozzle. This phenomenon can be observed in the sensitivity to volume
forcing, VfCGZ (see Eq. (14)) illustrated for the second mode in Fig. 8 (similar waves also appear for
the other modes). These perturbations near the throat are linked to the fact that the Jacobian matrix
has a zero eigenvalue and becomes non-invertible, which no longer constrains certain components of
the adjoint solution. This behaviour was previously identified in 1D nozzle analyses, where the adjoint
was shown to be singular at the sonic line [32]. However, in 2D cases, the singularity vanishes except at
locations where the streamlines are orthogonal to the sonic line. Such orthogonality is indeed observed
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Fig 8. Sensitivity of the optimal resolvent gain for the second Mack mode to a volume forcing control
(VfCGz/HZ) (see Eqg. (14)). Visualisation of the density component of the volume forcing control. For

clarity, only the following contribution is shown: —OJ?clP*Jo_l* /% (34(Qedr))™ §r, which helps high-
light the underlying physical mechanisms.

near the wall, as shown in Fig. 8. In practice, this behaviour may not represent a true singularity at
the root of the sonic line but rather a steep gradient, a feature commonly observed in adjoint fields for
transonic flow configurations [33, 34].
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