HiSST: 4th International Conference on l ‘
High-Speed Vehicle Science & Technology CEAS

22—26 Se ptem ber 202 5 , TOU rs’ Fra nce Council of European Aerospace Societies

On Shock Layer Instabilities
Vassilis Theofilis?

Abstract

While accurate description of the internal structure of strong shock layers is beyond the scope of the
Navier-Stokes equations [9, 15, 4, 2], continuum equations may be used to describe weak shock layers
at low Mach numbers. The present contribution extends the steady laminar base flow model of Gilbarg
and Paolucci [7] (GP) and the two-dimensional modal linear stability analysis Duck and Balakumar [6] by
incorporating nonzero transverse and lateral shock velocity components. In line with earlier predictions,
analysis of the GP base flow model did not reveal discrete eigenvalues or unstable members of the
continuous spectrum. Three-dimensional perturbations were found to be stronger damped than their
2d counterparts, while less damped continuous branches are generated as the disturbance wavelength
increases. Amplitude functions of the least damped perturbations exhibit a damped oscillatory nature
toward the hot side of the shock. Non-modal linear stability and receptivity analyses are underway.
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Nomenclature

Latin Superscripts

M, — Mach number, v, /+/vRT1 q* — Dimensional flow quantity

Re; — Unit Reynolds number, pyuy/pq [1/m] q — Steady, laminar, base flow quantity

Re — Reynolds number, pyuq16* /11 q — Amplitude function of modal perturbation
Greek Subscripts

A1 — Mean free path 1 — Indicates conditions at the shock cold side
1. Theory

1.1. Governing equations and non-dimensionalization
The non-dimensional compressible equations of motion written in tensor form in terms of density, p,
velocity components, u;,, and temperature, T', read

Op | 9(puk) _
ot T oz, (1a)
Bui 8uz _ 1 a(pT) 8a;ﬂ-
p( ot +uk8xk> M} Oy * Oxy, (1b)
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Here the ideal gas law has been used, body force terms have been neglected and the non-dimensional
viscous stress tensor, ¢;;, and viscous dissipation function, ®, are explicitly defined as
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alongside a non-dimensional equation of state

YMip = pT. (1f)

The Prandtl number is taken to be a constant and evaluated at the cold side of the shock. It is used to
express the coefficient of heat conductivity in terms of the first coefficient of viscosity, the latter taken
to be a function of temperature alone.

Scales for density, velocities, pressure, temperature and viscosity are constructed using flow variables
at the cold side of the shock,

p1,ut, prud, Th, . (2a)

In addition to the above scales, a length scale, §*, to be discussed shortly, is used to construct a time
scale,
5% Juy. (2b)

1.2. On length scales in the shock layer

An ambiguity is introduced into the analysis by the absence of an obvious scale to non-dimensionalize
lengths in the equations of motion, define a domain in which to solve (9) numerically, and consistently
define the flow Reynolds number while maintaining the assumption of flow in the continuum regime. At
a macroscopic level, Prandtl [13] and Becker [3] have defined a measure of the shock layer thickness,
A*,

uy — ud
Ar— Wi 3)
max | 7=

by reference to the velocity difference either side of the shock and the maximum value of the slope of
the sigmoid curve describing the dependence of the streamwise velocity component.

On the other hand, at the microscopic level, the mean-free path [8, 5]

1
M= L (4)
5V 2m pray

provides another length scale, calculated here with flow properties at the cold side of the shock, with
ay the local speed of sound. In order to set the length scale and obtain physically meaningful results by
the Navier-Stokes-Fourier equations that govern weak shocks in the continuum regime and the target
altitudes, the present analysis is performed at a low constant value of the Knudsen number, Kn = 10~%.
In addition, a low Mach number value is chosen, in order to preserve the relevance of results obtained by
the Navier-Stokes-Fourier system. Indeed, the pioneering numerical works of Liepmann et al. [9, 10] and
Bird [4] have established the non-Maxwellian (bimodal) internal shock structure postulated theoretically
by Mott-Smith [12] at Mach numbers M; > 2, in contrast to the Maxwellian internal shock structure
assumed by the continuum equations. The bimodal internal structure of strong shock layers has been
verified in the celebrated experiments of Schmidt [15] and Alsmeyer [1, 2] and has since led to the
acceptance of kinetic theory methods [4] as the appropriate tool to probe the internal structure of
strong shocks. In the present work, the Mach number is taken to be M; = 2, to ensure that the
continuum equations accurately describe the internal weak shock layer structure.

The Knudsen number, defined as the ratio of the mean free path, A}, and a characteristic flow length
scale, 6%,
Kn="2 (5)
n = TR

is set in the present work at the constant value Kn = 10~4, such that description of the internal shock
layer structure by the continuum equations (1) be permissible. The relation between the flow Knudsen,
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Mach and Reynolds numbers [14],
_ Jam M

K
" 2 Re’

(6)

is then used to determine the flow Reynolds number and, in turn, define the length scale §* on the basis
of (5). Example conditions and flow parameters at which the present analysis is performed are shown
in Table 1.

Table 1. International Standard Atmosphere (1976) atmospheric conditions, p1, p1, T, at three altitudes
and flow parameters calculated using M; = 1.5, Kn = 10~ and equations (3), (4), (5) and (6).

Altitude [km]

20 30 40
P1 [Pa] 5,475 1,172 278
p1 [x10% kg m—3] 88 18 4
T [K] 217 227 251
" [x10° Pa s] 14 15 16
Req [m—1] 2,784,571 543,600 119,000
a [ms—1] 295 302 318
U1 [ms—1] 443 453 476
A [x107 m] 8.1 417  190.0
0* [mm] 8.1 41.7 190.0

1.3. Linear Stability Analysis
1.3.1. The base flow
Linear modal instability analysis of a weak shock layer is performed by introducing the decomposi-
tion
q(z,y,2,t) = Q@) + e q(z,y,2,1); <1 (7)

into the governing equations (1). At O(1) the decomposition delivers the following steady laminar base
flow equations

(pu) =0 (8a)
———— 1 o/ i =1 NI =Y 5
put’ = ’ny(pT) + (20 + X))@' + (25 + A) @”] (8b)
1
puv’ = o [V + pv”] (8c)
—— 1 [7/ _/ + 0 7//] (8d)
puw” = Te nw 4+ pw

- - g T T M27(7—1) — Y\ - o

pul’ = —(v = NpTu + o KT+ KT"] + ——p— [(2+ \)(@)* + (@)* + i(@)’]  (8e)
System (8) extends that originally derived (in dimensional form) and solved by Gilbarg and Paolucci [7],
in that it accounts for (weak) oblique (planar) shock layers in which in-plane velocity components, @(x)
and o(z), as well as an out-of-plane base flow component, w(x), exist.

In the absence of the velocity components © and w, using the equation of state to replace pressure
by density and temperature and substituting the equation of continuity into those of momentum and
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energy to eliminate density, the system of coupled nonlinear ordinary differential equations for @ and T
results,

271+ A 1 T 1
y = G4+ —m 1 —— 9%
Re " R v i Ve (%2)
1 _ 1 _ 1 1 1 1
T = a2+{1+ }u i (9b)
(y — 1)M32RePr y(y — 1) M? 2 yM?E (y—1)M2 2

Boundary conditions for this system are provided by the Rankine-Hugoniot conditions

_y—1 2

_7+1+ (y+ 1) M2’

(YMF — M} +2) (1—v+29M7)
(v +1)2M7

(99)

U1:1 , U2

Ti=1, To= . (9d)

which are derived from (9a-9b) far upstream and downstream of the shock layer. The dimensional ver-
sion of system (9) was first presented and solved in [7], while Duck and Balakumar [6] also used this
shock layer model, although the Reynolds number does not appear explicitly in the latter analysis. Here
the system is converted into one of first-order ordinary differential equations and solved numerically
by straightforward shooting methods, once a viscosity-temperature law and appropriate boundary con-
ditions have been specified. The Mach and Reynolds numbers are chosen to be consistent with weak
shock layers and relevant to endoatmospheric flight at altitudes 20km < h < 40km, as discussed in
section § 1.2.

1.3.2. Modal linear stability analysis

Linearization of the state vector in primitive variables q = (p,u,v,w,T)" about the vector of steady
basic flow components q = (5, @,0,0,7)T, obtained from solution of (9), neglecting terms of O(¢?) and
solving the resulting system at O(¢) for the determination of the perturbations q results in an Initial
Value Problem (IVP)

_ 0 _ -
B(@; Fe; M1) 51 = A@ Re; M1)a (10)

for the determination of the small-amplitude perturbations. Here, the modal Ansatz
A(z,y,2,t) = (7.0,7,,0)" = Q(x)exp[i(By + 0z —wt)]; <1 (11)

is made to introduce harmonic in time perturbations and convert the IVP (10) into an eigenvalue problem
(EVP)

AG = w54 (12)

for the determination of the complex eigenvalue w and the eigenvector q = (p, @, 9,1, 0)", comprising
of the complex amplitude functions of the linear perturbations in a temporal context, with i = v/—1 and
B8 =2nr/L, and 6 = 27/Lz real wavenumber parameters along the y— and z— directions respectively.
The (direct) linearized continuity, momentum and energy equations read

(@D + Du) p+ (pD + Dp) 4 + i8p0 + i pw

= iwp (13a)
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This system is discretized and the EVP (12) is converted into a generalized complex non-symmetric
matrix eigenvalue problem

Aq = wBq, (14)
with
Ay Aca A Acw Ay 10 0 0 0
Avp Aza Az Ao Ay 0 p 00O
A=Ay Ay Ay Ay Ay B=10 0 p 0 0
A Asa A A Ay 000 poO
Acp Aeca Ao Aew Ay 0000 p

with the matrix entries inferred from (13). For receptivity studies, the adjoint eigenvalue problem A*q* =
—iw*B*q* is defined, with the corresponding adjoint matrix entries presented in the Appendix.

2. Results

2.1. Base flow

The classic Gilbarg and Paolucci [7] case of o = w = 0 is addressed here. Figure 1 presents results for the
laminar steady streamwise basic flow velocity component, %, and temperature, T, and their streamwise
derivatives at M; = 1.5 and two values of the Reynolds number, Re = 10® and 10%, respectively. The
absence of a length scale in this problem is evident in the results, where the order-of-magnitude increase
in Re results exactly in one order-of-magnitude reduction of the shock layer thickness. The shock layer
is indicated on the plots as a shaded region, the boundaries of which are defined by the base flow results
having converged within 106 of their respective value predicted by the Rankine-Hugoniot conditions.
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Fig 1. Basic flow laminar velocity and temperature profiles and their derivatives at M; = 1.5

2.2. The direct eigenspectrum

The present exploratory studies have used the QZ algorithm to perform full spectrum computations of
(14) to identify and classify branches of eigenfunctions in the spectrum. The intricacy of the spectrum
can be appreciated in Figure 2, where the imaginary part of the eigenvalue (damping rate), S{w}, is
plotted against the real part (frequency), R{w} using (from left to right) 256, 512, 1024 and 2048
spectral collocation points. Several observations are in order here. First, all eigenmodes are damped,
S{w} < 0, indicating stability of the base flow solution at these conditions. Second, only continuous
branches have been unraveled, a fact reflected in the relatively large number of discretization points
required for convergence. Third, several lines of continuous spectrum have been found, qualitatively
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identical with those discovered by Duck and Balakumar [6] in their related work. Of these, members of
the near-horizontal least-damped branch will be discussed shortly.

- |

1500

wh w, o w,

Fig 2. Convergence of the eigenspectrum at M; = 1.5, Re = 10 and 8 = 27/,

The next question addressed concerns stability of two- (5 # 0,6 = 0) as opposed to three-dimensional
(8,0 # 0) perturbations. Results shown in Figure 3 are representative of those obtained at a large
number of Reynolds number, Mach number and wavenumber parameter combinations. On all occasions,
the least-damped branch was barely affected, while stronger damped two-dimensional perturbation
branches were found to be less damped than their three-dimensional counterparts.

Re = 1000, B=0O(21/A), 5=0 Re =1000, B =5
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Fig 3. Representative result demonstrating modal stabilization of three-dimensional waves (§ # 0) in
relation to their two-dimensional counterparts (6 = 0)

The parameter found to have the strongest effect on the shock layer eigenspectrum families is the
wavenumber of perturbations, as shown in Figures 3 and 4. In Figure 4, results obtained for wavelengths
of the order of the mean free path, A\, = 27/8,,, as well as those at twice and an order of magnitude
larger are presented. Note that the same ordinate has been used in all three figures, indicating the
tendency of the spectrum to become less stable for wavelengths increasingly larger than the mean free
path and approaching pertinent to macroscopic length scales. However, no zero crossing has been found
up to the largest wavelength examined.
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Fig 4. Destabilization of the eigenspectrum as the streamwise wavelength A = 27/ increases

Figure 5 presents amplitude functions of the transverse disturbance velocity component and disturbance
temperature pertinent to a representative member of the least-damped branch of the continuous spec-
trum shown in figures 2 and 3. Results in the vicinity of the shock layer! are shown, since the amplitude
functions reach the homogeneous Dirichlet boundary values imposed far away from the shock layer
within a few mean-free path distances from the shock layer. The shape of the amplitude functions
is qualitatively the same for all components of the eigenvector, namely monotonically increasing from
x — —oo and peaking near the center of the shock layer (defined as the location of the inflection point
in the base flow velocity component), then turning into a damped exponentially decaying perturbation
at z > 0 and vanishing shortly after the disturbance has exited the shock layer.

1 1 1 i ) 11

GNE #iT) T, (x) Tiix)
0.5 0.5 05|
0 0 0
0.5 0.5 0.5

-1 ! [ L L : L -1 L L L ) -1 L3 i L

-0.05 0 0.05 [N ] -0.05 0 .05 0.l -0.05 0 0.05 o1 -0.05 ] (.05 0.1
Fig 5. Amplitude functions of disturbance velocity and disturbance temperature at A; = 1.5, Re =
1000, 8 = A.

The absence of discrete modes and the damped nature of all eigenspectra computed at all parameters
examined call for non-modal analysis, which is currently underway. In parallel, receptivity of the shock
layer to incoming small-amplitude perturbations, extending the work of McKenzie and Westphal [11]
into the viscous regime is also examined presently, and results will be reported elsewhere.
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Lof the same extent as that shown in figure 1 at Re = 10°
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A. Entries of the adjoint matrix
Adjoint matrix (A};) entries

An
Aty
Aly
Al
Als
A5

*
A22

*
A23
*
A24
*
Ass
*
A31
*
A32
*
A33
*
A34
*
A35
*
A41
*
A42
*
A43
*
A44
*
A45
*
A51
*
A52
*
A53
*
A54
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