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Abstract 

Sensor-based guidance is required for long-range platforms when GNSS can be denied. To bypass the 

structural limitations of the classical registration-on-reference-image framework, we offer in this paper 
to encode the appearance of the surrounding of the target (at all resolutions) from a stack of images 

of the scene into a deep network. This new framework is showed to be relevant on bimodal scene (e.g. 
when the scene can or can not be snowy) even if it raises question about the loss of epipolar geometry 

which is much more understood and mastered than gray-box deep networks. 

Keywords: large scale guidance, deep learning, hypersonic platform 

1. Introduction 

Localizing a camera using the current image is as old as computer vision [1]. However, SLAM 
frameworks (Simultaneous Localization and Mapping) only offer relative localization. To restore absolute 

localization, one must combine the information provided by the current image with external information 

such as GNSS, or, anchor points (points for which the absolute 3D position is known) visible in the 
image. This last idea leads to the framework of registration on a reference image widely used in remote 

sensing: by using anchors recognized in the current image, PnP algorithms [7] allow restoring the 

absolute position of the camera (and even the related coordinate system see Fig. 1a). 

 

Fig 1. a) On the left, Principe of registration on reference image to recover absolution localization. 

b) On the right, this process may face both geometric transformation and/or physical ones. 

 

However, image matching can be challenging (see fig. 1b): one should recognize an area despite 

appearance change due to different localization of the sensor (geometric transformation) or 
radiometric/physical change or both. Precisely, the state of the art mostly focuses the geometric 

accuracy of the matching in mostly controlled setting which is critical for accurate 3D reconstruction. 
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However, for recovering absolute position, geometric accuracy is less important than robustness to 
uncontrolled changes. Yet, the classical registration-on-reference-image framework suffers from a 

structural drawback: it is heavily dependent on the quality of the reference image and on the similarity 

between this reference image and the current one. 

To bypass this limitation, this paper proposes relying instead on a stack of images of the scene to 

capture common changes that can arise (e.g., snowy or not) and to implicitly fill in missing information 
in each individual image (e.g., each image may contain clouds, but the entire scene can be seen across 

the stack). As manipulating the stack is inconvenient, we propose using a small deep network to directly 

learn a mapping between the current image and the orientation toward the target even if not visible.  

This approach is particularly relevant for optical guidance of hypersonic platforms. In such contexts, 
GNSS can be denied, embedded accelerometers lead to large drifts after several thousand kilometers 

of travel and stellar-based-localization is unavailable during the decreasing part of the fly. Also, such 

platforms usually follow terminal trajectories while performing high speeds maneuvers that constrains 
the images that can be obtained, where the target itself could be outside the cameras field of view, 

and, besides, at very high altitude, the target is not visible even if in the sensor field of view.  
Furthermore, using a deep network can increase robustness to the precise spectral band and/or 

potential distortion created by heat when capturing the scene at very high speeds.  

Despite this approach clearly introducing logistical issues (the need to collect a stack of images of the 
scene, the need to train a specific network for a single target, the lack of well-understood geometric 

foundations), we provide a case of a bimodal scene (with and without snow) where classical baseline 
fails while our method mitigates the bimodal issue. This model also performs correctly under large 

simulated heat noise potentially tackling this new issue introduced by hypersonic platform. 

2. Related works 

There is a very large literature on SLAM and registration, currently being revisited by the rise of efficient 

deep network methods for geometric tasks. SIFT+lightglue [5], which combines original SIFT [8] and 
efficient deep learning descriptors seems to be the current state of the art of image matching, 

challenged by new approaches performing end-to-end dense matching [3,4,11]. 
However, SIFT+lightglue focuses on robustness to point of view. So, it may be sensitive to strong 

changes in the appearance of the scene. End-to-end dense matching methods may be more robust to 

those changes by implicitly learning the existence of such drift (MatchAnything [4] can even match an 
image to a symbolic map, for example), but they are today implemented with very expensive 

transformer layers making them unacceptable for embedded platforms (the web demo of [4] requires 
16s per pair of small images). Also, from a functional point of view, SIFT+lightglue and MatchAnything 

perform registration, not directly the final guidance task. In this sense, appearance-only SLAM like Fab-

Map [1] is somehow related to this work. Yet, Fab-Map aims to detect already known areas (loop 
closing) while we map image appearance to target direction. 

 
Let us point out that our idea of creating an implicit model of a scene from a stack of images is also 

related to Nerf (Neural Radiance Field) literature [9]. However, here we do not really model the scene 
but rather the appearance of the target and/or it surrounding at different scales/orientations... 

To summarize, our work is inspired by Nerf but applied to guidance. It does not rely on transformer-

based dense correlation to perform registration, thus being much faster than MatchAnything. Finally, 
compared to classical registration techniques whose current state of the art seems to be SIFT+lightglu, 

our pipeline does not depend on a specific reference image, offering robustness to common changes 
in the scene and/or specific noise like heat noise. 

3. Direct Guidance Learning 

The idea of our method is to use the ability given an image to generate the image which would have 
been seen from another camera position. Given 𝐴 the parameter of the camera, and a reference image 

𝑋 in which the target position 𝑝 is known, it is somehow easy and/or mathematically well understood 

to generate a pair 𝑥, 𝑦 = 𝐺(𝐴, 𝑋, 𝑝) where 𝑥 is the image corresponding at the appearance of the scene 

X under camera parameter A, and, 𝑦 the target position relatively to image 𝑥. Precisely, the new image 

can be generated with a simple homography by assuming that the source image is flat which is 
acceptable for remote sensing application, even if, using ray tracing with topographic data would be 
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better. Now inversely, from the image 𝑥, it is not trivial to recover mathematically neither the camera 

parameter 𝐴 nor the target position 𝑦 i.e. the process of synthetizing an image G is well known but not 

inversible. Thus, the offered idea is to directly learn a mapping between 𝑥 and 𝑦 using a database 

generated though function 𝐺 (mapping 𝐴 instead of 𝑦 can be done functionally but as this object is less 

smooth, it would probably require a larger deep network). So precisely, the idea is to sample a large 
set of parameters 𝐴1, … , 𝐴𝑅 and to generate though 𝐺 (and the stack of reference images) a database 

of images/target position 𝑥1, … , 𝑥𝑅 and 𝑦1 , … , 𝑦𝑅, and then, to train the model to produce 𝑦𝑖 given 𝑥𝑖. 

This idea is summarized in Fig 2. 

 

Fig 2. Overview of the offered framework: guidance is cast as the problem of learning the target 
localization 𝑦 from an image x on a dataset of pairs (x, 𝑦) synthetized from reference image 𝑋 

where target position 𝑝 is known under a random camera parameter 𝐴. At runtime, the 

network directly predicts a localization from the current image without needing the stack. 

 

4. Experiments 

4.1. Global experimental setting 

The data source of our experiment is an IGN BD Ortho visible image (which looks like natural images) 

and some Copernicus Sentinel-2 (shorten in S2) images both visible (bands 2,3,4), or IR (band 8). 

 
We consider 2 sets of experiments. First, we aim to measure performances of our algorithm from 

computer vision point of view, typically under large diversity of camera positions. For these experiments, 
we sample a random rotation (around the vertical), a random zoom, and a small uniform rotation 
around the other two axes to generate each matrix 𝐴. Then, we also consider a more representative 

setting where the points of view are not sampled randomly but along trajectories of a hypersonic 
platform and with a S2 infrared image with low change but with specificities related to hypersonic 

platform like heat noise. 

 

4.2. Implementation details 

When relying on S2 image, a critical preprocessing is required to recover somehow 8bit images (or at 
least to avoid a too large range of pixel values). We rely on histogram is equalized at image level for 

this purpose. There exist many other pre-processing methods like local histogram normalization, TOA 
normalization, or contrast enhancement. Yet, none of these are universally better as each may have 

side effect: TOA requires additional information which may not be available during mission preparation, 

contrast enhancement technics can create spurious textures on flat areas and patch base normalization 
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may create normalization inconsistency. Thus, despite probably not optimal, simple global histogram 

normalization has the interest of being straightforward.  

In these experiments, S2 images are mostly cloudless (but with large changes in snow), yet the 
algorithm is designed to resist low cloud cover (obviously, images with strong cloud cover should not 

be added to the stack of reference images). 

The higher we are, the harder it is to be precise on target coordinates in the metric system because 
pixel resolution decreases. So, we normalize error in pixel coordinates: the task becomes selecting the 

pixel in which the target belongs (even if not visible when the platform is too high). We thus report 
both mean square error and number of samples for which the error is less than 10px to avoid the metric 

being biased by outliers.  

For the deep network, we put emphasis on limiting the number of layers: all experiments are done with 

the first 4 blocks of ConvNext Tiny [6] followed by a task-specific dense layer allowing us to achieve 

60FPS on CPU only at inference on 256x256 images. Currently, the same model with the first 4 blocks 
of EfficientNet B0 [12] has been tested but performs poorly in comparison to ConvNext Tiny despite 

both networks representing the state of the art of small convolutional deep networks. Probably, 
EfficientNet would have required more blocks to capture the problem, damaging running time. Let us 

point out that with this setting, the accuracy of the offered method cannot be higher than 5 pixels (it 

predicts an 8x8 pixel block containing the target). Yet, this is not really an issue are, we want absolute 
rather than accurate localization (this absolute localization could be filtered with accelerometer 

measurements which are locally accurate despite drifting). 

Fine-tuning of the network pretrained on Imagenet is done in several steps: first, the head is aligned 

on the task; then, a first fine-tuning is performed with SGD and very small learning rate; finally, a 
classical fine-tuning is performed with advanced optimizer [2]. Let stress that pretraining weights are 

critically required despite there are designed for ImageNet i.e. mostly to recognize cat & dog from 

internet. Thus, those weights may pollute the networks with irrelevant features despite being 
mandatory as we align the network on the task on a very small dataset (corresponding to the slack of 

images of the scene). There is almost certainly a room for improvement by relying on a S2 data 

pretrained model. 

The baseline considered for comparison is opencv2 SIFT registration on a single reference image with 

standard Lowe's ratio. Currently we also tested SIFT+lightGlue (pretrained) but it performs similarly as 
SIFT: this can be explained because first lightGlue is not trained for remote sensing image, and then, 

because the algorithm should not try to produce a very precise wrapping but rather to deal with very 
large appearance change, and, for this purpose, pretrained lightGlue descriptors were not more useful 

than SIFT ones. 

 

4.3. Generic Experiments 

This setting is split into 2 sub-experiments. One is with weak change as we consider a single large 
image from IGN BD Ortho to create views. Then, we consider a setting with strong change using 4 

Sentinel2 images (from January 2025 to March 2025) where 2 images contain snow and 2 do not. The 
first two (1 snow, 1 no-snow) are used for training, and the other two for testing. Thus, in this test, 

the deep network does neither know the point of view nor the image (and so the fact that there will or 

will not be snow) and implicitly needs to use the correct reference images when associating current 
views with the internal model encoded in the network weights. 

 
4.3.1: weak change 

This first setting is mostly an experiment designed to ensure algorithms are functional where both 

methods (baseline and offered one) successfully manage to find efficiently the position of the target as 
reported in Table 1. SIFT baseline achieves even better precision than the offered method in terms of 

mean square error and both methods produce acceptable predictions in 96\% of the sampled images 
(most failures are related to images with strong oblique views which are somehow distorted by the 

absence of topographic data). 
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Table 1. Performance of target position estimation under weak physical change between reference 

image and current image 

Method Mse Frame ratio with less than 10px error 

Baseline 1.68px 96.4% 

Our 6.58px 96.1% 

 

Still, it is interesting to see that our method has been able to encode the visual appearance of the 

neighborhood of the target at any resolution as pointed in Fig 3. 

 

Fig 3. Illustration of the image of this first experiment. Hypothetical target (red arrow) is not really 

visible in first image, yet, the surrounding is sufficient to know where it is. This explains how 

our model is able to learn a mapping image-to-target at any resolution. 

 

4.3.2: strong changes 

For the second setting, 2 images (1 with snow, 1 without snow) are used for training the offered 
algorithm, and the same for testing. However, the baseline is restricted to selecting a single reference 

image, making it hard to register on the opposite test image. This leads to less than 24% of the test 

images being correctly processed (in many cases, SIFT matching does not even find 4 good matches 
for estimating the homography matrix). Inversely, the offered method manages to process correctly 

more than half of the images distributed across the two modes (snowy and non-snowy). Currently, 
performance of our method on training images is much higher, highlighting the fact that performance 

may increase significantly with a larger reference image stack (only two here). 

These results, reported in Table 2, highlight the fact that relying on a single reference image is not a 
good idea when strong changes can arise between the reference image and the current one, while 

encoding the scene with our method on a stack of reference images can mitigate the issue. This is the 
main result of this paper: classical image matching technics can suffer under strong physical change of 

the scene. Besides, focusing mainly on geometrical accuracy makes low sense as sensor-based 
guidance is mostly relevant for providing absolute rather then accurate localization (which can be 

recovered by filtering with inertial sensor).  

Table 2. Performance of target position estimation under strongly bimodal (snow vs no-snow) 

distribution of reference and testing images. 

Method Mse Frame ratio with less than 10px error 

Baseline 53.03px 23.6% 

Our 42.64px 51.3% 
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In order to illustrate why SIFT performs poorly, Fig 4 displays the same crop of two S2 one snowy, 

one normal (centered on a hypothetical target). One can see how the appearance are different even 
without any geometrical changes. On this already-registered pair, SIFT extracts around 700 points per 

image but manage to match only 20 of them. Adding only a little geometric deformation or sub-sampling 

frequently makes the number of matches going under 4. 

 

Fig 4. Illustration of SIFT failure: key point are not on the same location on this area captured at 2 

different dates due to important physical change (snow) producing strong visual discrepancy 

(in particular under global histogram normalization). 

 

4.4. Hypersonic platform specific Experiments 

As the images seen along a trajectory of a hypersonic platform way exhibit some specificity (specific 

distribution, noise…), we also offer to evaluate performance not on individual images but on videos 
related to trajectories of the platform: instead of sampling views 𝐴𝑟 randomly, we simulate trajectories 

of a camera in the head of a hypersonic platform performing somewhat representative maneuvers 

(speed/resolution may not be representative). 

A generic model of a hypersonic platform with lifting has been used to generate a trajectory during re-

entry associated with terminal guidance maneuvers. One common maneuver used that would also 
challenge our method in a significant way is to induce a spinning motion around its longitudinal axis to 

generate a helicoidal motion. A simplified version of this maneuver imposing a periodic spinning motion 

is implemented to generate a terminal trajectory a very high speeds in Fig 5 a), where the position of 
the hypersonic platform is shown by the green square, and the field of view of the camera is the red 

quadrilateral on the ground, which is constrained by the maneuvers and the trajectory inclination. 

Considering a fixed line of sight of the camera in the head of the hypersonic platform, it would therefore 

generate a stack of images, similar to Fig 5 b), for a given time period of the spinning motion. To 

generate a sufficient number of stack images, each trajectory has the same target but with weak setting 
changes, such as the period of the helicoidal motion, initial position and velocities, and small random 

variation of the hypersonic attitude during the trajectory. Given the very high speed and the sampling 
rate of the camera, the resolution between each image can be very different, as seen in Fig 5 b) where 

the area of each quadrilateral gets smaller and smaller. 

We simulate 100 trajectories (around the same scene/target under weak change setting like in 4.3.1 

with an infrared S2 image), 90 for training and 10 for testing. All images from all training trajectories 

are used for training the network, like for other experiments: views are considered independent during 
training (but not testing) yet capturing the fact they belong to trajectories and not uniform sampling. 

Fig 6 displays output of the algorithm along a testing trajectory. 
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Fig 5. a) Re-entry trajectory of a generic hypersonic platform with a spinning motion. 
b) Examples of a stack of images seen by the camera during the periodic spinning 

maneuvers. Each red quadrilateral represents an image taken by the camera. 

 

 

Fig 6. Outputs along a trajectory: all 8 images represent an image and an output mask (red dot is 

the location of the target, yellow is the pixel-wise predicted likelihood of being the target 

location). One can again notice the ground resolution difference between first and final 

image, yet the algorithm can coarsely predict the location of the target in all those situations. 

 

Fig 7. Same as Fig 6 but with an occultation miming thermal protection of the optical windows. 

 

Then, we perform the same experiment with 2 noises directly related to hypersonic platform: first a 

thermal protection and a heat noise. For the protection, we add (both in training and testing) a small 

black circle in the center of the image corresponding to the hypothetical thermal protection of the 
optical window (see Fig 7). Finally, we perform a third time this experiment with a strong simulated 

heat noise (increasing pixel value up to saturation of a circular area whose radius increase with time). 
Again, the algorithm achieves a good processing of the test set videos (see Fig 8). Let recall that the 

noise or the thermal protection should be added at train time to be correctly handled at test time (so 

the 3 figures 6-8 correspond to 3 different sets of weights for our CNN, yet achieving good result in 
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each respective cases). More quantitatively, predicted target is correct within 10px on at least 66% of 
the frames for all 10 testing trajectories of all three setting (despite number of frames correctly 

processed is logically higher for the clean images) in particular even despite the strong visual impact of 

the simulated heat noise. 

 

Fig 8. Same as Fig 6 but with a simulated heat noise. 

For comparison, we also perform those experiment (guidance under simulated heat noise) with the 

SIFT baseline, and surprisingly, it still manages to extract sufficient matching points between the 
degraded IR image and a single composite optical reference image, compiled from multiple Google 

images (see Fig 9). The red cross denotes the accurate position of the targeted point. Green lines 
illustrate the corresponding point pairs identified by SIFT, while the blue line represents the detected 

footprint of the IR image within the reference image, which appears non-square due to trajectory 

inclination. The blue point and green circle indicate the estimated location of the target within the IR 
image onboard the missile. As evident, SIFT matching significantly aids in target identification, even in 

cases of severe degradation. However, it is noteworthy that this performance is largely attributed to 
the highly structured environment depicted in the image, particularly the presence of nearby mountains 

and it relies heavily on a limited number of correspondences between the flight image and the reference 

image highlighting a potential instability on harder cases. 

 

 

Fig 9.  Some results of SIFT baseline under heat noise (reference built from Google Earth sources).   

 

5. Conclusion 

In this paper, we point out the limits of the registration-on-a-single-reference-image framework for 

sensor-based guidance and offer replacing it by directly learning a mapping between image and target 

localization using small deep convolutional networks on a stack of reference images.  
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Despite successes in these preliminary experiments, it is obvious that this framework has many critical 
drawbacks compared to the baseline. In particular, given the purpose of this algorithm, a simple 

statistical evaluation on a test set (and removal of well-understood geometric routines) may raise many 
questions. Further research will be needed to strengthening these results and evaluating at larger scale 

the relevancy of deep-learning-based guidance for such critical platforms. 

We also acknowledge that thermal effect should be evaluated further in future works. Various aero-
thermo-optical (ATO) effects (see [13]) have not been considered including: Optical index variations 

through the supersonic shock and within the shock layer, Turbulence-induced resolution degradation, 

Thermomechanical effects within the window, Self-emission of the window during heating…  
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