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Abstract 

The Japan Aerospace Exploration Agency (JAXA) conducted a hypersonic combustion flight test 
to resolve the wind tunnel dependency. The test vehicle was launched by the S-520 small rocket 

into a ballistic flight orbit, and the combustion experiment was conducted when it reached Mach 
number during the descent. The JAXA RD1 flight test vehicle was launched by the S-520 rocket 

from JAXA Uchinoura Space. On July 24, 2022, the flight test was successfully conducted and flight 

experiment data was collected. Based on the ADS data evaluated by CFD, this study attempted to 
improve the prediction of dynamic pressure using linear weight analysis and statistical machine 

learning algorithms. As a result, it was found that the results were more promising than the 
dynamic pressure estimation formulation initially used. In particular, xgboost provides the closest 

estimate to the theoretical values.  
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Nomenclature 

 

ADS      -       Air Data Sensor 
CFD      -       Computational Fluid Dynamics 

Cp        -      Pressure coefficient 
GBDT -       Gradient-Boosting Decision Tree 

IMU      -      Inertial Measurement Unit 

M -      Mach number 
MAE     -       Mean Absolute Error 

Q -      Dynamic pressure, kPa 
R2       -      Coefficient of Determination 

RMSE   -       Root Mean Squared Error 

x, y, z   -       Axis coordinates  
α          -     Angle of attack, º  

β     -  Angle of sideslip, º 
 

subscript

1. Introduction 

Research on hypersonic flight propulsion is a fundamental technology indispensable for the realization 
of next-generation aerospace transportation systems, and in recent years, rapid progress has been 
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made worldwide. In particular, propulsion systems in the flight regime above Mach number 5 are 
difficult to handle with conventional turbo engines and ramjets, and there is a strong need to establish 

a new engine concept. Against this background, the scramjet (supersonic combustion ramjet, scramjet) 
engine is widely recognized as a promising candidate for hypersonic propulsion because of its structural 

simplicity and high Mach number adaptability utilizing supersonic combustion [1-9]. 

Scramjet research has been vigorously pursued in the U.S. X-43A and X-51A, Australia's HyShot 
program, Europe, Russia, India, and China.These efforts have formed an international trend to verify 

the feasibility of propulsion systems through wind tunnel tests and computational fluid dynamics (CFD) 
analysis as well as demonstration tests in actual flight environments. However, the feasibility of 

hypersonic combustion has not been fully established, as it involves many technical issues such as fuel-

air mixing, flame retention, and combustion efficiency at short dwell times. 

In the midst of these international research trends, the Japan Aerospace Exploration Agency (JAXA) 

conducted a hypersonic combustion flight experiment to overcome the limitations inherent in wind 
tunnel testing. The purpose of this experiment was to burn ethylene fuel under flight conditions of 

about Mach 6 to obtain combustion data in a real flight environment [10-12]. The test vehicle was 
injected into ballistic orbit by the S-520 small rocket, and a burn test was conducted during the descent 

process. To reduce attitude instability during descent, a flare was installed at the rear of the fuselage, 

and a design was adopted to ensure resilience and flight stability by utilizing drag forces. 

In particular, the JAXA RD1 flight test vehicle was launched from the Uchinoura Space Center on July 

24, 2022, and achieved its planned results in a flight experiment in July 2022. The flight data obtained 
are extremely valuable for demonstrating the feasibility of hypersonic combustion and will provide 

fundamental knowledge for future scramjet propulsion system design. In this paper, a method for 
estimating the flight state from the ADS (Air Data Sensor) system is studied based on the data from 

this flight experiment. 

 

 

Fig 1. Schematic diagram of the hypersonic flight experiment. 

 

2. Flight vehicle model 

The flight vehicle model used in this study is shown in Fig. 2. The flight vehicle was comprehensively 
studied and designed from aerodynamic, thermal, and structural perspectives for application to a 

hypersonic combustion experiment. It consists of an inlet section, isolator section, combustor section, 

duct section, and rear flare. The flight test was designed for a Mach number of 6 and a dynamic 

pressure of about 50 kPa. 

The geometric contraction ratio of the inlet section is set to 5, and the shock wave formed is designed 
to reach the shoulder of the duct inlet. According to two-dimensional shock wave theory, the oblique 

shock wave at the inlet increases pressure while the expansion wave generated behind it decreases 

pressure. While these effects cancel each other out, the overall design provides the pressure increase 
necessary for combustion to take place. In other words, the geometry of the inlet and isolator sections 
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is designed to meet the pressure conditions necessary to achieve hypersonic combustion. 

In addition, a flare was installed at the rear of the fuselage to provide aerodynamic stabilization against 

disturbances that may occur during flight. The flares generate a restoring moment by increasing the 
drag force, which reduces the pitching and yawing instability behaviour expected during descent. The 

schematic structure of the aircraft and the attitude angles (pitch angle α and yaw angle β) are shown 

in Fig. 2. Fig.3  also shows the flight vehicle and the arrangement of the static pressure sensors used 
for the measurements. The red circles in the figure indicate the locations of the static pressure holes. 

These sensors measure the pressure distribution during the flight test and provide basic data that 

contributes to the identification of aerodynamic characteristics. 

 

 

Fig 2. Schematic of the flight test vehicle and the pitch (α) and yaw (β) directions. 

 

 

Fig 3. Configuration and dimensions of the flight test vehicle model, with the ADS installation 

locations indicated in red. 

 

3. Numerical Computation around the Flight Vehicle Model 

In order to plan and successfully conduct this flight experiment, various numerical analyses were 
conducted in advance. Specifically, these included aerodynamic and heat transfer analyses of the 

airframe surroundings, as well as high-precision simulations of the combustion behavior. These analyses 
were performed using the large-scale computational resources of the JSS3 supercomputer at the Japan 

Aerospace Exploration Agency (JAXA) Supercomputer Center. This paper focuses on these analyses, 

especially on the aerodynamic analysis around a hypersonic flight vehicle [13-25].  

The unstructured mesh-based flow solver FaSTAR [13] was used for the aerodynamic analysis; FaSTAR 

is based on the cell-centered finite volume method and is capable of solving the compressible full 
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Navier-Stokes equations on an unstructured mesh, which has been validated in several benchmark test 
cases and has been validated in several benchmark test cases [14-17].In this study, the HLLEW (Harten-

Lax-van Leer-Einfeldt-Wada) method [18] is employed to evaluate the numerical fluxes, and the time 
integration is performed using LU-SGS (Lower/Upper Symmetric Gauss-Seidel) implicit method  [19] 

was used for time integration. This method enables stable and efficient solution of strong shock waves 

and boundary layer interferences characteristic of hypersonic flows. To improve spatial accuracy, a 
second-order accuracy reconstruction was applied. Specifically, the Green-Gauss weighted least square 

(GLSQ) method [20] was used for gradient calculations, and Hishida's limiter [21] was introduced to 
further suppress numerical oscillations. For the turbulence model, the “SA-noft2-R” variant with Crot = 

1 was employed, following the notation described in the NASA Langley Turbulence Model Resource 

(TMR) [22]. In this study, the analysis is based solely on this variant. 

As representative results of the analysis, the pressure coefficient distribution acting on the surface of 

the flight vehicle and the Mach number distribution around the flight vehicle are shown in Fig. 4. The 
calculation conditions are based on a flight condition of Mach number 6 and angle of attack of 5°.These 

results provide important basic data for the interpretation of pressure measurements and burning 

behavior in flight experiments. 

 

 

Fig 4. Pressure coefficient on the surface of the flight vehicle model 

and Mach number distribution around the model. 

 

4. Air Data Sensing System 

Pitot tubes are usually used in flight condition measurements to estimate dynamic pressure and Mach 
number. However, as the aircraft approaches the hypersonic region, strong aerodynamic heating on 

the fuselage surface inevitably occurs, which is likely to damage the pitot tube structure and reduce 
measurement accuracy. It has also been pointed out that pitot tubes installed externally as projections 

cause increased aerodynamic drag and have a negative impact on overall flight performance. As a 

method to avoid such restrictions, a method of attaching pressure sensors directly to the outer surface 
of the aircraft and estimating the flight state from the obtained surface pressure distribution has been 

attracting attention. In particular, the use of Air Data Sensors (ADS) is a powerful method to estimate 
flight state quantities (angle of attack, yaw angle, dynamic pressure, Mach number, etc.) in real time 

and with high accuracy. 

In this study, multiple ADSs were installed on the surface of the test vehicle, and the measurements 
obtained through flight experiments were analyzed. An example is shown in Figure 5. According to the 

analysis results, the pitch and yaw angles were generally within ±2°, but the local surface pressure 

fluctuations were very large, confirming that the flow field was highly unsteady in time and space. 
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Fig 5. Time history of representative air data sensors during flight 

 

5. Applications of Statistical Machine Learning 

For the application of machine learning to the estimation of flight conditions from air data sensors (ADS), 

a three-step procedure is required. First, a training dataset must be constructed. 

Step 1: Generation of training data by CFD 

Computational fluid dynamics (CFD) simulations were carried out under the following conditions: 

Mach numbers: 5.4, 5.5, 5.6, 5.7, 5.8, 5.9 

Dynamic pressures: 10, 20, 30, 40, 50, 60, 70, 80, 90, 100 kPa 

Angles of attack (α): −3, −2, −1, 0, 1, 2, 3° 

Angles of sideslip (β): −3, −2, −1, 0, 1, 2, 3° 

All combinations of α and β were considered, and the corresponding ADS pressure values were obtained. 

These results were used to build the machine learning training dataset. 

Step 2: Construction of machine learning models 

Based on the CFD-derived training data, machine learning models were developed to establish the 

relationship between ADS pressure measurements and flight conditions. 

Step 3: Application to flight test data 

Finally, the pressure values measured by ADS during the flight experiment were used as input to the 

trained machine learning models, enabling the estimation of flight states such as dynamic pressure. 

In our previous study, dynamic pressure evaluation formulas were analyzed using conventional multiple 

linear regression. In this section, we extend the analysis by employing statistical machine learning 
techniques to evaluate dynamic pressure[26-28]. Specifically, we introduce nonlinear regression 

approaches through the use of gradient boosting, which represents one of the most powerful machine 

learning methods. 

Gradient boosting can be applied to both regression and classification tasks. It constructs predictive 

models as an ensemble of weak learners, typically decision trees. When decision trees serve as the 
weak learners, the resulting algorithm is referred to as gradient boosting decision trees (GBDT). GBDT 

effectively combines gradient descent optimization, boosting strategies, and decision tree models. Due 

to its high predictive accuracy and practical applicability, GBDT has been widely adopted in data analysis 

competitions, often outperforming random forests. 
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Several representative GBDT libraries are commonly used in practice. XGBoost (eXtreme Gradient 
Boosting)[27], released in 2014, rapidly gained popularity owing to its robustness and computational 

efficiency, and has since been frequently employed in predictive modeling competitions. LightGBM, 
introduced in 2016, focuses on leaf-wise tree growth strategies to improve training efficiency for large-

scale data. CatBoost [28], released in 2017, incorporates unique innovations such as effective handling 

of categorical features, making it particularly suitable for real-world data sets. 

In the present study, we applied GBDT, CatBoost, and XGBoost to the problem of dynamic pressure 

evaluation. By comparing their performance against conventional linear multiple regression, we 
highlight the differences between traditional statistical approaches and modern machine learning 

methods. As shown in Table 1, the evaluation errors under different methodologies are systematically 
compared. Figure 6 illustrates the variation of RMSE and MAE for each algorithm. The results 

demonstrate that machine learning approaches achieve notable error reduction, with XGBoost  

providing the most significant improvement in this study.  

Figure 6 shows a comparison of the theoretical and estimated dynamic pressure values obtained using 

the gradient boosting method. The results lie approximately along a straight line, although some scatter 
is evident. This deviation can be attributed to variations in the angle of attack and the sideslip angle 

under conditions of constant dynamic pressure. 

Figure 7 shows the corresponding results obtained using the XGBoost method. Here, both the root 
mean square error (RMSE) and absolute error (MAE) are significantly reduced, and the data points align 

more closely with the one-to-one line, exhibiting less scatter than in Figure 5. Even when the angle of 
attack and sideslip angle vary, the XGBoost model provides more accurate dynamic pressure predictions. 

These findings suggest that XGBoost is the most promising method for dynamic pressure estimation 

among those examined thus far.  

In summary, XGBoost consistently outperforms the conventional gradient boosting method for dynamic 

pressure prediction. Future work will extend the analysis by applying additional machine learning 

algorithms and conducting a broader performance evaluation. 

 

Table 1. Evaluation and Comparison of Errors Among Algorithms 

Algorithm RMSE 

(kPa) 

MAE 

(kPa) 
R2 

Linear 

Multiple 

Regression 

1.827 1.024 0.996 

Gradient 

Boost 
1.063 0.7156 0.999 

Catboost 0.496 0.3613 1.000 

Xgboost 0.0079 0.0041 1.000 

 

  
Fig 6. Plot of theoretical versus estimated dynamic pressure using the Gradient Boost method. 
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Fig 7. Plot of theoretical versus estimated dynamic pressure using the XGBoost method. 

yhxc 

A comparative analysis was carried out between flight data obtained from the onboard inertial 
measurement unit (IMU) and predictions generated by machine learning models. Dynamic pressure 

reconstructed from IMU measurements was employed as the reference for validation. As shown in Fig. 
8 (372–384 s after launch), the predictions exhibit generally good agreement with the IMU-derived 

values, supporting the validity of the proposed estimation framework. 

A closer examination reveals that discrepancies become more pronounced in the low-pressure regime, 
where measurement noise and the sensitivity of the models to flow conditions are relatively significant, 

as illustrated in Fig. 9 (372–378 s after launch). In contrast, prediction errors decrease markedly in the 
high-pressure regime. This behavior is consistent with the principle that high-pressure data points exert 

a dominant influence on the overall error metrics, as shown in Fig. 10 (378–384 s after launch). 

Consequently, minimizing errors in the high-pressure region contributes effectively to reducing the total 
error across the entire dataset. 

 

 
Fig 8. Comparison between dynamic pressure estimated from IMU data and that predicted by 

machine learning during the flight test (372–384 s after launch). 
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Fig 9. Comparison between dynamic pressure estimated from IMU data and that predicted by 

machine learning during the flight test (372–378 s after launch), corresponding to a low-dynamic-

pressure regime. 
 

 
Fig 10. Comparison between dynamic pressure estimated from IMU data and that predicted by 

machine learning during the flight test (378–384 s after launch), corresponding to a high-dynamic-

pressure regime. 
 

 

Conclusion 
The Japan Aerospace Exploration Agency (JAXA) conducted a hypersonic combustion flight experiment 

to reduce reliance on wind tunnel testing; the JAXA RD1 Flight Demonstrator was launched from the 
Uchinoura Space Center on July 24, 2022, and the mission was successfully completed and valuable 

flight data was obtained. 

In this study, statistical machine learning methods were applied to estimate dynamic pressure and Mach 
number from the flight experiment data. Nonlinear regression techniques including gradient boosting, 

CatBoost, and XGBoost were introduced to extend conventional linear regression. The results 
demonstrated that machine learning significantly reduced the prediction error, with XGBoost having the 

best agreement with theoretical values. 
Validation against dynamic pressure derived from IMU (Inertial Measurement Unit) further confirmed 

the validity of the proposed method. While some discrepancies were observed in the low-pressure 

region, the accuracy was significantly improved in the high-pressure region, indicating that error 
minimization has the greatest impact on overall prediction accuracy. 

These findings support the potential that advanced machine learning, especially with XGBoost, has for 
accurate aerodynamic state estimation in hypersonic flight. Future work will extend this framework to 

a wider range of algorithms and incorporate adaptive and pressure-sensitive learning strategies to 

further improve robustness and generalization capabilities. 
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