HiSST: 4th International Conference on l ‘

High-Speed Vehicle Science Technology
22 -26 September 2025, Tours, France CEAS

Council of European Aerospace Societies

2025

Effects of Boundary Layer Transition on Dynamic Stability for Hypersonic
Blunt-Cone Vehicles

Li Jiahao', Wang Liang?, Zhao Ruf, Sha Xinguo®, Wang Yutang’®

Abstract

During near-space hypersonic flight, boundary-layer transition strongly affects the aerodynamic
stability of reentry vehicles. In this study, the Fu-Wang transition model is applied to investigate the
dynamic stability of a hypersonic blunt-cone vehicle under forced pitching oscillations. Numerical
simulations are conducted to track the evolution of the transition location and its influence on
aerodynamic loads and dynamic responses. Results show that vehicle stability deteriorates as the
transition point moves upstream, with the most severe instability occurring when the transition
coincides with the center of gravity. Parametric studies further reveal that oscillation amplitude and
frequency exert non-monotonic effects on dynamic derivatives, governed by the interplay between
viscous unsteadiness and added-mass contributions. These findings highlight the critical role of
transition in dynamic stability prediction and provide guidance for transition-control strategies in
hypersonic vehicle design.
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Cm — Pitching moment coefficient about C.G.

Cma — Pitching moment slope coefficien

Cmq — Pitching moment derivative due to rate
of pitching

Cma — pitching moment derivative due to rate
of change of angle of attack

Eu — Mean kinetic energy of the flow(relative

to the wall). Ex=0.5X (U-Uw)?

et — Effective length scale

Ma — Mach number

Q — Vorticity

Px — Turbulent kinetic energy production term

P — Specific dissipation rate production term

Re — Reynolds number per unit length

Sij — Mean strain rate tensor

Tu — Free stream turbulence

U(ys) — Flow velocity at the generalized
inflection point

a — Speed of sound

ao — Initial angle of attack

p — Dendity

t—Time

¢r — Perturbation phase velocity

d — Distance to the wall

y — Intermittency

k — Turbulent kinetic energy

kred — Reduce frequency

Merr — Effective viscosity

Mnt — Non-turbulent viscosity

Mt — viscosity

Tnt — Time scale of unstable disturbance waves

Teross — Time scale associated with crossflow

Ue — Boundary layer edge velocity mode

1. Introduction

When operating in near-space hypersonic regimes, reentry vehicles experience complex flow
phenomena including shock wave/boundary layer interactions and vortex breakdown, which generate
significant unsteady and nonlinear aerodynamic effects[1,2]. These phenomena frequently produce
dynamic loads exceeding design specifications and may precipitate catastrophic flight instability
incidents. The conceptual framework for characterizing vehicle dynamic stability was first established
by Bryan[3,4] in 1911 through the introduction of dynamic derivatives and stability coefficients - an
aerodynamic modeling methodology that has endured for over a century in flight mechanics research.

However, accurate prediction of hypersonic vehicle dynamic stability presents substantial challenges
due to strongly coupled multiphysics interactions[5]. The complex interplay between aerodynamic
forces, thermal environment, structural response, and control system dynamics renders this problem
particularly intricate.

Conventional experimental approaches, including both forced-oscillation and free-oscillation wind
tunnel testing, face inherent limitations in achievable Mach numbers and measurement precision[6].
Computational studies similarly encounter difficulties[7], as the numerical complexity of free-
oscillation simulations necessitates reliance on forced-oscillation methodologies. While RANS-based
turbulence modeling remains widely employed for stability analysis, boundary layer transition
becomes unavoidable in the high-Reynolds-number flow conditions characteristic of blunt-cone
reentry vehicles[8]. Flight test data from early blunt-cone vehicles notably demonstrate that transition
processes frequently coincide with pronounced pitch instability events, underscoring the critical
relationship between boundary layer transition and dynamic stability characteristics[9].

For transition prediction, the Fu-Wang model[10,11] has demonstrated particular efficacy in
simulating hypersonic boundary layer transition. This investigation employs this advanced model to
systematically examine the influence mechanisms of boundary layer transition on dynamic stability for
blunt-cone reentry vehicles under near-space hypersonic conditions. The research objectives focus on
providing theoretical foundations for enhanced stability design and control methodologies in
hypersonic flight systems.

2. Numerical method

The present computations were performed using the in-house hypersonic flow simulation code TRANS,
developed by the research group. The governing equations are solved in a finite-volume framework.
Time integration is carried out with an implicit LU-SGS scheme[12]. The inviscid fluxes are evaluated
using the AUSM+_up scheme[13], providing accurate shock-capturing capability while maintaining
robustness in high-speed regimes.

2.1. Baseline Transition Model
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The Fu-Wang transition model is a three-equation framework. It is derived from linear stability
analysis and implemented within the SST turbulence model[14] by introducing a transport equation
for the intermittency factor y. In addition, the eddy viscosity terms in the production source terms of
the turbulent kinetic energy and specific dissipation rate transport equations are modified to use the
effective viscosity. The governing equations of the model can be expressed as follows:

%+¥:—[( + )—]+ — (1)
%+¥:_[( + )_]+ -, 2-21- )—2—— )
%+¥:_[< +_)_]+(1— ) 3)

where
2 (b ) 2
= _ (5)

The physical significance of the effective viscosity, [, lies in the fact that, when the flow becomes
fully turbulent, its value reduces to the conventional turbulent viscosity, pt. In the transitional regime,
however, the effective viscosity is required to reflect the influence of unstable disturbance waves
within the laminar boundary layer. Accordingly, its expression is given as:

=1-y) + (6)

The modeling of the non-turbulent eddy viscosity coefficient, pnt, is formulated in @ manner similar to
that of the turbulent eddy viscosity, 1, in conventional turbulence models:

= (7)

Tnt denotes the time scale of unstable disturbance waves. It is composed of three parts: the first-
mode time scale Tnt1, the second-mode time scale Tn2, and the crossflow-mode time scale Teross, Which
correspond to the Tollmien—Schlichting (TS) waves in incompressible flows, the Mack waves in
compressible flows, and the crossflow instability waves in three-dimensional boundary layers,
respectively. The expression is given as:

1= W@ )] (8)
2= s[2 /7 ()] 9)

The local relative Mach number is defined as:
=(C = ) (10)

In the region of a two-dimensional boundary layer where the local relative Mach number exceeds
unity, the second mode is the most unstable among the higher-order modes. Therefore, the transition
model neglects all higher-order modes except the second mode, and the corresponding time scale is
modeled as:

_ 1| =1
={ S (11)

For a three-dimensional boundary layer, crossflow instability waves often exist in the spanwise
direction. In the transition model, the time scale associated with the crossflow mode is formulated as:

coss = 104/ )x{—  [— u( /AP (/) (12)
Where: C10=90, C11=0.001, C12=0.5.
The overall time scale is defined as:
= a1t 2% cross (13)

denotes the effective length scale, whose modeled form is given as:
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Which represent the first, second, and third characteristic length scales, respectively. The production

term of the intermittency factor is expressed as:

0.5 o5
=9 () [=In(Q—- )]+ 6W)_| | (15)
where the function Fonset determines the onset location of transition:
05
= 1—exp(— 7|—'|') (16)

and the term f(Tu) represents the free-stream turbulence intensity function[15]. For bypass transition
problems with high free-stream turbulence intensity, its expression is given as:

( ) =+V125x10"1Tu’/ (17)

The construction of the production term for the intermittency factor ensures that its value remains
minimal outside the boundary layer, while approaching unity in the near-wall turbulent region. As a
result, the wall distribution of the intermittency factor provides a clear indication of the laminar and
turbulent regions. The model constants used in the present study are:

Table 1.  Model parameters

C1 Cc2 Cc3 ca C5 cé c7 c8 c9
0.32 7000 0.6 2.2 5.0 0.09 115 0.07 486.6

2.2. Dynamic derivative

The concept of dynamic derivatives in flight stability analysis was first introduced by Bryan. In his
framework, the problems of aerodynamics and flight dynamics were treated in a decoupled manner,
and aerodynamic forces and moments were expressed as functions of state variables. Building upon
this idea, Etkin[16,17] formulated the modern definition of dynamic derivatives by expanding
aerodynamic forces and moments in a Taylor series with respect to the dynamic parameters. This
formulation, which enables the linearization of unsteady aerodynamic responses, has since become a
cornerstone of flight stability analysis. In contemporary research, dynamic derivatives are routinely
determined through wind tunnel tests (using forced-oscillation or free-oscillation methods) and
computational simulations, serving as a fundamental basis for predicting and assessing the dynamic
stability of flight vehicles.

For pitching motion, the dynamic derivatives are usually expressed as the derivatives of the pitching
moment with respect to the angle of attack and its time rate of change. The pitching moment
coefficient can be written as:

ac
Ma 2U,,

+Cpp =+ (18)

Cm =Cmo+Cmu0(+C Mg U,
where Cp,,, denotes the static stability derivative, while Cy,, and Cy,, represent the dynamic derivatives

associated with the rate of change of angle of attack and the pitch rate, respectively. q denotes the
pitch rate of the vehicle. In dynamic derivative analysis, the value of Crng * Cm, is typically evaluated.

Specifically, Cm, haracterizes the aerodynamic damping effect induced by unsteady flow generated
during pitching oscillations, whereas C,,, represents the inertial damping effect associated with the
acceleration of the surrounding fluid driven by vehicle oscillations. When Cmq + Cm, Is Negative, the
overall effect provides damping, meaning that the system delivers net energy dissipation over a

complete oscillation cycle, and the vehicle is considered to be dynamically stable.
3. Results
3.1. Verification of Dynamic Derivative Calculations

To verify the capability of the present code in simulating forced oscillations, reference is made to the
free-oscillation wind tunnel experiments conducted at the Jet Propulsion Laboratory (JPL)[18]. The
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test model is a blunt cone with a half-cone angle of 10°, a base diameter of D=133.35 mm, and a
reference length defined as the total body length L=1.8838D(251.20473mm). The corresponding
reference area is 0.013966124m2, and the nose bluntness ratio is R/D=0.4. The detailed geometric

parameters are shown in Fig. 1, and the computational grid employed in the simulations is illustrated
in Fig. 2.
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Fig 1. Geometric dimensions of the blunt-cone model
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Fig 2. Computational grid for the blunt-cone model

Table 2. Computational conditions

Reduced Center of
Ma Re T ao Amplitude frequency gravity
krea=wD/(2V?) (x/L)
0.604
4.0 7.5X10% 56.7K 0° 2° 0.005 0.6336
0.6618

Fig. 3 compares the dynamic derivatives computed by the present code at different center-of-gravity

locations with the experimental data. It can be seen that the code provides a high level of accuracy in
predicting dynamic derivatives.
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Fig 3. Comparison of dynamic derivative results
3.2. Forced pitching oscillation under hypersonic transitional flow conditions

To investigate the influence of boundary-layer transition on the dynamic stability of pitching
oscillations for reentry vehicles at high altitudes, the present study is further conducted based on the
flight test data of the 5° half-angle blunt cone vehicle[19] obtained in the United States.
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Fig 4. Geometric dimensions of the 5° half-angle blunt-cone model
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Fig 5. Computational grid for the 5° half-angle blunt-cone model

The configuration considered is a 5° half-angle blunt cone with a total length of L=396.2cm and a
nose radius of R=0.254cm. The schematic of the model is shown in Fig. 4, and the computational grid
is illustrated in Fig. 5. The flight experiment provided data on Reynolds number, angle of attack, and
wall heat flux variation at altitudes ranging from 10 km to 50 km, as well as the heat flux distribution
along the leeward meridian at different altitudes. At an altitude of 24.384 km, transition was observed
to occur at x=2.1m. Fig. 6 presents the wall intermittency distribution computed using the Fu-Wang
transition model. The computational conditions are summarized in Table 2. Subsequently, the heat
flux along the leeward meridian was extracted and compared with the experimental measurements.
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As shown in Fig. 7, the predicted transition location agrees very well with the experimental data.
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Fig 6. Distribution of wall intermittency factor
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Fig 7. Leeward meridian heat flux compared with experiment
3.3. Effect of transition location on dynamic stability

From the angle-of-attack history provided by the experiment (Fig. 8), it can be observed that the
most rapid variation occurs around t=458s, corresponding to a flight altitude of approximately 24km.
Therefore, static transition and forced-oscillation analyses were carried out at three representative
altitudes of 20km, 24km, and 28km.

Table 3.  Static transition computational conditions

Altitude Ma Re. T Isothermal
wall
24.384km 19.2 1.755%10’ 220.96 0.5° 1000K
20km 20 3.66x107 216.6 0.5° 1000K
24km 20 1.94x107 220.6 0.5° 1000K
28km 20 1.033x107 2945 0.5° 1000K
HISST-2025-#271 Page |7
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Fig 8. Time history of angle of attack
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Fig 9. Distributions of wall intermittency at three different altitudes
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Table 4. Dynamic derivatives

Altitude Cma Cmq+Cma
20km -0.35527 1.4315
24km -0.35489 1.7479
28km -0.34636 1.6903

Figure 9 presents the wall intermittency distributions under static transition conditions. As the altitude
changes, the external Reynolds number varies and the boundary-layer transition location shifts
accordingly: at 20km the transition point lies upstream of the center of gravity(x/L=0.55), at 28km it
moves downstream, and at 24km it is located nearly at the center of gravity. To examine the effect of
transition location on aerodynamic stability, forced pitching-oscillation simulations were performed at
these three altitudes. The reference point for pitching moment was chosen at the center of gravity ,
with an oscillation amplitude of 0.6° and a frequency of 6 Hz. The results show that, in all three
cases, the hysteresis loops(Fig. 10) are clockwise and the dynamic derivatives(Table. 3) are positive,
indicating that the vehicle is dynamically unstable under these conditions.

Among the three cases, the 24km altitude yields the largest dynamic derivative, representing the
strongest dynamic instability. This can be explained by the fact that, when the transition occurs near
the center of gravity, the additional aerodynamic loads generated by the turbulent boundary layer
result in a highly unbalanced distribution on either side of the center of gravity. Consequently, the
positive and negative contributions to the pitching moment cannot cancel each other, and the
variation of aerodynamic moment with angle-of-attack perturbations is amplified, thereby intensifying
dynamic instability. When the transition location moves further upstream of the center of gravity, the
turbulent load acts with a shorter moment arm, and the additional aerodynamic moment exhibits
partial cancellation, leading to a partial alleviation of instability. Similarly, when the transition shifts
downstream of the center of gravity, the turbulent load is concentrated aft of the center, which also
disturbs the balance but with a smaller resultant moment and shorter arm, producing a weaker
destabilizing effect compared with the case where transition occurs exactly at the center of gravity.

These computational results are in close agreement with the experimental observations of flight
attitude, which likewise revealed that the vehicle exhibited the greatest instability when the transition
region was located near the center of gravity. Based on this finding, the 24km case is selected as the
baseline configuration for subsequent investigations of the influence of Mach number, wall
temperature condition, and oscillation amplitude on dynamic stability.

3.4. Effect of different oscillation amplitudes on dynamic stability

Figure 11 and Table 5 presents the dynamic derivatives at different oscillation amplitudes.
Conventional understanding suggests that dynamic stability tends to deteriorate with increasing
amplitude, since the aerodynamic response progressively departs from linear behavior. At small
oscillation amplitudes, the phase lag induced by shock—boundary-layer interaction and transition
migration is pronounced, leading to relatively large dynamic derivatives. However, inspection of Fig. x
reveals that within the present amplitude range, the dynamic derivative exhibits an overall decreasing
trend with increasing amplitude. This is attributed to the strengthening of higher-harmonic
components, which reduce the contribution of the fundamental frequency component obtained
through linear regression, thereby resulting in @ monotonic decrease in the dynamic derivative.

It is noteworthy that a localized sharp drop in the dynamic derivative is observed around an
amplitude of approximately 0.6. We hypothesize that this behavior corresponds to the crossing of a
response threshold, where the phase lag between the shock wave and boundary layer, together with
the coupled response of transition and laminar separation bubbles, is first significantly triggered
within the oscillation cycle. This process causes a sudden increase in the equivalent viscous unsteady
contribution, leading to the abrupt reduction in the linearized damping derivative. As the amplitude
increases further, this “critical” behavior disappears and the curve returns to a smooth decreasing
trend. The detailed mechanism underlying this phenomenon will be investigated in future work.
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Fig 11. Amplitude-Dependent Dynamic Derivatives

Table 5. Dynamic derivatives

Amplitude Cma Cmq+Cma
0.4 -0.34197 2.7573
0.5 -0.34449 2.6994
0.6 -0.35489 1.7478
0.7 -0.35443 1.6535
0.8 -0.34441 2.6847
1.0 -0.33923 2.4657
1.5 -0.22615 1.6438
2.5 -0.28882 0.7477
4.0 -0.24765 -0.0082
5.0 -0.23372 -0.1425

3.5. Effect of oscillation frequency on dynamic stability

Figure 12 and Table 6 presents the dynamic derivatives at different oscillation frequencies. The
combined dynamic derivative Crng * Cing exhibits a non-monotonic dependence on oscillation

frequency: it decreases from low to mid frequencies and then slightly recovers at higher frequencies.
Research has found that an increase in oscillation frequency enhances stability[20].The initial
decrease is governed by increasing viscous unsteadiness (shock—boundary-layer phase lag and limited
transition migration), whereas the subsequent recovery is associated with the growing contribution of
potential added-mass effects. This reveals a strong frequency dependence of unsteady aerodynamics
rather than a simple linear trend.
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Fig 12.Frequency-dependent dynamic derivatives

Table 6. Dynamic derivatives
Frequency Cma Cmq+Cma
1.5 -0.34480 12.6304
3.0 -0.35466 4.2919
4.5 -0.34862 3.3994
6.0 -0.35489 1.7479
7.5 -0.34529 2.3288
8.5 -0.35101 1.3394
9.0 -0.35001 2.0359

4. Conclusion

This study employed the Fu—-Wang transition model and high-fidelity simulations to investigate the
influence of boundary-layer transition on the dynamic stability of a hypersonic blunt-cone vehicle
under forced pitching oscillations. Verification with available experimental data confirmed the
reliability of the computational approach.

The main findings are as follows:

1) The transition location is the dominant factor for dynamic stability. The strongest instability occurs
when transition coincides with the center of gravity, while upstream or downstream locations partially
alleviate the destabilizing effect.

2) Oscillation amplitude induces an overall decrease in dynamic derivatives, with a critical sharp drop
near specific amplitudes linked to shock—boundary-layer interaction and transition/separation bubble
coupling.

3) Oscillation frequency produces a non-monotonic influence: instability increases at low frequencies
due to transition migration but partially recovers at higher frequencies as added-mass effects
enhance inertial damping.

Future work will extend the present analysis to three-dimensional vehicle configurations, include
thermal-structural coupling, and pursue closer comparison with high-enthalpy wind tunnel data to
refine transition—stability prediction and control strategies.
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