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Abstract 

A variable flow ducted rocket (VFDR) engine offers a broader operational envelope than ramjet 
engines, as well as higher energy efficiency and a more flexible thrust modulation capability than 

conventional solid-fuel rocket engines, making it well-suited for long-range air-to-air missile applications. 
For such missiles, appropriate mid-course guidance toward the predicted intercept point (PIP) is 

essential prior to seeker’s lock-on. However, due to the high maneuverability of aerial targets, the PIP 

may vary significantly over time, necessitating adaptive mid-course guidance strategies. As a 
preliminary investigation into this challenge, this study performs trajectory optimization for a VFDR 

missile considering radar field-of-view (FOV) constraints for data link communication between the 
fighter and the missile. The results indicate that radar FOV constraints can affect the optimal trajectory, 

particularly when the target is relatively close and at higher altitudes. 

Keywords: Variable Flow Ducted Rocket Missile, Trajectory Optimization, Radar Detection Angle 
Constraint, Pseudo-spectral Convex Programming 

Nomenclature 

𝐴𝐹 – Air to Fuel ratio 

𝐶𝐿𝛼
 – Lift coefficient 

𝐶𝐷0
 – Drag coefficient 

𝐷 – Drag force 

𝐹𝑖 – Equations of motion for each state 

g – Gravitational constant 

𝐺 – Air mass flow rate function 

ℎ – Altitude 

𝑖, 𝑗, 𝑘, 𝑛 – Positive integer index 

𝑙𝑢 , 𝑙𝑑– Upward & Downward radar FOV limits 

𝑚 – Mass 
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𝑃𝑛 – 𝑛th order Legendre polynomial 

𝑇 – Thrust 

𝑢, 𝑈 – Control inputs 

𝑉 – Velocity 

𝑥 – Downrange 

𝑍 – State vector 

𝛼 – Angle of attack 

𝛾 – Flight path angle 

𝜁 – Step size in line search 

𝜂 – Total flight time 

𝜇1, 𝜇2 – Penalty weights in the merit function 

𝜏 – Normalized time
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1. Introduction 

A variable flow ducted rocket (VFDR) engine is a propulsion system that combines the advantages of 

solid-fuel rockets and ramjet engines. Like a ramjet, the VFDR intakes ambient air and uses it as an 
oxidizer, which allows it to carry more fuel on board and thereby extend the flight range. However, 

there exist slight differences. Unlike a ramjet engine, the VFDR carries some amount of onboard oxidizer. 
This oxidizer is combined with fuel in a gas generator to produce partially combusted gas. The resulting 

gas is then mixed with compressed air and burned in the ram combustor to generate thrust. This two-

stage combustion mechanism improves combustion stability, ensuring high maneuverability without 
flameout. Additionally, the VFDR engine has a valve between the gas generator and the ram combustor 

which regulates the fuel mass flow rate. This allows the missile to utilize its fuel in the latter part of the 
flight, thereby achieving high terminal velocity. Given these advantages, the VFDR engine is widely 

recognized as a suitable propulsion system for long-range air-to-air missiles, exemplified by the Meteor 

missile. 

 

Fig 1. VFDR Configuration [1] 

Meanwhile, long-range air-to-air missiles are often referred to as beyond-visual-range air-to-air 

missiles (BVRAAMs), as they are launched before the seeker acquires the target. In such cases, mid-
course guidance is employed, and the missile is guided toward the predicted intercept point (PIP) to 

achieve seeker’s lock-on. Given that VFDR-based missiles, such as the Meteor, have a maximum range 
of approximately 200–300km, the majority of the flight occurs in the mid-course phase before terminal 

guidance is initiated, which typically takes place within about 30km of the target. Consequently, 

guidance strategy during mid-course phase might be critical to overall interception performance. 

In air-to-air engagements, the target—typically an enemy fighter aircraft—possesses high speed and 

agility, enabling rapid evasive maneuvers. When a missile is launched from several hundred kilometers 
away, such maneuvers can significantly alter the predicted intercept point (PIP). To cope with changes 

in the PIP, the optimal trajectory has to be updated periodically updated. This, in turn, necessitates a 

data link between the missile and the launching fighter aircraft, which provides up-to-date target 
information until the seeker achieves lock-on in the terminal phase. Consequently, both the target and 

the missile must remain within the radar’s detection angle. In this study, it is assumed that the data 
link is established via the radar of the fighter aircraft, and the missile’s midcourse trajectory is planned 

so as to meet the radar’s detection constraints. This trajectory planning problem is accordingly 

formulated as an optimal control problem and solved. 

The solution methods for optimal control problems can be broadly categorized into two primary 

approaches: indirect methods and direct methods. Indirect methods solve the problem by deriving the 
necessary conditions for optimality—such as those given by Pontryagin’s Maximum Principle—and can, 

in some cases, yield analytical solutions. However, deriving such solutions can be mathematically 
challenging, and these methods often face limitations in handling multiple constraints simultaneously. 

To address these drawbacks, approximation techniques such as singular perturbation methods have 

been proposed to reduce the order of the problem [2], [3]. Nevertheless, these approaches typically 
rely on strong assumptions, such as time-scale separation, and the resulting guidance may violate 

constraints. 
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On the other hand, direct methods discretize the continuous-time optimal control problem into a 
finite-dimensional optimization problem, which can be solved using various nonlinear programming 

(NLP) algorithms without explicitly deriving the necessary conditions for optimality. In recent years, 
sequential convex programming (SCP) has attracted attention as an efficient approach for such 

problems. Although SCP does not offer formal guarantees of convergence or global optimality, it offers 

computational efficiency and has been successfully applied in aerospace applications [4–7]. In particular, 
the PSCP method proposed in [5] employs pseudospectral techniques to discretize the system dynamics, 

thereby achieving high accuracy with relatively few nodes. In addition, [6] and [7] incorporated a line 

search procedure into the SCP framework to improve convergence.  

Motivated by these studies, the present work adopts the PSCP framework to accurately approximate 
the long-range flight trajectory of the VFDR missile and incorporates a line search algorithm to enhance 

convergence. Furthermore, as discussed in Section 3.3, some modifications to the existing Improved 

Trust Region Method are introduced in an effort to enhance its convergence characteristics for VFDR 

missile trajectory optimization problem. 

The rest of the paper is organized as follows. Section 2 formulates the optimal control problem for 
the mid-course guidance of a VFDR missile. Section 3 presents the procedure for obtaining the optimal 

solution using the pseudospectral sequential convex programming (PSCP) method combined with the 

proposed method. Finally, Section 4 evaluates the necessity of the radar field-of-view constraint and 
assesses the performance and validity of the proposed method. 

2. Problem Formulation 

In this section, the optimal control problem for mid-course trajectory optimization of a VFDR missile 

is formulated considering radar FOV constraints. The system dynamics are first presented, followed by 

the objective function and associated constraints. These components are then combined to define the 

complete problem. 

2.1. System Dynamics 

The missile dynamics are modeled on the longitudinal plane as shown in Eqs. 1–5. Although an actual 

missile operates in three-dimensional space, trajectory optimization is performed in a two-dimensional 
setting because longitudinal maneuver mainly affects flight performance, owing to air density variations 

with altitude. 

𝑥̇ = 𝑉 𝑐𝑜𝑠 𝛾 (1) 

ℎ̇ = 𝑉 𝑠𝑖𝑛 𝛾 (2) 

𝑉̇ =
−𝐷 + 𝑇𝑐𝑜𝑠𝛼

𝑚
− 𝑔𝑠𝑖𝑛𝛾 (3) 

𝛾̇ =
𝐿 + 𝑇 𝑠𝑖𝑛 𝛼

𝑚𝑉
−

𝑔 𝑐𝑜𝑠 𝛾

𝑉
 (4) 

𝑚̇ = −𝑚̇𝑓   (5) 

Where 

𝐿 = (
1

2
𝜌𝑉2𝑆𝑟𝑒𝑓) (𝐶𝐿𝛼

𝛼) (6) 

𝐷 = (
1

2
𝜌𝑉2𝑆𝑟𝑒𝑓) (𝐶𝐷0

+ 𝐾(𝐶𝐿𝛼
𝛼)2) (7) 

𝑇 = 𝑇(𝑀, ℎ, 𝛼, 𝐴𝐹) (8) 

𝑚̇𝑓 =
𝑚̇𝑎

𝐴𝐹
=

𝜌(ℎ)𝑉𝐼(𝛼)

𝐴𝐹
 (9) 

With Eqs. 1–5, the nonlinear equations of motion can be expressed as 𝑧̇ = 𝑓(𝑥, 𝑢)  where 𝑧 =
[𝑥, ℎ, 𝑉, 𝛾, 𝑚]𝑇 , 𝑢 = [𝛼, 𝐴𝐹]𝑇 . Here, 𝑥, ℎ, 𝑉, 𝛾  and 𝑚 denote downrange, altitude, velocity, flight path 

angle and mass. 𝐿 and D represent lift and drag forces given in Eq. 6 and Eq. 7. 𝑇 represents thrust, 
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and it depends on Mach number(𝑀), altitude(ℎ), angle of attack(𝛼) and Air-to-Fuel ratio(𝐴𝐹). Since 𝑇 

is not available to drive a closed-form functional expression, it is instead provided as a tabulated dataset, 
based on the results reported in [8]. The gravitational constant is denoted by 𝑔. The fuel mass flow 

rate is represented by 𝑚̇𝑓. In this study, air mass flow rate (𝑚̇𝑎) is modeled as a function of density, 

velocity and angle of attack as in Eq. 9. International Standard Atmosphere (ISA) model is employed 
to calculate air density and temperature, with the resulting density denoted by 𝜌(ℎ). The function 𝐼(𝛼) 
is approximated as a fourth-order polynomial in the angle of attack. 

2.2. Objective, Boundary conditions and Constraints 

Maximizing terminal velocity or minimizing intercept time are widely recognized as effective 

performance metrics in the mid-course guidance phase. The former enhances the maneuverability 
during the terminal phase, while the latter reduces unnecessary fuel consumption caused by changes 

in target information. In this study, the impact of radar FOV constraints is investigated for both 

performance metrics—flight time minimization and terminal velocity maximization. The mathematical 

formulations for each objective are presented in Eq. 10 and Eq. 11. 

        minimize       𝐽 = − 𝑉(𝑡𝑓)  (10) 

   minimize       𝐽 =      𝑡𝑓  (11) 

The boundary conditions include the initial state of the missile, which is determined at launch time. 

In this study, these initial conditions are fixed as shown in Eq. 12. 

                               𝑥(𝑡0) = 𝑥0, ℎ(𝑡0) = ℎ0, 𝑉(𝑡0) = 𝑉0, 𝛾(𝑡0) = 𝛾0, 𝑚(𝑡0) = 𝑚0 (12) 

The terminal conditions must ensure that the missile reaches the PIP and satisfies the fuel constraint, 

as shown in Eq. 13. 

 𝑥(𝑡𝑓) = 𝑥𝑓 , ℎ(𝑡𝑓) = ℎ𝑓 , 𝑚(𝑡𝑓) ≥ 𝑚𝑏  (13) 

The path constraints for stable propulsion are defined in Eqs.14–17. 

 𝑉𝑚𝑖𝑛 ≤ 𝑉 ≤ 𝑉𝑚𝑎𝑥   (14) 

 𝛼𝑚𝑖𝑛 ≤ 𝛼 ≤ 𝛼𝑚𝑎𝑥   (15) 

 𝐴𝐹𝑚𝑖𝑛 ≤ 𝐴𝐹 ≤ 𝐴𝐹𝑚𝑎𝑥   (16) 

 𝑚𝑓̇ 𝑚𝑖𝑛
≤ 𝑚𝑓̇ ≤ 𝑚𝑓̇ 𝑚𝑎𝑥

  (17) 

The radar FOV path constraints, illustrated in Fig. 2, are expressed as linear inequalities in Eqs. 18–19, 
under the following assumption: the boresight of the AESA radar is directed toward the PIP, and the 
positions of the fighter aircraft and the PIP are fixed. Here, 𝑙𝑢 and 𝑙𝑑 denote the upper and lower 

bounds of the radar FOV determined as shown in Fig. 2. These bounds are defined in terms of the 
radar look angle (𝜃). 

    
𝜕𝑙𝑢

𝜕𝑥
(𝑥 − 𝑥(𝑡0)) +

𝜕𝑙𝑢

𝜕ℎ
(ℎ − ℎ(𝑡0)) ≤ 0 (18) 

−
𝜕𝑙𝑑

𝜕𝑥
(𝑥 − 𝑥(𝑡0)) −

𝜕𝑙𝑑

𝜕ℎ
(ℎ − ℎ(𝑡0)) ≤ 0 (19) 

 

Fig 2. Radar Field of View Constraint 
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2.3.  Optimal Control Problem 

Using the previously defined objective function and constraints, the mid-course trajectory optimization 

problem is formulated as the optimal control problem given in Eq. 20. 

minimize            −𝑉(𝑡𝑓)     or      𝑡𝑓 

     subject to     Eqs. 1–5  and  Eqs. 12–19 

 (20) 

3. Pseudo-spectral Sequential Convex Programming 

In this section, the solution procedure for the aforementioned optimal control problem (Eq. 20) is 

presented. First, the continuous optimal control problem is discretized to a finite-dimensional 
optimization problem. Next, a sequential convex programming approach is employed to solve the 

problem. Finally, the Improved Trust Region Method, with some modifications, is incorporated to 

enhance the convergence properties.  

3.1. Pseudo-spectral discretization 

In this study, the Legendre-Gauss-Radau (LGR) pseudospectral method is employed for discretization 
due to its numerical stability [9]. The 𝑁 nodes [𝜏1, … , 𝜏𝑁] are obtained as the roots of Eq. 22, derived 

from 𝑁th-order Legendre polynomial in Eq. 21. These nodes are distributed over the interval [−1,1) 

        𝑃𝑁(𝑥) =
1

2𝑁𝑁!

𝑑𝑁

𝑑𝑥𝑁
(𝑥2 − 1)𝑁 (21) 

 𝑃𝑁−1(𝜏) + 𝑃𝑁(𝜏) = 0 (22) 

The time domain is normalized to interval [−1,1] using the affine transformation of 𝑡 =
𝑡𝑓−𝑡0

2
𝜏 +

𝑡𝑓+𝑡0

2
. 

By incorporating additional (𝑁 + 1)th node 𝜏𝑁+1 = 1,  (𝑁 + 1) nodes [𝜏1, … , 𝜏𝑁+1] are mapped to the 

normalized time domain [−1, 1] . States, control inputs, objectives, boundary conditions and path 

constraints are discretized by enforcing them at each node, as shown in Eqs. 23–29. Here,  𝑍 =
[𝑥, ℎ, 𝑉, 𝛾, 𝑚]𝑇 , 𝑈 = [𝛼, 𝐴𝐹]𝑇 , 𝜂 = 𝑡𝑓 − 𝑡0 . The subscript 𝑛 = 1, … 𝑁 + 1  denotes node index, which 

corresponds to [𝜏1, … , 𝜏𝑁+1]. 

States and control inputs 

 [𝑍1, … , 𝑍𝑁+1]𝑇 , [𝑈1, … , 𝑈𝑁]𝑇  (23) 

Objectives 

 minimize     𝐽 = −𝑉(𝜏𝑁+1)   or    𝐽 = 𝜂 (24) 

Boundary conditions 

 𝑍1 = [𝑥0, ℎ0, 𝑉0, 𝛾0, 𝑚0]𝑇 , 𝑍𝑁+1 = [𝑥𝑓 , ℎ𝑓 , ~, ~, ~]
𝑇

   (25) 

Path Constraints 

 𝑉𝑚𝑖𝑛 ≤ 𝑉𝑛 ≤ 𝑉𝑚𝑎𝑥   (26) 

 𝛼𝑚𝑖𝑛 ≤ 𝛼𝑛 ≤ 𝛼𝑚𝑎𝑥  (27) 

 𝐴𝐹𝑚𝑖𝑛 ≤ 𝐴𝐹𝑛 ≤ 𝐴𝐹𝑚𝑎𝑥   (28) 

 𝑚̇𝑓𝑚𝑖𝑛
≤ 𝑚̇𝑓𝑛

≤ 𝑚̇𝑓𝑚𝑎𝑥
  (29) 

        
𝜕𝑙𝑢

𝜕𝑥
(𝑥𝑛 − 𝑥0) +

𝜕𝑙𝑢

𝜕ℎ
(ℎ𝑛 − ℎ0) ≤ 0 (30) 

    −
𝜕𝑙𝑑

𝜕𝑥
(𝑥𝑛 − 𝑥0) −

𝜕𝑙𝑑

𝜕ℎ
(ℎ𝑛 − ℎ0) ≤ 0 (31) 

In the pseudospectral method, because the dynamics contain derivatives, discretization requires an 
additional step. First, the state variables are approximated by Lagrange interpolating polynomials that 

pass through the chosen collocation nodes, as shown in Eq. 32. Then, by differentiating Eq. 32, the 
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equations of motion are approximated, as shown in Eq. 33. 

 𝑦(𝑡) ≈ ∑ 𝑦̂𝑗𝜙𝑗(𝑡)𝑁+1
𝑗=1   (32) 

 𝑦̇(𝑡) ≈ ∑ 𝑦̂𝑗𝜙̇𝑗(𝑡)𝑁+1
𝑗=1   (33) 

Here, 𝑦 denotes an arbitrary state variable, and 𝑦̂𝑗 represents the coefficients of 𝜙𝑗(𝑡), which is equal 

to 𝑦(𝜏𝑗). 𝜙𝑗(𝑡) is the Lagrange interpolation polynomial that passes through [𝜏1, … , 𝜏𝑁+1]. Enforcing the 

dynamics at each collocation node yields the discretized representation as shown in Eq. 34. 

[𝑦̇(𝜏1), … , 𝑦̇(𝜏𝑁)]𝑇 = 𝐷 ⋅ 𝑌 =
𝜂

2
𝐹𝑦(𝑍, 𝑈)   where    𝐷 = (

𝜙̇1(𝜏1) ⋯ 𝜙̇𝑁+1(𝜏1)
⋮ ⋱ ⋮

𝜙̇1(𝜏𝑁) ⋯ 𝜙̇𝑁+1(𝜏𝑁)
) (34) 

Here, 𝑦  denotes each state variable–namely, 𝑥, ℎ, 𝑉, 𝛾  and 𝑚 .  𝑌 = [𝑦1, … , 𝑦𝑁+1]𝑇  the set of state 

variables. Similarly, 𝐹𝑦(𝑍, 𝑈) = [𝑓𝑦(𝑍(𝜏1), 𝑈(𝜏1)), … , 𝑓𝑦(𝑍(𝜏𝑁), 𝑈(𝜏𝑁))]
𝑇
 represents the system dynamics 

to be imposed at each node. 

Now, the resulting optimization problem can be summarized as follows. 

    minimize          𝐽 = −𝑉(𝜏𝑁+1)    or     𝐽 = 𝜂 

    subject to          Eqs. 25–31   and   Eq. 34. 

 (35) 

3.2. Linearization and Trust Region Constraints 

In sequential convex programming, the original nonconvex problem is solved by iteratively 
convexifying the original problem and solving resulting convex subproblems. In this study, successive 

linearization is employed to convexify the original nonconvex problem. In the discretized optimization 

problem defined in Eq. 35, the dynamics and the inequality constraint on fuel mass flow rate exhibit 
non-convexity. Their linearized forms at (𝑘 + 1)th iteration, based on the solution obtained in the 

previous 𝑘th iteration, are given in Eqs. 36–38, where 
𝜕𝐹𝑖

𝜕𝑍
,

𝜕𝐹𝑖

𝜕𝑈
 &

𝜕𝑚̇𝑎

𝜕𝑍
,

𝜕𝑚̇𝑎

𝜕𝑈
  denote the Jacobian matrices 

of the dynamics and the air mass flow rate. Subscript 𝑛 denotes 𝑛th node. 

     (𝐷 ⋅ 𝑌)𝑛 ≈
𝜂

2
𝐹𝑖(𝑍𝑛

𝑘 , 𝑈𝑛
𝑘) +

𝜂𝑘

2

𝜕𝐹𝑖

𝜕𝑍
(𝑍𝑛

𝑘 , 𝑈𝑛
𝑘)(𝑍𝑛

𝑘+1 − 𝑍𝑛
𝑘) +

𝜂𝑘

2

𝜕𝐹𝑖

𝜕𝑈
(𝑍𝑛

𝑘 , 𝑈𝑛
𝑘)(𝑈𝑛

𝑘+1 − 𝑈𝑛
𝑘) (36) 

−𝑚̇𝑓𝑚𝑎𝑥
⋅ 𝐴𝐹𝑛

𝑘+1 + 𝑚̇𝑎(𝑍𝑛
𝑘 , 𝑈𝑛

𝑘) +
𝜕𝑚̇𝑎

𝜕𝑍
(𝑍𝑛

𝑘 , 𝑈𝑛
𝑘)(𝑍𝑛

𝑘+1 − 𝑍𝑛
𝑘) +

𝜕𝑚̇𝑎

𝜕𝑈
(𝑍𝑛

𝑘 , 𝑈𝑛
𝑘)(𝑈𝑛

𝑘+1 − 𝑈𝑛
𝑘) ≤ 0 (37) 

    𝑚̇𝑓𝑚𝑖𝑛
⋅ 𝐴𝐹𝑛

𝑘+1 − 𝑚̇𝑎(𝑍𝑛
𝑘 , 𝑈𝑛

𝑘) −
𝜕𝑚̇𝑎

𝜕𝑍
(𝑍𝑛

𝑘 , 𝑈𝑛
𝑘)(𝑍𝑛

𝑘+1 − 𝑍𝑛
𝑘) −

𝜕𝑚̇𝑎

𝜕𝑈
(𝑍𝑛

𝑘 , 𝑈𝑛
𝑘)(𝑈𝑛

𝑘+1 − 𝑈𝑛
𝑘) ≤ 0 (38) 

Due to the linearization of nonlinear constraints, large changes in the solution between convex 
iterations are undesirable. To mitigate this issue, a second-order variable trust region constraint is 

employed. First, the variable 𝑠𝑗 is defined to quantify the variation between successive iterations for 

each node, as shown in Eq. 39. 

 ([(𝑍𝑗)𝑇 , (𝑈𝑗)𝑇] − [(𝑍𝑗
𝑘)𝑇 , (𝑈𝑗

𝑘)𝑇])([(𝑍𝑗)𝑇 , (𝑈𝑗)𝑇] − [(𝑍𝑗
𝑘)𝑇 , (𝑈𝑗

𝑘)𝑇])
𝑇

≤ 𝑠𝑗   where   𝑗 = 1, … , 𝑁 (39) 

Then, for 𝑠 = [𝑠1, … , 𝑠𝑁], ‖𝑠‖2 is incorporated into the objective function with a weight 𝜔 to penalize 

large deviations between iterations, as shown in Eq. 40. The weight 𝜔 serves to adjust the size of the 

trust region.  

 𝐽 = −𝑉(𝜏𝑁+1) + 𝜔(𝑘+1)‖𝑠‖2   or    𝐽 = 𝜂 + 𝜔(𝑘+1)‖𝑠‖2      where     𝑠 ≜ [𝑠1, 𝑠2, . . . , 𝑠𝑁]  (40) 

Using the above constructions, a convex subproblem for Eq. 35 is defined as follows. 

                 minimize         𝐽 = −𝑉(𝜏𝑁+1) + 𝜔(𝑘+1)‖𝑠‖2    or     𝐽 = 𝜂 + 𝜔(𝑘+1)‖𝑠‖2 

   subject to                     Eqs. 25–31     and     Eqs. 36–39 

 (41) 
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3.3. Improved Trust Region Method 

To enhance convergence, the Improved Trust Region Method [7] is employed with some modifications. 
The main idea of the ITRM in [7] is twofold. First, the search direction 𝑝𝑘 is defined as follows. 𝑝𝑘 =
𝑍𝑘+1 − 𝑍̂𝑘. Here, 𝑍𝑘+1 denotes the solution of the (𝑘 + 1)th SCP iteration and 𝑍̂𝑘 denotes solution of 

the 𝑘th iteration, that is updated after 𝑘th SCP iteration. Second, a backtracking line search selects a 

step size to update solution from the SCP iteration. The purpose of the backtracking line search at this 
stage is to sufficiently decrease the merit function along the search direction 𝑝𝑘. The merit function is 

defined as follows. 

 𝜙(𝑋𝑘 ; 𝜇) = 𝐽𝑘 + 𝜇1 ∑ ‖ℎ(𝑋𝑛
𝑘)‖1

𝑁
𝑛=1 + 𝜇2 ∑ ‖max{𝑔(𝑋𝑛

𝑘), 0}‖1
𝑁
𝑛=1    (42) 

𝑋𝑘 = {𝑍𝑘 , 𝑈𝑘 , 𝜂𝑘} is the solution of the 𝑘th iteration. The 1-norm terms represent the magnitudes of the 

violations of the original nonconvex equality and inequality constraints. ℎ(𝑍𝑛
𝑘) represents the violation 

of the original dynamics (Eq. 34), in the 𝑘th iteration. Similarly, max{𝑔(𝑍𝑛
𝑘), 0} denotes the violation of 

the original inequality constraints (Eq. 29), in the 𝑘th iteration. 𝜇1 and 𝜇2 denote weights for each term 

to enhance feasibility of updated solution. 

In ITRM, the predicted and exact decreases of the merit function are compared after each iteration to 

update the trust-region weight. If the predicted decrease is close to the exact decrease—indicating that 

the nonlinear constraint violation due to linearization is small—the trust region is expanded; otherwise, 
the trust region is reduced. Meanwhile, for adjusting the trust region, the predicted and actual 

decreases are typically computed based on 𝑍𝑘+1, rather than the updated solution 𝑍̂𝑘+1. On this basis, 

the trust-region weight is then updated through multiplication with a constant factor. While this scheme 
has been shown to be effective, it may not fully capture the quantity 𝑍̂𝑘+1 − 𝑍𝑘, which can also be 

interpreted as the practically realized trust-region size at the (𝑘 + 1)th iteration. Motivated by this 

observation, the proposed method introduces a trust-region weight update algorithm that is based on 

the quantity 𝑍̂𝑘+1 − 𝑍𝑘 , which is proportional to the step size of the backtracking algorithm. The 

procedure of the proposed method is as follows. 

First, following [7], define the search direction as Eq. 43. 

 𝑝𝑘 = 𝑍𝑘+1 − 𝑍̂𝑘  (43) 

Next, a line search is performed to select a step size that ensures a sufficient decrease in the merit 

function. The merit function is defined as Eq. 42. For the line search algorithm, Armijo’s rule is adopted. 
Starting from 𝜁𝑘 = 1, the step size is reduced until the sufficient decrease condition in Eq. 44 was 

satisfied. 

 𝜙(𝑍𝑘 + 𝜁𝑘𝑝𝑘; 𝜇) ≤ 𝜙(𝑍𝑘 ; 𝜇) + 𝜆𝜁𝑘𝛻𝑝𝑘𝜙(𝑍𝑘; 𝜇)   (44) 

The gradient of the merit function, 𝛻𝑝𝑘𝜙, along the search direction 𝑝𝑘, is given in Eq. 45, which follows 

the formulation proposed in [7]. 

 𝛻𝑝𝑘𝜙(𝑍𝑘; 𝜇) = 𝐽𝑘+1 − 𝜙(𝑍𝑘 ; 𝜇) − 𝜇2 ∑ ‖𝜙(𝑔(𝑍𝑛
𝑘)) ⋅ 𝑔𝐿(𝑍𝑛

𝑘+1)‖
1

𝑁
𝑛=1    (45) 

Consequently, the updated solution is given by Eq. 46, which is then used in the next SCP iteration. 

 𝑍̂𝑘+1 = 𝑍𝑘 + 𝜁𝑘𝑝𝑘    (46) 

Next, the trust-region weight is adjusted; in the proposed method, the adjustment is performed with 
consideration of the 𝑍̂𝑘+1 − 𝑍𝑘, thereby reflecting the effective trust-region size realized at the at the 

(𝑘 + 1)th iteration. Because 𝑍̂𝑘+1 − 𝑍𝑘  is proportional to 𝜁𝑘 , the trust region weight is adaptively 

updated according to Eq. 47. 

𝑤𝑘+1 = 𝛽𝑘𝑤𝑘       where       𝛽𝑘 =
𝑐

𝜁𝑘
     (0 < 𝑐 ≤ 1) (47) 

Meanwhile, it is assumed that a large decrease of the merit function during the step-size determination 

process also implies a sufficient reduction of constraint violations. Accordingly, this study does not 
separately compute the predicted and exact decreases. Nevertheless, these measures could readily be 

incorporated into the algorithm when required. 
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3.4. PSCP Algorithm 

The overall PSCP algorithm for trajectory optimization is summarized in Fig. 3. First, the optimal control 

problem is discretized using the pseudospectral method to obtain a optimization problem. Since this 
nonlinear problem must be linearized with respect to previous solution, an initial guess is required for 

the first iteration. This corresponds to the initialization step in Fig. 3. Next, the resulting convex 

subproblem is solved. Convergence is then checked. If achieved, the algorithm terminates. Otherwise, 
the proposed method calculates the step size and updates the trust-region weight. The refined solution 

is re-linearized to form the next convex subproblem, and this process is repeated until convergence. 

 

Fig 3. Entire PSCP algorithm 

4. Numerical Experiments 

This section examines overall characteristics of the optimal trajectory of a VFDR missile and the 

influence of radar FOV constraints. All test cases share identical initial conditions. Section 4.1 presents 

the overall characteristics of the VFDR missile’s optimal trajectory without radar FOV constraints. 
Section 4.2 investigates the effect of radar FOV constraints with flight time minimization as a 

performance metric, and Section 4.3 analyzes their effect with terminal velocity maximization. Section 

4.4 analyzes the performance of the proposed method. 

4.1. Overall Characteristics of the VFDR missile trajectory 

In this section, without imposing radar FOV constraints, the optimal trajectories are examined for 

three engagement conditions with a target at three different ranges: short, medium, and long. Each 

target altitude is assumed to be the same as those of the fighter. For each case, the trajectories are 
obtained with two objective functions: minimizing flight time and maximizing terminal velocity. Figs. 4 

and 5 show the trajectories for flight time minimization and terminal-velocity maximization, respectively. 

   

   

Fig 4. Trajectories without Radar FOV constraints (Flight time minimization) 
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Fig 5. Trajectories without Radar FOV constraints (Terminal velocity maximization) 

The optimization results indicate that the optimal trajectory of a VFDR missile has a negative flight-

path angle at the start of flight, for both objectives and under all three engagement scenarios. This 
tendency appears to arise from the air-breathing feature. Since air is used as an oxidizer, flying through 

lower altitudes might be advantageous, because it increases air intake for initial acceleration. However, 

it should be noted that such maneuvers may cause the missile to exit the radar FOV. Of course, not all 
descents were steep enough to cause the missile to exit the radar FOV; in medium- and long-range 

engagements under terminal velocity maximization, the descent was less pronounced. 

4.2. Influence of Radar FOV constraints in Flight Time Minimization 

To examine the effect of radar FOV constraints for various locations of PIP, nine engagement scenarios 
were considered, combining three altitude levels (low, medium, and high) with three slant ranges (short, 

medium, and long). Optimal trajectories were computed for each engagement condition, and Table 1 

summarizes whether the radar FOV constraint had an effect on optimal trajectories.  

Table 1. Effect of Radar FOV Constraints —flight time minimization 

Altitude     Range Short Medium Long 

Low X X X 

Medium O O X 

High O O X 

Four engagement conditions are affected by the radar FOV constraint, and the corresponding optimal 

trajectories are depicted in Figs. 6 and 7. 

           

Fig 6. Trajectories toward Medium altitude targets 
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Fig 7. Trajectories toward high altitude targets 

The optimization results indicate that, for both medium and high altitude targets, trajectories for short-

range engagements tend to deviate more from the radar FOV limit, than medium-range engagement. 
This effect is most pronounced for high altitude, short-range targets, followed by medium-altitude, 

short-range targets. The results indicate that short-range engagements are most affected by the radar 

FOV constraint, and this effect is increased in higher target altitudes. 

4.3. Influence of Radar FOV constraints in Terminal Velocity Maximization 

To assess the effect of radar FOV constraints under the terminal velocity maximization objective, nine 
engagement scenarios—identical to those in Section 4.2—were considered. Optimal trajectories were 

computed for each engagement condition, and Table 2 summarizes whether the radar FOV constraint 

had an effect on optimal trajectories. 

Table 2. Effect of Radar FOV Constraints — terminal velocity maximization 

Altitude     Range Short Medium Long 

Low O X X 

Medium O X X 

High O X X 

Three engagement conditions are affected by the radar FOV constraint, and the corresponding optimal 

trajectories are depicted in Fig. 8 

   

Fig 8. Trajectories toward short-range targets 

The optimization results indicate that, when maximizing terminal velocity, initial descent maneuvers 
for short-range targets are more pronounced than in the flight time minimization case. This appears 

particularly evident in the optimization results for low altitude targets. However, for medium and long-
range targets, the radar FOV constraint has no effect on the optimal trajectory under the terminal-

velocity-maximization objective, as anticipated from the results in Section 4.1. 

4.4. Performance Analysis of the Proposed Algorithm 

In this section, the performance of the proposed modification for ITRM is analyzed. For performance 

evaluation, the same optimization procedure was carried out using the ITRM proposed in [7], and the 
results were compared. The analysis was conducted over the nine engagement scenarios introduced in 

Section 4.2. The number of SCP iterations under the trust region method was compared, and the 
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decreasing trends of the objective and merit functions were illustrated. The resulting optimal 
trajectories were presented also. In most cases, the optimal trajectories were found to be nearly 

identical; as a representative case, the short range, medium-altitude scenario, under the objective of 

velocity maximization is represented. 

 The analysis results for the number of SCP iterations of each algorithm are presented in Table 3. In 

the velocity maximization problem, the proposed method reduced the average number of iterations by 
55.9%, compared to ITRM. For the flight time minimization problem, the average reduction was 63.1%. 

The improvement in performance may be attributed to the use of a more adaptive algorithm that, as 

explained earlier, adjusts the trust region weight by taking into account the finally updated solution. 

Table 3. Comparison of Average Iteration Counts Across Algorithms 

Objective           Algorithm ITRM Proposed 

Velocity maximization 21.1 9.3 

Flight time minimization 45.8 19.6 

To evaluate the validity of the proposed algorithm, an analysis was conducted for a representative 
case: velocity maximization for short range and medium altitude target. As shown in Fig. 9, the merit 

function converged to the objective function, indicating that the optimization proceeded while satisfying 

the constraints. In the right panel of Fig. 9, the magnitude of the trust region constraints exhibited a 
decreasing trend, which suggests that the algorithm converged in a stable manner. Fig. 10 indicates 

that nearly identical optimal trajectories were obtained for both algorithms. 

         

Fig 9. Merit, Objective, and Trust Region Constraint of Proposed Algorithm 

              

        

Fig 10.  Comparison of Optimized Trajectories and Profiles: ITRM [7] and Proposed 
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Variations of the merit function and the objective function over iterations were compared for two 
methods: ITRM [7] and the proposed method. Figure 11 shows the merit function values over iterations, 

where the proposed method exhibited a more rapid decrease. In addition, the objective function 
converged to similar values in both cases. Figure 12 illustrates the objective function over iterations, 

indicating that the proposed algorithm converged faster while yielding almost identical final objective 

values. 

 

Fig 11.  Merit Function value of each Algorithm 

 

Fig 12.  Objective Function value of each Algorithm 

 

5. Conclusions 

Based on the trajectory optimization using the PSCP algorithm, this paper analyzed the effect of the 
radar FOV constraint for various PIP locations under two different objective functions. The results 

indicate that, for both terminal velocity maximization and flight time minimization, short-range 
engagements tend to produce an initial descent in the optimal trajectory, which may cause the missile 

to exit the radar FOV. This tendency is more pronounced in the terminal velocity maximization case. In 
addition, the results indicate that higher target altitudes lead to a greater descent at the beginning of 

flight, for both objectives. These findings suggest that, for certain PIP locations—especially short-range 

engagements—the radar FOV constraints must be considered to maintain the data link between the 
fighter and the missile. In addition, to further enhance convergence, some modifications for existing 

ITRM [7] is proposed. Numerical experiments show that, for the given problem, the proposed algorithm 
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reduces the number of iterations required for convergence by about 50% compared with existing 

method. 

Future work will focus on 3D simulations to validate the presented trajectories, incorporating both 
fighter and target maneuvers into the optimization process. The ultimate goal is to develop a closed-

loop simulation framework using the proposed guidance techniques.  
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