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Abstract

A variable flow ducted rocket (VFDR) engine offers a broader operational envelope than ramjet
engines, as well as higher energy efficiency and a more flexible thrust modulation capability than
conventional solid-fuel rocket engines, making it well-suited for long-range air-to-air missile applications.
For such missiles, appropriate mid-course guidance toward the predicted intercept point (PIP) is
essential prior to seeker’s lock-on. However, due to the high maneuverability of aerial targets, the PIP
may vary significantly over time, necessitating adaptive mid-course guidance strategies. As a
preliminary investigation into this challenge, this study performs trajectory optimization for a VFDR
missile considering radar field-of-view (FOV) constraints for data link communication between the
fighter and the missile. The results indicate that radar FOV constraints can affect the optimal trajectory,
particularly when the target is relatively close and at higher altitudes.

Keywords: lariable Flow Ducted Rocket Missile, Trajectory Optimization, Radar Detection Angle
Constraint, Pseudo-spectral Convex Programming

Nomenclature

AF — Air to Fuel ratio P, — nth order Legendre polynomial
C, — Lift coefficient T — Thrust

Cp, — Drag coefficient u, U — Control inputs

D — Drag force V — Velocity

F; — Equations of motion for each state x — Downrange

g — Gravitational constant Z — State vector

G — Air mass flow rate function a — Angle of attack

h — Altitude y — Flight path angle

i, j, k,n — Positive integer index ¢ — Step size in line search

I, l;— Upward & Downward radar FOV limits n — Total flight time

m — Mass Uy, hp — Penalty weights in the merit function

7 — Normalized time
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1. Introduction

A variable flow ducted rocket (VFDR) engine is a propulsion system that combines the advantages of
solid-fuel rockets and ramjet engines. Like a ramjet, the VFDR intakes ambient air and uses it as an
oxidizer, which allows it to carry more fuel on board and thereby extend the flight range. However,
there exist slight differences. Unlike a ramjet engine, the VFDR carries some amount of onboard oxidizer.
This oxidizer is combined with fuel in a gas generator to produce partially combusted gas. The resulting
gas is then mixed with compressed air and burned in the ram combustor to generate thrust. This two-
stage combustion mechanism improves combustion stability, ensuring high maneuverability without
flameout. Additionally, the VFDR engine has a valve between the gas generator and the ram combustor
which regulates the fuel mass flow rate. This allows the missile to utilize its fuel in the latter part of the
flight, thereby achieving high terminal velocity. Given these advantages, the VFDR engine is widely
recognized as a suitable propulsion system for long-range air-to-air missiles, exemplified by the Meteor
missile.

Valve Ram Combuster

A

Gas Generator

Fuel enriched
solid propellant

Y

Air flow

AN

Metallic particles Air Intake

Throat

Fig 1. VFDR Configuration [1]

Meanwhile, long-range air-to-air missiles are often referred to as beyond-visual-range air-to-air
missiles (BVRAAMs), as they are launched before the seeker acquires the target. In such cases, mid-
course guidance is employed, and the missile is guided toward the predicted intercept point (PIP) to
achieve seeker’s lock-on. Given that VFDR-based missiles, such as the Meteor, have a maximum range
of approximately 200-300km, the majority of the flight occurs in the mid-course phase before terminal
guidance is initiated, which typically takes place within about 30km of the target. Consequently,
guidance strategy during mid-course phase might be critical to overall interception performance.

In air-to-air engagements, the target—typically an enemy fighter aircraft—possesses high speed and
agility, enabling rapid evasive maneuvers. When a missile is launched from several hundred kilometers
away, such maneuvers can significantly alter the predicted intercept point (PIP). To cope with changes
in the PIP, the optimal trajectory has to be updated periodically updated. This, in turn, necessitates a
data link between the missile and the launching fighter aircraft, which provides up-to-date target
information until the seeker achieves lock-on in the terminal phase. Consequently, both the target and
the missile must remain within the radar’s detection angle. In this study, it is assumed that the data
link is established via the radar of the fighter aircraft, and the missile’s midcourse trajectory is planned
so as to meet the radar’s detection constraints. This trajectory planning problem is accordingly
formulated as an optimal control problem and solved.

The solution methods for optimal control problems can be broadly categorized into two primary
approaches: indirect methods and direct methods. Indirect methods solve the problem by deriving the
necessary conditions for optimality—such as those given by Pontryagin’s Maximum Principle—and can,
in some cases, yield analytical solutions. However, deriving such solutions can be mathematically
challenging, and these methods often face limitations in handling multiple constraints simultaneously.
To address these drawbacks, approximation techniques such as singular perturbation methods have
been proposed to reduce the order of the problem [2], [3]. Nevertheless, these approaches typically
rely on strong assumptions, such as time-scale separation, and the resulting guidance may violate
constraints.
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On the other hand, direct methods discretize the continuous-time optimal control problem into a
finite-dimensional optimization problem, which can be solved using various nonlinear programming
(NLP) algorithms without explicitly deriving the necessary conditions for optimality. In recent years,
sequential convex programming (SCP) has attracted attention as an efficient approach for such
problems. Although SCP does not offer formal guarantees of convergence or global optimality, it offers
computational efficiency and has been successfully applied in aerospace applications [4-7]. In particular,
the PSCP method proposed in [5] employs pseudospectral techniques to discretize the system dynamics,
thereby achieving high accuracy with relatively few nodes. In addition, [6] and [7] incorporated a line
search procedure into the SCP framework to improve convergence.

Motivated by these studies, the present work adopts the PSCP framework to accurately approximate
the long-range flight trajectory of the VFDR missile and incorporates a line search algorithm to enhance
convergence. Furthermore, as discussed in Section 3.3, some modifications to the existing Improved
Trust Region Method are introduced in an effort to enhance its convergence characteristics for VFDR
missile trajectory optimization problem.

The rest of the paper is organized as follows. Section 2 formulates the optimal control problem for
the mid-course guidance of a VFDR missile. Section 3 presents the procedure for obtaining the optimal
solution using the pseudospectral sequential convex programming (PSCP) method combined with the
proposed method. Finally, Section 4 evaluates the necessity of the radar field-of-view constraint and
assesses the performance and validity of the proposed method.

2. Problem Formulation

In this section, the optimal control problem for mid-course trajectory optimization of a VFDR missile
is formulated considering radar FOV constraints. The system dynamics are first presented, followed by
the objective function and associated constraints. These components are then combined to define the
complete problem.

2.1. System Dynamics

The missile dynamics are modeled on the longitudinal plane as shown in Egs. 1-5. Although an actual
missile operates in three-dimensional space, trajectory optimization is performed in a two-dimensional
setting because longitudinal maneuver mainly affects flight performance, owing to air density variations
with altitude.

x=Vcosy (1)
h=Vsiny (2)
. =D+ Tcosa .
V= — gsiny (3)
L+Tsina gcosy
; = — 4
14 - v (4)
m = —my (5)
Where
1
L = (5097810 (G10) (6)
1
D = (E pvzsref) (Cp, + K(Cr)?) 7)
T =T(M,h,a,AF) (8)
m,  p(WVI(a)
= 9
"= AR AF ©)

With Egs. 1-5, the nonlinear equations of motion can be expressed as z = f(x,u) where z =
[x,h,V,y,m]", u=[a,AF]". Here, x,h,V,y and m denote downrange, altitude, velocity, flight path
angle and mass. L and D represent lift and drag forces given in Eq. 6 and Eq. 7. T represents thrust,
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and it depends on Mach number(M), altitude(h), angle of attack(a) and Air-to-Fuel ratio(AF). Since T
is not available to drive a closed-form functional expression, it is instead provided as a tabulated dataset,
based on the results reported in [8]. The gravitational constant is denoted by g. The fuel mass flow
rate is represented by .. In this study, air mass flow rate (1n,) is modeled as a function of density,
velocity and angle of attack as in Eq. 9. International Standard Atmosphere (ISA) model is employed
to calculate air density and temperature, with the resulting density denoted by p(k). The function I(a)
is approximated as a fourth-order polynomial in the angle of attack.

2.2. Objective, Boundary conditions and Constraints

Maximizing terminal velocity or minimizing intercept time are widely recognized as effective
performance metrics in the mid-course guidance phase. The former enhances the maneuverability
during the terminal phase, while the latter reduces unnecessary fuel consumption caused by changes
in target information. In this study, the impact of radar FOV constraints is investigated for both
performance metrics—flight time minimization and terminal velocity maximization. The mathematical
formulations for each objective are presented in Eq. 10 and Eq. 11.

minimize | =-V(t) (10)
minimize ] = ¢t (11)

The boundary conditions include the initial state of the missile, which is determined at launch time.
In this study, these initial conditions are fixed as shown in Eq. 12.

x(to) = xo, h(to) = ho,V(to) = Vo, ¥ (ty) = vo, m(ty) = my (12)

The terminal conditions must ensure that the missile reaches the PIP and satisfies the fuel constraint,
as shown in Eq. 13.

x(tf) = xf,h(tf) = hf,m(tf) > my (13)
The path constraints for stable propulsion are defined in Eqs.14-17.
Vinin £V < Viax (14)
Amin < & < Apax (15)
AFpin < AF < AF, 44 (16)
g ST ST (17)

The radar FOV path constraints, illustrated in Fig. 2, are expressed as linear inequalities in Egs. 18-19,
under the following assumption: the boresight of the AESA radar is directed toward the PIP, and the
positions of the fighter aircraft and the PIP are fixed. Here, [, and [; denote the upper and lower
bounds of the radar FOV determined as shown in Fig. 2. These bounds are defined in terms of the
radar look angle (6).

al, al,
> (x — x(to)) + = (R = h(t)) <0 (18)
al al

—a—;(x—x(to)) —a—;:(h—h(to)) <0 (19)

# L AESA Radar Detection Angle
u  AES
\..,4;;-‘ o i 9 ///77\\

(o) h(t)) N el ‘ \
A e =
la ™0 PIP
x(t), h(ty)

X
Fig 2. Radar Field of View Constraint
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2.3. Optimal Control Problem

Using the previously defined objective function and constraints, the mid-course trajectory optimization

problem is formulated as the optimal control problem given in Eq. 20.
minimize V() or ¢t

subjectto  Egs. 1-5 and Egs. 12-19

(20)

3. Pseudo-spectral Sequential Convex Programming

In this section, the solution procedure for the aforementioned optimal control problem (Eq. 20) is
presented. First, the continuous optimal control problem is discretized to a finite-dimensional
optimization problem. Next, a sequential convex programming approach is employed to solve the
problem. Finally, the Improved Trust Region Method, with some modifications, is incorporated to
enhance the convergence properties.

3.1. Pseudo-spectral discretization

In this study, the Legendre-Gauss-Radau (LGR) pseudospectral method is employed for discretization
due to its numerical stability [9]. The N nodes [z, ..., Ty] are obtained as the roots of Eq. 22, derived
from Nth-order Legendre polynomial in Eq. 21. These nodes are distributed over the interval [—1,1)

N
Py(x) = ZNN!dx_N(xz -V (21)
Py_1(t) +Py(r) =0 (22)

The time domain is normalized to interval [—1,1] using the affine transformation of ¢t = %r @

By incorporating additional (N + 1)th node ty,, =1, (N + 1) nodes [t4, ..., Ty+1] are mapped to the
normalized time domain [—1,1]. States, control inputs, objectives, boundary conditions and path
constraints are discretized by enforcing them at each node, as shown in Eqgs. 23-29. Here, Z =
[x,h,V,y,m]", U=[a,AF]", n = t; — t,. The subscript n=1,..N + 1 denotes node index, which
corresponds to [74, ..., Ty4+1]-

States and control inputs

[Z1, ) Znsa]”, (U, o, UNDT (23)
Objectives
minimize J=-V(ty4) OF J =17 (24)
Boundary conditions
T
Zl = [xOl hOl VO' Yo, mO]T' ZN+1 = [xf' hf' ~ ~] (25)
Path Constraints
Vmin < Vn < Vmax (26)
Xmin < Un < Tmax (27)
AFmin < AFn < AFmax (28)
fmin S mfn S mfmax (29)
al al
6_;: (X — x0) + a_;;(hn —hy) <0 (30)
al al
— 5 O = %0) = 5 (hy = ho) < 0 (31)

In the pseudospectral method, because the dynamics contain derivatives, discretization requires an
additional step. First, the state variables are approximated by Lagrange interpolating polynomials that
pass through the chosen collocation nodes, as shown in Eq. 32. Then, by differentiating Eq. 32, the
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equations of motion are approximated, as shown in Eq. 33.

y() = T 90,0 (32)
y(®) =~ TV yjd’j(t) (33)

Here, y denotes an arbitrary state variable, and ¥; represents the coefficients of ¢;(t), which is equal
to y(‘rj). ¢;(t) is the Lagrange interpolation polynomial that passes through [y, ..., Ty,1]. Enforcing the
dynamics at each collocation node yields the discretized representation as shown in Eq. 34.

(i)l (_1'1) (?»;’Nﬂ (t1)

i S (34)
d1(ty) 0 Pysr(Ty)

w@gmy@mrzD-Yzymzm where D =

Here, y denotes each state variable-namely, x,h,V,y and m. Y = [y,,...,yn+1]7 the set of state
variables. Similarly, F,(Z,U) = [f,(Z(z1), U(z)), ... £, (Z (xy), U(rN))]T represents the system dynamics
to be imposed at each node.

Now, the resulting optimization problem can be summarized as follows.

minimize J=-V(Ns) OF J=n
subject to Egs. 25-31 and Eg. 34.

(35)

3.2. Linearization and Trust Region Constraints

In sequential convex programming, the original nonconvex problem is solved by iteratively
convexifying the original problem and solving resulting convex subproblems. In this study, successive
linearization is employed to convexify the original nonconvex problem. In the discretized optimization
problem defined in Eq. 35, the dynamics and the inequality constraint on fuel mass flow rate exhibit
non-convexity. Their linearized forms at (k + 1)th iteration, based on the solution obtained in the
previous kth iteration, are given in Eqs. 36-38, where %% &a;a,a;';“ denote the Jacobian matrices
of the dynamics and the air mass flow rate. Subscript n denotes nth node.

T]k aFl T]k aFl
2 0Z 2 U

(D Vo ~ SR U + =L (@5 UD@EE - 28 + o @h ub Wi - vl (36)

am am
i ABLT 1o (28, U8) + T U - 2 + S @R UDUET — U <0 (37)

am om
Ty AR = (28, U) = S8 (28, UD @ - 2) - T @ U - U <0 (38)

Due to the linearization of nonlinear constraints, large changes in the solution between convex
iterations are undesirable. To mitigate this issue, a second-order variable trust region constraint is
employed. First, the variable s; is defined to quantify the variation between successive iterations for
each node, as shown in Eq. 39.

(@)™, W™ = [EHT WwHDAEHT, W™ - [ZHT, (U}‘)T])T <s; where j=1,..,N (39)

Then, for s = [sy, ..., sy], lIsll, is incorporated into the objective function with a weight w to penalize
large deviations between iterations, as shown in Eq. 40. The weight w serves to adjust the size of the
trust region.

J= —V(tys1) + w(k+1)||5||2 or J= n+ w(k+1)||5||2 where s 2 [sy,5;,...,5y] (40)

Using the above constructions, a convex subproblem for Eq. 35 is defined as follows.

minimize J=V@ys) +0®Vsll, or J=n+o®V|s|l,
subject to Egs. 25-31 and Egs. 36-39

(41)
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3.3. Improved Trust Region Method

To enhance convergence, the Improved Trust Region Method [7] is employed with some modifications.
The main idea of the ITRM in [7] is twofold. First, the search direction p* is defined as follows. p* =
Zk+t — 7% Here, Z** denotes the solution of the (k + 1)th SCP iteration and Z* denotes solution of
the kth iteration, that is updated after kth SCP iteration. Second, a backtracking line search selects a
step size to update solution from the SCP iteration. The purpose of the backtracking line search at this
stage is to sufficiently decrease the merit function along the search direction p*. The merit function is
defined as follows.

X ;1) =% + uy TR llhXD Ny + pp Xi=slimax{g (X7, 0}l (42)

Xk = {zk, U*,n*} is the solution of the kth iteration. The 1-norm terms represent the magnitudes of the
violations of the original nonconvex equality and inequality constraints. h(Z¥) represents the violation
of the original dynamics (Eq. 34), in the kth iteration. Similarly, max{g(Z¥), 0} denotes the violation of
the original inequality constraints (Eq. 29), in the kth iteration. u, and u, denote weights for each term
to enhance feasibility of updated solution.

In ITRM, the predicted and exact decreases of the merit function are compared after each iteration to
update the trust-region weight. If the predicted decrease is close to the exact decrease—indicating that
the nonlinear constraint violation due to linearization is small—the trust region is expanded; otherwise,
the trust region is reduced. Meanwhile, for adjusting the trust region, the predicted and actual
decreases are typically computed based on Z¥*1, rather than the updated solution Z**1, On this basis,
the trust-region weight is then updated through multiplication with a constant factor. While this scheme
has been shown to be effective, it may not fully capture the quantity Z*** — z¥, which can also be
interpreted as the practically realized trust-region size at the (k + 1)th iteration. Motivated by this
observation, the proposed method introduces a trust-region weight update algorithm that is based on
the quantity Zk*! — z¥, which is proportional to the step size of the backtracking algorithm. The
procedure of the proposed method is as follows.

First, following [7], define the search direction as Eq. 43.
pk = gk+1 _ 7k (43)

Next, a line search is performed to select a step size that ensures a sufficient decrease in the merit
function. The merit function is defined as Eq. 42. For the line search algorithm, Armijo’s rule is adopted.
Starting from ¢¥ = 1, the step size is reduced until the sufficient decrease condition in Eq. 44 was
satisfied.

O(Z* + *p*5u) < $(Z%5 1) + ATV (25 1) (44)

The gradient of the merit function, V¢, along the search direction p*, is given in Eq. 45, which follows
the formulation proposed in [7].

Vpk¢(zki p) =Jit — ¢(Zk JH) — o Z,Al’ﬂ”(,b(g(Z’,i)) ’ gL(Z,If“)”l (45)
Consequently, the updated solution is given by Eq. 46, which is then used in the next SCP iteration.
Zk+1 — Zk + {kpk (46)

Next, the trust-region weight is adjusted; in the proposed method, the adjustment is performed with
consideration of the Zk** — zk, thereby reflecting the effective trust-region size realized at the at the
(k + 1)th iteration. Because Z¥*! — Z* is proportional to ¢¥, the trust region weight is adaptively
updated according to Eq. 47.

C
wktl = gkwk  where g% = 7 (0<c<) (47)
Meanwhile, it is assumed that a large decrease of the merit function during the step-size determination
process also implies a sufficient reduction of constraint violations. Accordingly, this study does not
separately compute the predicted and exact decreases. Nevertheless, these measures could readily be
incorporated into the algorithm when required.
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3.4. PSCP Algorithm

The overall PSCP algorithm for trajectory optimization is summarized in Fig. 3. First, the optimal control
problem is discretized using the pseudospectral method to obtain a optimization problem. Since this
nonlinear problem must be linearized with respect to previous solution, an initial guess is required for
the first iteration. This corresponds to the initialization step in Fig. 3. Next, the resulting convex
subproblem is solved. Convergence is then checked. If achieved, the algorithm terminates. Otherwise,
the proposed method calculates the step size and updates the trust-region weight. The refined solution
is re-linearized to form the next convex subproblem, and this process is repeated until convergence.

Proposed

1

1

: Trust-region -

1 Algorithm

| X
1

1

Checking
Convergence
Condition

Initialization

Trajectory
Optimization
Problem

Solving a Convex
Sub-Problem

| Optimal
| Trajectory

Iterative Solution Process

Fig 3. Entire PSCP algorithm

4. Numerical Experiments

This section examines overall characteristics of the optimal trajectory of a VFDR missile and the
influence of radar FOV constraints. All test cases share identical initial conditions. Section 4.1 presents
the overall characteristics of the VFDR missile’s optimal trajectory without radar FOV constraints.
Section 4.2 investigates the effect of radar FOV constraints with flight time minimization as a
performance metric, and Section 4.3 analyzes their effect with terminal velocity maximization. Section
4.4 analyzes the performance of the proposed method.

4.1. Overall Characteristics of the VFDR missile trajectory

In this section, without imposing radar FOV constraints, the optimal trajectories are examined for
three engagement conditions with a target at three different ranges: short, medium, and long. Each
target altitude is assumed to be the same as those of the fighter. For each case, the trajectories are
obtained with two objective functions: minimizing flight time and maximizing terminal velocity. Figs. 4
and 5 show the trajectories for flight time minimization and terminal-velocity maximization, respectively.

Trajectory (Short range) Trajectory (Medium range) Trajectory (Long range)
25 Traj e Tra) Traj
O  Fighter 4 O  Fighter [ © Fighter
2{l o PP o PP o PP

15
— — —_ 2
. 1(\/ [ (""--_--"”-—-—-__—-“9 = (m
= = =

0.5

0

2 -4
-0.5
0 02 04 06 08 1 0 02 0.4 086 08 1 a 02 0.4 0.6 08 1
x[]
] Flight Path Angle (Short range) ] Flight Path Angle (Medium range) . Flight Path Angle (Long range)
0.5
0.5 0
— .05
o9 e
' Coa
05 -15
-2
- 2 5
0 02 04 06 08 1
Time [*] 'I'|me[ ] Tlme

Fig 4. Trajectories without Radar FOV constraints (Flight time minimization)
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Trajectory (Short range) Trajectory (Medium range) Trajectory (Long range)
25 Traj Traj — Traj
©  Fighter 4| © Fighter 6 O  Fighter
2il 0 PP o PP o PP
4
15
— — 2 — 2
= 1:\/ g © = q —o
= = £ 4
05 0
2
0
2 -4
05
0 02 0.4 06 0.8 1 0 0.2 0.4 06 08 1 0 0.2 0.4 06 0.8 1
x[] x[] x[]
Flight Path Angle (Short range) ’ Flight Path Angle (Medium range) ; Flight Path Angle (Long range)
05 05
05
0 0
0.5 ' N 05
- 1
05
15 : . : . A5
0 02 04 06 08 1 0 02 04 06 08 1 0 02 04 06 08 1
Time [*] Time [*] Time [*]

Fig 5. Trajectories without Radar FOV constraints (Terminal velocity maximization)

The optimization results indicate that the optimal trajectory of a VFDR missile has a negative flight-
path angle at the start of flight, for both objectives and under all three engagement scenarios. This
tendency appears to arise from the air-breathing feature. Since air is used as an oxidizer, flying through
lower altitudes might be advantageous, because it increases air intake for initial acceleration. However,
it should be noted that such maneuvers may cause the missile to exit the radar FOV. Of course, not all
descents were steep enough to cause the missile to exit the radar FOV; in medium- and long-range
engagements under terminal velocity maximization, the descent was less pronounced.

4.2, Influence of Radar FOV constraints in Flight Time Minimization

To examine the effect of radar FOV constraints for various locations of PIP, nine engagement scenarios
were considered, combining three altitude levels (low, medium, and high) with three slant ranges (short,
medium, and long). Optimal trajectories were computed for each engagement condition, and Table 1
summarizes whether the radar FOV constraint had an effect on optimal trajectories.

Table 1.  Effect of Radar FOV Constraints —flight time minimization

Altitu nge Short Medium Long
Low X X X
Medium 0] 0] X
High 0 0 X

Four engagement conditions are affected by the radar FOV constraint, and the corresponding optimal
trajectories are depicted in Figs. 6 and 7.

Trajectory (Short range) Trajectory (Medium range)
2.5 [|=m = Traj{with FOVC) = = Traj(with FOVC)
Traj(without) 4 Traj(without)
2 ©  Fighter ©Q Fighter
o PP o PP
15 s

= e " S
= =

0 02 04 0.6 08 1 0 0.2 0.4 0.6 0.8 1
x[1 x[]

Fig 6. Trajectories toward Medium altitude targets
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Trajectory (Medium range)

— — Traj(with FOVC)
Traj(without)
O  Fighter

o PP

Trajectory (Short range)

= = Traj(with FOVC)
Traj{without) 4
© Fighter

2l o pP

T e—

02 0.4 086

x[]

1] 02 04 06 08 1

x[]

08

Fig 7. Trajectories toward high altitude targets

The optimization results indicate that, for both medium and high altitude targets, trajectories for short-
range engagements tend to deviate more from the radar FOV limit, than medium-range engagement.
This effect is most pronounced for high altitude, short-range targets, followed by medium-altitude,
short-range targets. The results indicate that short-range engagements are most affected by the radar
FOV constraint, and this effect is increased in higher target altitudes.

4.3. Influence of Radar FOV constraints in Terminal Velocity Maximization

To assess the effect of radar FOV constraints under the terminal velocity maximization objective, nine
engagement scenarios—identical to those in Section 4.2—were considered. Optimal trajectories were
computed for each engagement condition, and Table 2 summarizes whether the radar FOV constraint
had an effect on optimal trajectories.

Table 2.  Effect of Radar FOV Constraints — terminal velocity maximization
Altitu nge Short Medium Long
Low o X X
Medium 0] X X
High 0 X X

Three engagement conditions are affected by the radar FOV constraint, and the corresponding optimal
trajectories are depicted in Fig. 8
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Fig 8. Trajectories toward short-range targets

The optimization results indicate that, when maximizing terminal velocity, initial descent maneuvers
for short-range targets are more pronounced than in the flight time minimization case. This appears
particularly evident in the optimization results for low altitude targets. However, for medium and long-
range targets, the radar FOV constraint has no effect on the optimal trajectory under the terminal-
velocity-maximization objective, as anticipated from the results in Section 4.1.

4.4. Performance Analysis of the Proposed Algorithm

In this section, the performance of the proposed modification for ITRM is analyzed. For performance
evaluation, the same optimization procedure was carried out using the ITRM proposed in [7], and the
results were compared. The analysis was conducted over the nine engagement scenarios introduced in
Section 4.2. The number of SCP iterations under the trust region method was compared, and the
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decreasing trends of the objective and merit functions were illustrated. The resulting optimal
trajectories were presented also. In most cases, the optimal trajectories were found to be nearly

identical; as a representative case, the short range, medium-altitude scenario, under the objective of
velocity maximization is represented.

The analysis results for the number of SCP iterations of each algorithm are presented in Table 3. In
the velocity maximization problem, the proposed method reduced the average number of iterations by
55.9%, compared to ITRM. For the flight time minimization problem, the average reduction was 63.1%.
The improvement in performance may be attributed to the use of a more adaptive algorithm that, as
explained earlier, adjusts the trust region weight by taking into account the finally updated solution.

Table 3. Comparison of Average Iteration Counts Across Algorithms

Objective ithm ITRM Proposed

Velocity maximization 21.1 9.3

Flight time minimization 45.8 19.6

To evaluate the validity of the proposed algorithm, an analysis was conducted for a representative
case: velocity maximization for short range and medium altitude target. As shown in Fig. 9, the merit
function converged to the objective function, indicating that the optimization proceeded while satisfying
the constraints. In the right panel of Fig. 9, the magnitude of the trust region constraints exhibited a
decreasing trend, which suggests that the algorithm converged in a stable manner. Fig. 10 indicates
that nearly identical optimal trajectories were obtained for both algorithms.

a (gipgeMeri and ‘Oljegwe over Iterations Maginitude of Trust Region Constraints
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15 1 6
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Fig 9. Merit, Objective, and Trust Region Constraint of Proposed Algorithm
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Fig 10. Comparison of Optimized Trajectories and Profiles: ITRM [7] and Proposed
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Variations of the merit function and the objective function over iterations were compared for two
methods: ITRM [7] and the proposed method. Figure 11 shows the merit function values over iterations,
where the proposed method exhibited a more rapid decrease. In addition, the objective function
converged to similar values in both cases. Figure 12 illustrates the objective function over iterations,

indicating that the proposed algorithm converged faster while yielding almost identical final objective
values.
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Fig 12. Objective Function value of each Algorithm

5. Conclusions

Based on the trajectory optimization using the PSCP algorithm, this paper analyzed the effect of the
radar FOV constraint for various PIP locations under two different objective functions. The results
indicate that, for both terminal velocity maximization and flight time minimization, short-range
engagements tend to produce an initial descent in the optimal trajectory, which may cause the missile
to exit the radar FOV. This tendency is more pronounced in the terminal velocity maximization case. In
addition, the results indicate that higher target altitudes lead to a greater descent at the beginning of
flight, for both objectives. These findings suggest that, for certain PIP locations—especially short-range
engagements—the radar FOV constraints must be considered to maintain the data link between the
fighter and the missile. In addition, to further enhance convergence, some modifications for existing
ITRM [7] is proposed. Numerical experiments show that, for the given problem, the proposed algorithm
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reduces the number of iterations required for convergence by about 50% compared with existing
method.

Future work will focus on 3D simulations to validate the presented trajectories, incorporating both
fighter and target maneuvers into the optimization process. The ultimate goal is to develop a closed-
loop simulation framework using the proposed guidance techniques.
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