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Abstract

The Unified Gas-Kinetic Scheme (UGKS) differs from traditional deterministic methods in gas dynamics
by providing a unified approach capable of resolving flow regimes, from rarefied to continuum, with a
simulation time that remains independent of the flow regime. Its effectiveness in handling complex and
multi-scale flows has been mainly demonstrated through Shakhov or Rykov models. Additionally, it has
been applied to ES-BGK type models, although its use has thus far been restricted to monoatomic effects
only.

Here, we aim to explore the application of UGKS to ES-BGK models in greater depth, extending its use
from monoatomic to polyatomic gases by employing recent formulations. Particular attention will be
given to validating this adaptation through numerical comparisons with codes from the literature, such
as SPARTA for non-vibrating gas flows and PIClas for other cases, as it can handle polyatomic ES-BGK
models, including vibrational phenomena.
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1. Introduction

During re-entry of space shuttle, various kind of atmospheric layers are encountered at high speed. To
develop such shuttles, one has to compute parietal flux and aerodynamic coefficients on these objects,
which implies to simulate precisely air flows around them. In the upper layers of the atmosphere, the
air is in a rarefied state, the mean free path of the particles of air is not so small as compared to the
size of the shuttle. In such a rarefied regime, the Knudsen number which is the ratio between the mean
free path A and a characteristic length L (Kn = %) is larger than 0.01, and is used to discriminate
rarefied regime from continuous regime (at low altitude) and also from the molecular regime (very high
altitude). In the continuous regime, the flow is described by the compressible Navier-Stokes equations of
Gas Dynamics. In the molecular regime, the Newton law is used to describe quantities at the boundary
of the shuttle. In the rarefied regime, the Navier-Stokes equations are no longer valid and the use of the
kinetic theory of gas via the Boltzmann equation is needed. The evolution of the molecules of the gas
is then described by a mass density distribution in phase space, which is a solution of the Boltzmann

equation.

One of the earliest simplified models of the Boltzmann equation is the Bhatnagar-Gross-Krook (BGK)
model [3, 21]. Tt was developed to enable faster numerical simulations of transport phenomena within a
monoatomic gas in a transitional state between rarefied and continuous regimes.

However, the BGK model has the disadvantage of only being able to simulate gas flows with a unitary
Prandtl number. Thus, it cannot accurately predict the propagation of thermal effects relative to dy-
namic effects. To address this limitation, more advanced models such as the Ellipsoidal-Statistical BGK
(ES-BGK) model [10] and the Shakhov-BGK model [20] were introduced. These models are capable of
correctly recovering a Prandtl number of 2/3 for monoatomic gases, thereby providing a more accurate
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representation of thermal dynamics and a more realistic continuous asymptotic limit representation. Un-
like the Shakhov model, the monoatomic ES-BGK model ensures the positivity of the mass distribution,
and satisfies the H-theorem [1]. Consequently, it retains the same fundamental properties as the original
BGK model and the Boltzmann equation. This model has subsequently been extended to diatomic gases
[1] and has undergone various modifications, such as capturing rotational and vibration energy relaxation
processes [8, 13, 17].

For a long time, these kinetic models were only solved numerically using methods that introduce excessive
numerical diffusion, which was much higher than the physical diffusion processes described by these
models in their Navier-Stokes asymptotic limit. To address this, a common approach was to use meshes
sized according to the mean free path of particles in the flow. However, this led to extremely time-
consuming methods as the density of the resolved flow increased. Since 2010, K. Xu et al. have been
developing a unified method known as the "Unified Gas-Kinetic Scheme” (UGKS) [22]. This singular
method allows for the accurate resolution of all ranges of flows with a computational cost independent
of the rarefaction of the gas, as its numerical diffusion is controlled [7]. In particular, this scheme can
reduce itself to either a Navier-Stokes or a free-stream resolving scheme, depending on the asymptotic
regime simulated.

The UGKS has only been applied to monoatomic ES-BGK models [6, 11]. Here, we propose to extend it
to phenomena typical of diatomic models, such as rotational and vibration energy storages, as described
by [1, 8, 13, 17]. The outline of the paper is as follows. Section 2 is dedicated to the definition of the
ellipsoidal statistical BGK class of model. Section 3 presents and adapts the unified gas kinetic scheme
to ES-BGK models. The results of numerical simulations conducted on several test cases are provided
in Section 4. Finally, Section 5 presents the conclusions of this paper.

2. The model

2.1. Mass distribution and relationship with macroscopic quantities

To describe the dynamics of a polyatomic gas, a microscopic distribution of mass F' is used. It is
defined over the phase space (t,z,v,¢,i) € RT x RP= x RP» x Rt x N such that, at any time ¢t € RT,
F(t,x,v,€,1) de dvde represents the mass excited at the ith level of discrete vibrational energy, in the
volume dxdvde centered at the spatial point x, the particle velocity v and the rotational energy e.
Formally, D, and D, represent the number of spatial and kinetic dimensions, respectively, and § will
denote the number of continuous rotational degrees of freedom.

In practice, Dy and D,, are typically set to 3, as particles can exist and move in three-dimensional space,
and ¢ is set to 2 for diatomic molecules. For such molecules, the harmonic oscillator model is commonly
used to determine the vibration energy distribution, relying on a gas-characteristic vibration temperature
Ty. In this model, the vibration energy of the ith excitation level is iR;Ty, where Ry is the constant of
the gas. In more general cases (6 > 2), the vibration energy could be modeled by a summation over
multiple harmonic oscillators corresponding to multiple vibration modes. For the purposes of this paper,
only diatomic molecules are considered.

The mass density, momentum, and total energy, which are macroscopic quantities depending on space
and time only, are recovered as velocity and internal energy moments of the microscopic distribution
F:

pP= <F>'v,e,i7 (1)
pu = (VF)y c i, (2)
E= Ec + Etr + Erot + Evibv (3)
where the modal energies are defined as:
1
E. = §p|u‘2, Ey = <%|’U - u|2F>v’Eyi> (4>
E”‘Ot = <€F>v,5,i’ Evib = <iRST0F>v,e,i7 (5)
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With (X)w,ci = Doy Je+ Jape xdvde for any distribution x(v,€,i). Moreover, additional quantities, such
as the temperatures associated with the different energy modes, can be derived as follows:

D 6 Rs TO

Eiy = == RST’I‘7 Erot = = RsTr07 Eyip = . 6
tr = Ty Pl T gttt "= Pexp (To/Ton) — 1 ©

In these expressions, the subscripts tr, rot and vib refer to the translational, the rotational and the
vibrational modes of energy. The equilibrium temperature T, is associated with all these internal

modes:
R,Ty

exp (To/Teq) — 1

Finally, for further needs, we introduce the following invertible energy functions with respect to any
positive temperature 7"

D, 0
Etr + Erot + Em’b = TPRsTeq + ipRsqu + 1% (7)

1) Rs TO

D,
T) = =*R,T T)=RT, ep(T) = —0
etr( ) 2 Rs ’ erot( ) 2Rs ) emb( ) exp(To/T) 1 (8)

2.2. The Ellipsoidal-Statistical BGK models for diatomic gases
The distribution F' is governed by a Boltzmann type of equation for dilute polyatomic gas in the absence
of any external force field:

(O F +v -V F)(t,x,v,6,1) = Q(F)(t,z,v,¢€1). 9)

The right-hand term of this equation is the collision operator, which is the term modeled to facilitate
and accelerate simulations of rarefied flows. In the ES-BGK models framework [1, 8, 10, 13, 17] is it
proposed to model the collision operator as a relaxation toward a local anisotropic equilibrium:

1
Q(F)(t,x,v,¢e,i) = =(G[F] — F)(t, x,v,€,1), (10)
T
where G[F](-,+,v,¢€,1) is a combination of multiple pseudo-equilibrium distributions, each corresponding
to a specific energy mode. In the most general case, accounting for translational, rotational, and vibra-
tional degrees of freedom of particles, the near-equilibrium state G[F] is expressed as the product of Gy,
Grot, and G defined as follows:

1
Gulo) = Lo (—2<v )T - u>> , (11)
N A5 5%2 _ €
Crole) = (R ® © O ( RJ::!) ’ (12)
T
Guali) = (1 = exp(=To/ Tz exp (=it ). (13)

Here, the constant As is defined in terms of the standard gamma function as As = 1/I'(§/2). The terms
Tret and Tgfbl represent the rotational and vibrational relaxation temperatures, respectively, while 7 /R,
denotes a relaxation temperature tensor. These three last quantities describe the exchange of energy
between translational, rotational and vibrational modes. The tensor 7 /R; is related to the anisotropic
tensor of temperature ©/R,, the Prandtl number Pr, and the relaxation translational temperature 77,

as follows:

1
T =R, + (1 — P) © — R, T, Ip,], (14)
r
1
0= ;<(v —u) @ (V= u)F)yc, (15)
T = et (e), Trat = eraileron)s Ty = epip(enis)- (16)
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While the previous expressions are common to all ES-BGK models, relaxation modal energies e}, er¢l

and 62% need to be defined. In fact, they differ from one ES-BGK model to another depending on the
energetic relaxation process modeled.
In the Holway [10], the rotational and vibrational modes of molecules are not considered, and the

translational relaxation energy is:

e;*:,l = et (Tir)- (17)

In the Andriés model [1], the vibrational mode of molecules is not modeled and the relaxation energies
are:

e:rel = e (Tyr) + (etr(Teq) — etr(Tir)), (18)

Zrot

6:?,1 = €rot (Trot) + (erot (Teq) — €rot (Trot)>~ (19)

Zrot

Finally, in the Pfeiffer model [13, 17], which include both rotational and vibrational energies, the relax-
ation energies are:

T T

e;:l = Etr (Ttr) - m(@*ot (Tt'r) — €rot (Trot)) - m(evib(TtT') - evib(Tvib))7 (20)
e:glt = €rot (Trot) + (erot (Ttr) — €rot (Trot))a (21)

ZrotTC
62% = evib(Tm'b) + (evib(TtT) - evib(Tvib))- (22)

ZyibTC

In the above definitions, 7¢ is the average collision time of molecules, and Z,,; or Z,;, are the average
numbers of collisions required to involve energy exchange with the rotational mode or the vibrational
mode, respectively. These are common parameters in Direct Simulation Monte Carlo (DSMC) methods
and typically range from 3 to 20 and from 50 to 100’000, respectively. These values can either be treated
as constants or expressed as functions of the translational temperature, as described in [12, 15, 16].

Furthermore, the relaxation time 7 of the model is related to the fluid viscosity and the pressure as

follows:
I

T Prp’

Finally, all these models have been proven [1, 8, 13], under reasonable conditions, to be well defined,
conserve mass, momentum, and total energy, and admit the "Maxwellian state” M below as full equilib-
rium:

p = pRT},. (23)

MIF)(,€,1) = Moy (0) Myon (€) Mo (3 (24)
Mo0) = s O (—';’R‘;") | (25)
Mole) = Grpgerse T e (- RT) | (26)
Moali) = (1 = exp(-To/ T exo (i ). (27)

They also yield correct transport coefficients and Prandtl number in the hydrodynamic limit, and satisfy
the H-theorem.

3. The UGKS

The numerical method will be presented in a 1D spatial framework for simplicity, although it can be
extended to 2D or 3D. We begin by outlining the framework before constructing the UGKS for ES-BGK
models.

HiSST-2025-239 Page 4/ 11
C. Baranger, A. Coépeau and L. Mieussens Copyright © 2025 by the author(s)



HiSST: International Conference on High-Speed Vehicle Science & Technology

3.1. A Discrete-Velocity-Model - Finite-Volume framework

The ES-BGK model is an integro-differential equation expressed in an advection-relaxation form, which
makes the finite volume framework intrinsically well suited. In this context, all phases of the equation
will be discretized. In that sense, the time space Rt and the physical space R are divided into intervals
([t", ")) pen and (lzi_1, 24 1])iez, respectively. For simplicity, the spatial interval length will be
constant, denoted as z = z; 41T Finally, following the methodology of Discrete Velocity Models
(DVM), we consider a finite velocity set V C R3 and the projection of the model equation (9-10) on this
set.

In association with the velocity set V, we choose a quadrature rule on the velocity phase that enables the
computation of the moments of the microscopic distributions set. In the following, (x)y will denote the
velocity quadrature rule integration of a distribution x(v), while (X)y . ; will refer to the combination of
this velocity quadrature rule integration, continuous integration over the phase €, and summation over
the phase i of a distribution X (v, ¢, 1).

We introduce the distribution families (F(+,"))nen icz r<v) and (G4 (s ) )Jnen,iez.k<|v| defined as the
mean value of F' and G on a spatial cell [« %,xH%] at time t", and velocity vy:

77—

F\" . 1 [T (F\ ,
<G>.k(671) = Ax/x_l (G) (t", x, v, €,1)dx. (28)

)

Integrating (9-10) at velocity vy, over the spatial volume [z;_1,x;, 1] for the time interval [¢", 1] leads
to the classical finite volume formulation:
tn+1

n : noon AT n ,
Fi,lj_l(evl) - Fi,k(evl) - Fx [ itk ¢i*%,k} (671) +/
t'ﬂ

T, 1 _F
/ G ke idedt, (29)
. 1 T

-3

n+1

. 1t :
¢?+%7k(671) = E / ’ka(tvxi—i-%avkaeal)dt' (30)
tn

Finally, for further needs, we also introduce the discrete moments (W7 )pen iez of (ank(, ) neNiez,k<|V|
with respect to the operator (-)y ¢ ;:

Wi = (mp(e, ) F(e. 1)), (31)

T
my(e,i) = (1 vV VU € iRSTO) . (32)
Integrating (29-30) with (-)y ;i naturally leads to a finite volume scheme on moments W.

The finite-volume formulation (29-30) is an exact expression. However, the relaxations and flux terms
must be approximated. Generally, they are considered separately using a splitting method. The relax-
ation term is commonly approximated by a quadrature method in time (e.g., forward Euler, backward
Euler, Crank-Nicolson), while the flux term is estimated either by a high-order reconstruction or by
characteristic techniques, both applied to the collisionless transport equation.

3.2. A multi-scale formulation of the numerical flux

The key idea of the UGKS [22] is to use the entire model equation (9-10) to express the evolution of the
distribution F' during the time interval [¢t",¢] at cell interface position (xl N % , Uk, €,1), which is required to
compute the numerical fluxes (30). This approach differs from conventional methods by accounting not
only for free transport but also for relaxation towards equilibrium during the distribution transport itself.
Specifically, by using the characteristic method on the model equation (9-10), for a time-independent 7
over the interval [t",¢] and for any (x,v,€,1), we get:

t—t"
T

F(t,x,v,e,1) =exp (— ) F(t",x —v(t —1t"),¢,1i)

(33)

t —
+/ exp (t S) 1G(s,af:f'v(tf.s),'v,e,i)ds.
¢ T

n T

HiSST-2025-239 Page 5/ 11
UGKS for ES-BGK models Copyright © 2025 by the author(s)



HiSST: International Conference on High-Speed Vehicle Science & Technology

The above equation, which represents the distribution F at (¢,x,v,€,1), is a balance between the colli-
sionless transport of the initial distribution and the transport of the equilibrium distribution.

3.3. Second order reconstruction of both microscopic and macroscopic parts of the flux

An exact numerical flux based on equation (33) would require knowledge of the distributions F' and G at
any (t,z,v,¢,1) € RT x RP= x RP» x Rt x N. For practical computations, approximations must be made.
To develop a second-order scheme, these distributions are approximated by linear constructions based on
discretized distributions (28). A common assumption in the finite volume framework is to consider these
mean values at the center of the spatial cells. In the UGKS framework [22], 7 is considered constant
near the interface, reconstructions F for F' are performed for each cell, while reconstructions G for G are
realized for each cell interface as formalized below:

sz(x, €,1) = F[fk(e, i)+ 51F[fk(e, D) (z — x;), (34)
GH%’,C(t,x,e,i):G;ﬂr%,k(e,i)+51G?+%7k(e7i)(x—x 1)+ 686G}, 1 REDE—1"), (35)

where F, §,F, G, 6,G, and §;G should be discrete approximations of microscopic and equilibrium
distributions, and their partial derivatives. For stability purposes, ., F is defined in each cell as a limited
slope based on forward and backward slope and a TVD (Total Variation Diminishing) limiter [22].
The microscopic part of (33) is replaced by the appropriate linear approximation of the microscopic
distribution, depending on the cell location of @ — v(¢t — ¢™). Thus, following this point and for further
needs, we define:

S Fl(e i) ifup, 20,
0o F]y s y(ed) = (36)
0. F o (6,1) if vge <O.

For the macroscopic reconstruction (35), we ﬁrst require G7, 1 | (¢,1). This term is determined by the

moments W il of I at the cell interface i + 35 1 and time t". Consequently, the linear reconstructions
F}') and F},, , are employed to approximate these distributions and moments:

Fle(@ipy,ei) if vg, =0,

F:F%,k(e’ i) = (37)
F?+1,k(xi+%7e7i) if vy 5 <0,

Wﬁr% = <mk(e 1)FZ+ e )>V,e g (38)

Finally, (7, e, Z%) M1 are determined using WZ_ L and the appropriate formulation of the relaxation
2

energies and tensor (14, 17, 18) or (20), after which G, , | (€,1) can be deduced.
3

3.4. A major replacement in the macroscopic part of the flux

The last terms in (35) to approximate are the derivative components of G, denoted as §,G and §,;G
Expressing these discrete spatial and temporal derivatives is a major step in constructing the fluxes
of UGKS. The key idea employed here to ensure the proper behavior of the scheme is to replace the
pseudo-equilibrium derivatives §,G and §;G with those of the corresponding Maxwellian distribution:
6, M and d; M

First, it is important to remark that the derivatives of continuous states G and M are close to and of the
same order as 7, as these states are. This is a classical result from Chapman-Enskog analysis (see, e.g.,
[1]). As a result, during a large time step At > 7, from a continuous point of view, the average time
derivative of M is very close to the average time derivative G, with an error depending on 7 < Af.

Second, the discrete time derivative contribution in the numerical fluxes is mainly important in the
continuum regime. An approximation of O(7) on the derivative of equilibrium would not break down the
Navier-Stokes asymptotic since it is a convenient replacement in the Chapmann-Enskog expansion.
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The last, complementary, and more profound reason is stability. In the continuum regime, the numerical
fluxes use the time derivative to compute the viscous part associated with the Navier-Stokes asymptotic,
and also to achieve a second-order time scheme by indirectly computing the equilibrium at time "+ At /2.
This computation can be compared to a forward Euler method based on the time derivative at time ¢".
However, the characteristic relaxation time of the pseudo-equilibrium state G toward the Maxwellian
M is proportional to 7. Thus, using this time derivative with a time step At/2 >> 7 to estimate the
evolution of G is not appropriate. It could over-relax the equilibrium state G and may lead to negative
values of the distribution, in the continuum regime.

All these reasons explain why it is common in the UGKS framework to replace the derivative of the
equilibrium state by the derivative of the Maxwellian. For example, this approach was used for the
ES-BGK monoatomic model in [6] and for the Shakhov model in [23].

3.5. Construction of the equilibrium derivative terms
Spatial derivatives of the Maxwellian distribution are computed on both sides of the interface [22]:

Oy MPy (61) if vge >0,

xT 5
5IM2.1%’,€(6, i) = (39)
6;Mﬁ%7k(e,i) if vy <0,

where d; M and §;F M are defined as follows. Using an exponential form of the continuous equilibrium
state M = ¢=2/2exp(n - a) with n = (1, v, %|’U|2 +e+iR,Tp)T and a a vector of conservative-related
quantities, it can be shown that the derivatives of the continuous equilibrium state M are inner products
of a velocity-internal energy dependent vector and a macroscopic vector: OM = n - daM. So, we are
looking for discrete derivatives 6 M in the form:
+ . . + .

696 Min+%7k(67 1) = T’k(ev 1) . 59c a?+%M?+%7k(€v 1)' (40)
Using a chain rule, we get da = dya U, where U = (p, pu, E)T are the usual moments related to
Maxwellian state (24) and dy is a Jacobian matrix that can be derived analytically. The vector U can
be deduced from W and is both used to compute M, , , using (24) and S a as:

5

0y 0 1 = {5‘(]04} i1 Az (41)
n U/’l - Un 1
+ n _ i+1 i+3
0 Yiry T [aUa} it3  Az/2 (42)

For the time derivative, the same technique is applied. However, we first have to construct a discrete
temporal macroscopic derivative 6;U, which is the discrete equivalent of QU = 0¢(nF)y.;i = (n (v -
V2F))v,ci- Following this, we set at the discrete level:

Uy = = (e Do Iy y y(ed)) (43)
(5,5012_%(6,1) = |:8Uai| i+%§tU?+%’ (44)
0 MLy 4(61) = my(e,i) - dof y MILy (e,). (45)

3.6. Conclusion on the flux part of the scheme
Injecting the reconstructions in the numerical flux definition (30) leads to the following expression of the
numerical flux ¢:

Oy 1 1.(61) = Vi [(1G + @20k 00 M + g30:M + @ F + g500 00 F] ?+%7k(67 i). (46)

The coefficients (¢,)1<p<s5 are defined at the cell interface i+ 3 and at time ¢". They determine the scheme

behavior depending on the local gas rarefaction (77 ;) and the numerical resolution (At/7" , ):
2

1
i+3
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Logi=1-5(1—e 27,

2. qo = 22—1(1 — e AUT) (1 4 e AT,
g3 =4 -7+ %(1 — e AT,

4 g = F(1—e A7),

5. q5 = Te AT — g—i(l - efAt/T).

3.7. The UGKS relaxation part
A Crank-Nicolson based approximation is used for the relaxation part [22]. The numerical scheme is

therefore:
G-F\" G- F\""!
(S=5) < (5) e
T ik g ik

Classically, the equilibrium state at time t"*! is computed based on the moments of F [11, 22], which
are obtained from the moments of the microscopic scheme (47). This accurate technique could lead to a
non-symmetric positive-definite tensor © and could compromise the calculation of a realistic equilibrium
Gnt1l. This is why we use instead a backward Euler relaxation term for the macroscopic scheme:

n . A 2 [ . L At
Fi,lj_l(eal) = Fii(ei) — Ax {Qsi-%é & *¢i_% k} (e,1) + o

At V-_w\"
wrtl—wnr - — " | — " At | —— 48
A N ()
where ® and V are defined as follows:
Q= (mo)v.ci, V=(mG)y.,; (49)

4. Numerical results

To assess the effectiveness of incorporating the collision process into the characteristic method (33) used
to define numerical fluxes, we introduce the KO2 scheme, which is formulated without these relaxation
effects. Thus, this scheme recovers the same behavior as UGKS only in the free molecular regime. We
also compare our results with PIClas [18], a stochastic code that also solves the Pfeiffer ES-BGK model
[13, 17].

4.1. The Couette flow
In the Couette configuration, the gas flows between two parallel, isothermal, infinite plates. One plate
is stationary, while the other moves with a finite velocity u,, in the tangential y-direction. Under the
continuum approximation, with no slip boundary conditions, the compressible Navier-Stokes-Fourier
equations (CNS) yield to:

x 1Praz(L—z) o
The Knudsen number of the flow is here defined as: Kn = et/ (Lpv/RsTy,). Simulations are conducted
in a near-continuum regime, at different Knudsen numbers by varying the initial mass density of the
flow.

The parameters defining the gas are taken constant as follows: the specific constant Ry is 296.8 Jkg=! K1,
the viscosity p is 1.656 x 10~° Po, the Prandtl number Pr is 0.71, the degree of freedom number § is 2.0,
the average number Z, is set to 5.0, and the ES-BGK model of Andriés [1] is used since the vibrational
mode of energy is not excited. Furthermore, the boundary walls are separated by a distance L = 1m,

are maintained at 273 K and the velocity ., is set to 300ms™?.

The spatial domain is discretized exclusively in the z-direction using 25 uniform cells. The velocity grid
is Cartesian, defined over the range [£1200] x [—1200, +1500] ms~!, with 50 velocity points in both the
z- and y-directions.

HiSST-2025-239 Page 8/ 11
C. Baranger, A. Coépeau and L. Mieussens Copyright © 2025 by the author(s)



HiSST: International Conference on High-Speed Vehicle Science & Technology

Figure 1 presents comparisons of the UGKS and KO2 schemes with the CNS solutions at different Knud-
sen numbers. Simulations with the KO2 scheme and a finer mesh have been conducted to highlight the
deviation of the CNS solution from the rarefied flow solutions caused by the boundary conditions.

First, Figure 1 demonstrates the ability of both UGKS and KO2 schemes to resolve near-continuum flows.
However, the UGKS achieves better accuracy on the same mesh. More precisely, as the Knudsen number
decreases, the KO2 predictions increasingly deviate, while the UGKS predictions remain stable. Second,
using the temperature equation (50), the Prandtl number can be roughly evaluated through a parabolic
regression using the least squares method. The estimations on Figure 1 show the excellent capability of
UGKS to simulate a correct Prandtl number for a given mesh, compared to the KO2 scheme.
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Fig 1. Comparison of UGKS and KO2 schemes with CNS solution in 1D Couette flow, and their Prandtl

Position (m)

(a) Kn=9.0 x 1073,

estimations using regressions (Given Pr: 0.71, Z,.,+ = 5.0).

Position (m)

(b) Kn=22x 1073,

7000 [ [ Ugks 7000 |
K —
6000 PiClas - - - - 6000
SPARTA
c 5000 | e 5000 |
4 8
S 4000 | w0 £ 4000 ¢
2 3000 | 2 3000 |
£ w0 |- £
= =
2000 | s - 2000 |
1000 ™ 1000
O L \7 L L 0 L L L L
-0.05 -0.04 -0.03 -0.02 -0.01 0 -0.05 -0.04 -0.03 -0.02 -0.01 0

Position from stagnation point (m)

Position from stagnation point (m)

(a) without the vibrational mode, (b) with the vibrational mode,
Fig 2. Comparison temperatures profiles on the stagnation line of a cylinder in a hypersonic flow,
without consideration of vibrational energy.

4.2. Hypersonic flow passing a infinite cylinder

The 2D flow studied here is a hypersonic flow of dinitrogen around an infinite cylinder, representative of
the conditions at an altitude of 70km [5]. Given the hypersonic and rarefied nature of the flow, a smooth
shock forms in front of the cylinder, and non-equilibrium effects occurring within it are particularly
noticeable. Additionally, the conversion of a major part of kinetic energy into thermal energy behind
the shock results in a sufficient increase in temperature to excite the vibrational mode of the particles.
Consequently, the ES-BGK model chosen to model these non-equilibrium phenomena is that of Pfeiffer
et al. [13].
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The gas parameters are mostly identical to those used in the previous case, except for the viscosity, the
Prandtl number, and the vibrational relaxation parameters. The viscosity is computed according to the
VSS model with viscosity reference fiyer = 1.656 x 10~°Po at Trep = 273.15 K, viscosity index w = 0.74
and scattering parameter a = 1.36. The Prandtl is determined according to the Eucken formula, the
collision number Z,;, is set as a constant to 200, and the characteristic temperature of vibration is
Ty = 3371 K. The spatial domain is again reduced to 2D using a reduced distribution technique and
meshed around a cylinder with a radius of 4 cm maintained at temperature T, = 1000 K. The velocity
grid is also 2D bounded and discretized in both the x and y-direction.

First, a simulation excluding the vibrational energy mode is set up to compare our adaptation of UGKS
with other approaches of the literature. Consequently, we conducted computation with the open-source
DSMC code SPARTA [19], the stochastic ES-BGK solver PIClas [9, 18], and the deterministic finite
volume ES-BGK solver developed at CEA, referred to as K. [2]. Comparisons are performed along the
stagnation line and are presented in Figure 2(a). Good agreement can be observed between those codes.
The primary difference is the shock expansion predicted by ES-BGK based codes compared to SPARTA
which emulates the Boltzmann equation. This well-known behavior of BGK and ES-BGK models is
generally attributed to the independence of the relaxation time 7 on higher moments of the microscopic
distribution, the distribution itself [4] or particle velocities [14]. Another difference appears in the peak
translational temperature: while UGKS, K., and SPARTA yield similar values (within 0.15%), PIClas
slightly underpredicts this maximum, with a deviation of —2.12% compared to UGKS.

Second, the vibrational mode is included. Since the energy relaxation mechanisms used in SPARTA
and K. are not easily compatible with the relaxation law prescribed by the ES-BGK model of Pfeiffer,
comparisons are restricted here to PIClas and UGKS only and are presented in Figure 2(b). As before, an
excellent agreement in the modal temperature profiles can be observed as well as a restricted difference
in the translational temperature peak value (—1.71%).

5. Conclusion

We proposed an extension of the Unified Gas-Kinetic Scheme (UGKS) to ES-BGK models that incor-
porates specific diatomic modes of energy. This adaptation extends the UGKS-ES-BGK framework
from monoatomic to diatomic gases using techniques similar to those applied in extending UGKS-BGK
to Shakhov and Rykov models. The method shows good agreements both for a near-continuum 1D
viscous-driven flow and a rarefied 2D hypersonic flow, under both under-resolved and well-resolved mesh
conditions.
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