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Abstract

Hypersonic re-entry guidance poses significant challenges due to the sensitivity of optimal trajectories
to dispersions in initial conditions and vehicle dynamics. Traditionally, guidance systems rely on
precomputed optimal reference trajectories to mitigate these dispersions, employing on-line tracking
algorithms to track to the nominal path. However, for large dispersions in initial conditions, this
approach necessitates to embark either extensive databases of representative trajectories or robust
online trajectory re-planning capabilities, both of which entail high computational or storage demands.
Recent approaches have explored data compression techniques—such as Bézier curves or optimal
shooting points — to reduce the storage required for representing optimal trajectories and commands.
In this paper, we demonstrate that the relationship between stored representative trajectory data and
initial condition dispersions can be effectively learned and subsequently leveraged onboard. Artificial
neural networks have been trained offline using a limited number of optimal trajectories within an
initial dispersion box. The trained model is then used online to quickly recompute an initial reference
trajectory suitable for guidance algorithms such as Bézier curves-based guidance (BCBG) or Proportional
Navigation (PN). This approach enables coverage of a large dispersion box in Monte Carlo simulations
while satisfying precision requirements and various path constraints significantly reducing computational
and storage demands while maintaining robustness to dispersions.
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Nomenclature

Vehicle States and Dynamics Latin
a – Acceleration vector
an – Normal (centripetal) acceleration
g – Gravitational acceleration
L, D – Lift and drag forces
m – Vehicle mass
r – Position vector
v – Velocity vector
Angles and Coordinates Greek
γ – Flight path angle
χ – Velocity azimuth (heading angle)
α – Angle of attack
µ – Bank angle
λ, φ – Longitude and latitude
Bézier and Geometric Notation Latin
Bn

i – i-th Bernstein polynomial of degree n
N – Number of Bézier segments

Pi – Bézier control point of segment i
Pi,k – k-th control point of the i-th Bézier arc
Greek
κ(τ) – Curvature vector of the reference path
τ – Normalized curve parameter
θi(τ) – Physical time along Bézier segment i
Mission Parameters and Scaling Latin
RE – Mean Earth radius
tref – Reference time for velocity scaling
Ma – Mach number
Indexing and Operators Superscripts
ref,0 – Superscripts denoting values on the

nominal offline reference trajectory
Subscripts
i, k – Segment and local control-point indices
0, f – Initial and final conditions
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1. Introduction
Hypersonic atmospheric re-entry guidance remains a challenging problem due to the strong sensitivity
of the vehicle trajectory to initial condition dispersions, model uncertainties, and environmental
disturbances [1, 2].
Conventional approaches [3] rely on precomputed optimal reference trajectories generated offline, which
are then tracked onboard using feedback control laws to mitigate deviations. While effective for small
dispersions, this strategy becomes inadequate when large off-nominal conditions occur: the reference
trajectory no longer represents a feasible optimal path, and simply tracking it can lead to violations of
mission constraints or significant loss of accuracy.
Two main strategies are available to address this issue:

• Onboard re-optimization of the trajectory, which can restore optimality but is often
computationally prohibitive in a real-time, resource-constrained environment [4, 5].

• Adaptation or reconstruction of the stored reference trajectory based on the current state,
which is generally faster but requires a compact, easily adjustable representation [6, 7].

The latter strategy motivates the use of low-dimensional trajectory representations, where the complete
trajectory is encoded by a reduced set of parameters. Bézier curves are a particularly attractive option:
they can accurately approximate smooth flight paths using only a few control points [8, 9], are well-
suited for storage, and allow for efficient interpolation or modification in flight. Moreover, they can
be directly integrated into certain guidance laws, such as the BCBG scheme [10], which computes the
control commands required to track the curvature of a Bézier-defined reference path.
However, in the presence of large dispersions, even the parameters of this reduced representation must
be updated. In this work, we propose an offline learning approach that maps initial condition dispersions
to the parameters of a compact trajectory representation. A neural network [11] is trained using a set
of optimal trajectories generated within a predefined dispersion domain. At runtime, the trained model
predicts the parameters corresponding to the current state, enabling the onboard reconstruction of a
reference trajectory suitable for immediate use by any path-following algorithm.
While the principle is generic and could be applied to alternative representations and tracking laws
(e.g., proportional navigation [12], sliding-mode control [13]), this study focuses on Bézier curves and
evaluates the approach within the Bézier Curves-Based Guidance (BCBG) framework [10]. Through
Monte Carlo simulations, we assess the ability of our surrogate model to provide accurate, constraint-
compliant trajectories over a wide dispersion domain, while significantly reducing onboard computational
and storage requirements.

2. Bézier curves and guidance derivation
2.1. Mathematical definition and properties
Bézier curves are polynomial parametric curves defined by a set of control points P0, P1, . . . , Pn and
Bernstein polynomials [8]. Given a dimensionless curve parameter τ ∈ [0, 1] (also referred to as the
normalized curvilinear abscissa), an n-th order Bézier curve is expressed as

P (τ) =

n∑
i=0

Pi B
n
i (τ) (1)

where Bn
i (τ) :=

(
n
i

)
τ i(1− τ)n−i is the n-th order Bernstein polynomial.

The initial and final positions are exactly the first and last control points (P (0) = P0, P (1) = Pn). The
derivatives at the endpoints are directly related to the vectors P1 − P0 and Pn − Pn−1, namely,

P ′(0) =
dP

dτ
(0) = n (P1 − P0), P ′(1) =

dP

dτ
(1) = n (Pn − Pn−1), (2)

which makes it straightforward to enforce boundary conditions on position, velocity direction, or flight
path angle by appropriately setting these points. These properties make Bézier curves particularly
appealing for trajectory modelling.
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Moreover, Bézier curves provide a compact representation, since smooth trajectories can be defined
with only a small number of control points. Intermediate states can be computed analytically from
these points, which greatly simplifies interpolation. Furthermore, the De Casteljau algorithm [9] allows
any portion of a Bézier curve to be expressed as another Bézier curve, enabling straightforward updates
of the path during flight without recomputing the entire trajectory.

In aerospace applications, 3rd- or 4th-order curves are often used to represent the reference path in
geocentric coordinates (r, λ, ϕ), where r is the radius, λ longitude, and ϕ latitude [4, 6, 7, 10, 14].

For this application, 3rd-order Bézier curves are used, therefore

P (τ) = (1− τ)3P0 + 3(1− τ)2τP1 + 3(1− τ)τ2P2 + τ3P3. (3)

The derivatives at the endpoints follow directly from this definition: at τ = 0,

P ′(0) = 3(P1 − P0), P ′′(0) = 6(P0 + P2 − 2P1) (4)

while at τ = 1,
P ′(1) = 3(P3 − P2), P ′′(1) = 6(P1 + P3 − 2P2). (5)

2.2. Piece-wise interpolation of a reference trajectory
In many guidance scenarios, a single global polynomial or spline is insufficient to accurately capture
long and dynamically complex trajectories. Variations in curvature, speed, and flight conditions are
more effectively represented with a Piece-wise Interpolation, where the path is decomposed into N
cubic Bézier curves, each defined by its own control points and timing.

This piecewise construction improves local fidelity — for instance during high dynamic pressure phases
or terminal corrections — and enables efficient mid-course updates by recomputing only the remaining
segments.

Let x(t) =
(
r(t), v(t)

)
, t ∈ [t0, tf ] denote a reference trajectory. Each segment Pi(τ), τ ∈ [0, 1],

satisfies 

Pi(0) = Pi,0 = r
(
ti−1

)
,

Pi(1) = Pi,3 = r
(
ti
)
,

P ′
i (0) = 3 (Pi,1 − Pi,0) = ρi,1 v

(
ti−1

)
,

P ′
i (1) = 3 (Pi,3 − Pi,2) = ρi,2 v

(
ti
)
,

(6)

ensuring positional and tangent continuity at the junctions tk. The free parameters (ρi,1, ρi,2) are directly
related to the curvature at the segment endpoints [8]. The optimization problem therefore consists in
selecting the set of curvature parameters ρi,1, ρi,2 together with the intermediate switching times tk
(with t0 and tf fixed), so as to maximize guidance performance [10]. A common criterion is thus to
minimize the deviation from the reference:

min
N∑
i=1

∫ 1

0

∥∥r(θi(τ))− Pi(τ)
∥∥2 dτ, (7)

where the so-called true time θi(τ) is defined as the solution of
dθi
dτ =

∥P ′
i (τ)∥

∥v(θi(τ))∥
,

θi(0) = ti−1.

(8)
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2.3. From trajectory representation to guidance law
A Bézier curve is, by construction, a purely geometric object and does not inherently encode vehicle
dynamics. In a guidance context, the curve is interpreted as the desired reference path in space,
parameterized by τ(t), where τ is the normalized curvilinear abscissa along the currently tracked
segment. The guidance task consists of computing control inputs that drive the actual vehicle state
toward this path while satisfying operational constraints.
The process involves three main steps:

1. Kinematic mapping: From the Bézier formulation, the first and second derivatives of position
with respect to the Bézier parameter τ are computed analytically. Using the chain rule, these are
converted into time derivatives as

d
dt = τ̇

d
dτ , (9)

for first derivatives, and
d2
dt2 = τ̇2

d2
dτ2 + τ̈

d
dτ , (10)

for second derivatives. This yields the instantaneous velocity and acceleration vectors along the
reference path.

2. Inverse dynamics: Using the time derivatives from the kinematic mapping, the commanded
accelerations (normal, tangential, or full 3D) are derived so as to reproduce the curvature and
progression rate of the reference trajectory. In the case of an unpowered glider, these accelerations
correspond to aerodynamic lift and drag components; for a powered vehicle, they include thrust
contributions [14].

3. Control allocation: The commanded accelerations are converted into physical control variables
(e.g., angle-of-attack α and bank angle µ for an unpowered glider, or thrust magnitude and
direction for a powered stage) through the relevant aerodynamic or propulsion model, while
enforcing actuator saturations, aerodynamic constraints, and other operational limits.

Since τ is not directly related to physical distance or elapsed time, a monotonic mapping t(τ) is here
introduced. For any smooth function f ,

f ′(τ) = ḟ(t(τ)) t′(τ), f ′′(τ) = f̈(t(τ)) t′(τ)2 + ḟ(t(τ)) t′′(τ), (11)

ensuring the reparameterization is valid even for complex geometries.
A derivation of the dynamics and associated control laws for a Bézier-based reference path in geocentric
coordinates was presented in [10, 14]. In the present work, we adopt a formulation expressed directly
in cartesian coordinates, where the total acceleration is defined as

a =
L

m
− D

m
− g, (12)

where L andD are the lift and drag forces, and g the gravitational acceleration. For an unpowered glider,
the tangential acceleration is essentially dictated by drag and gravity and cannot be actively increased.
The controllable part of the motion comes from the lift force L, which acts nearly perpendicular to the
velocity vector. By adjusting the bank angle µ, the lift vector is rotated within the plane normal to
the velocity, thereby shaping the trajectory curvature. It is therefore natural to formulate the guidance
problem in terms of a commanded normal acceleration, which directly controls how closely the vehicle
tracks the Bézier reference path.
In this framework, the guidance command is derived from the curvature of the reference trajectory
P (τ), which specifies the lift acceleration to be produced. The curvature vector is given by

κ(τ) =

(
P ′(τ) ∧ P ′′(τ)

)
∧ P ′(τ)

|P ′(τ)|4
, (13)
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and the required normal acceleration can then be expressed directly as

an =
∥v∥∥κ∥
∥v ∧ κ∥

(
∥v∥2κ− ⟨v, κ⟩v

)
. (14)

This formulation automatically corrects for potential misalignment between the velocity and curvature
vectors. By construction, the commanded normal acceleration satisfies

∥an∥ = ∥v∥2∥κ∥, (15)

which reduces to the classical centripetal acceleration in the planar case where v ⊥ κ. Therefore, the
lift acceleration command reads

L

m
= an +

(v ∧ g) ∧ v

∥v∥2
. (16)

This lift acceleration L/m is expressed in the vehicle body frame, whose z-axis is aligned with the
velocity-normal direction in the vertical plane, and whose y-axis is lateral, perpendicular to both the
velocity vector and the z-axis. Projecting L/m onto these axes gives

ay =
1

m
⟨L, ey⟩, az =

1

m
⟨L, ez⟩, (17)

so that the commanded bank and angle of attack can be computed as

µ = arctan
(
ay
az

)
, α = F−1

(
|L|, ρ,Ma

)
, (18)

where F−1 denotes the inverse aerodynamic lift model, mapping lift magnitude, atmospheric density
ρ, and Mach number Ma to the corresponding angle of attack. Finally, the obtained commands are
saturated according to actuator authority and operational load-factor limits

Remark. In practice, the BCBG algorithm is executed in a shrinking-horizon fashion, with updates
performed at discrete times tk [10]. At each step, the current Bézier segment being tracked is indexed
by ik, and the active target point along this segment is denoted Pck . Between updates, commands are
evaluated from precomputed look-up tables indexed by time t(τ).

When a new update occurs, the remaining portion of the trajectory from the vehicle’s current state to
Pck is reparameterized using the De Casteljau algorithm [9]. The target point is switched to the next
waypoint when the remaining curvilinear distance to it drops below a threshold Lmin, or fixed to the final
waypoint when ik = N . An alternative strategy is to select the active target point based on a fixed look-
ahead distance along the reference path, rather than locking it to predefined waypoints. This approach
can smooth the guidance response and avoid abrupt target switches, particularly when disturbances or
modelling errors cause deviations from the nominal trajectory.
2.4. Guidance limitations under large initial errors
A limitation of guidance strategies based on reference following arises when the initial dispersion in
position and heading is large. In such cases, the nominal reference trajectory P (τ) may become too
costly or even impossible to track directly, as the required corrections would exceed the vehicle’s
maneuvering capabilities. A natural idea is then to modify the reference itself so as to improve its
followability.
A simple approach would be to translate the reference trajectory so that it originates at the current
initial state. This guarantees immediate consistency at launch but carries the risk of “propagating” the
initial dispersions to the final state, thereby degrading terminal accuracy. More elaborate compromise
strategies can be envisioned, for example by progressively morphing the translated trajectory back
towards the nominal one as a function of the trajectory progress (e.g.percentage of flight completed,
or current altitude).
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In the present work, rather than relying on ad-hoc transformations, we adopt a data-driven strategy:
neural networks are trained to generate a modified reference trajectory directly, conditioned on the
dispersed initial state. This enables rapid adaptation while preserving feasibility with respect to terminal
conditions and operational constraints.

Recent works have even sought to associate state-action mappings with dispersions along the entire
trajectory, enabling purely neural-network-based guidance laws [15]. In contrast, the approach
considered here focuses on predicting the parameters of a compact reference trajectory
representation, while the online path-following itself can be governed by any suitable guidance law
(e.g., BCBG, proportional navigation, or sliding-mode schemes), rather than being embedded in the
neural network. Beyond its computational efficiency, this strategy also provides an explicit reference
trajectory, which can be readily exploited a posteriori for mission analysis.

3. Neural-network based generation of reference trajectories
3.1. Motivation and principle
In general, trajectory-tracking guidance frameworks allow the reference path to be reconfigured at the
beginning of a given flight phase, based on the actual initial state — possibly dispersed from nominal —
either through geometric adjustments or by solving an optimization problem.

When additional constraints must be handled — for instance, exclusion zones, desired final state — it
becomes necessary to ensure that any trajectory deformation remains consistent with these
requirements, or that the optimization procedure is sufficiently robust to deliver a feasible solution
within the allotted time. To avoid relying on such a reconfiguration step, the objective here is instead
to exploit the framework, which enables the rapid computation of a relevant reference trajectory
directly adapted to the dispersed initial state.

The generation process relies on a surrogate model trained on a large database of pre-optimized
trajectories. Each trajectory in the database results from solving an offline optimal control problem
under realistic aerodynamic, structural, and operational constraints. Once trained, the meta-model
provides the Bézier parameters directly from the measured initial state

First, because the trajectories used for training are obtained from offline optimization under realistic
aerodynamic and operational constraints, the generated paths are feasible by construction and
automatically satisfy the required mission constraints.

Second, the method maintains a high degree of robustness to large initial dispersions, ensuring that the
final state remains close to the target even when the initial conditions are significantly perturbed.

Finally, since the output is simply a dynamically consistent reference trajectory, it can be followed by a
variety of guidance laws— such as BCBG, Proportional Navigation (PN) [12], or alternative path-following
schemes [16] — without the need for re-tuning.

3.2. Case study and dataset generation
The proposed method is assessed on a simplified hypersonic vehicle model inspired by a high-lift
Common Aero Vehicle (CAV) configuration [17], representative of an unpowered glider during
atmospheric entry. In the nominal mission scenario, the vehicle begins its descent from 60 km altitude
with an initial velocity of about 3 kms−1 (roughly Mach 10 at this altitude). The trajectory
subsequently features an aerodynamic pull-up maneuver, followed by a glide phase that continues
down to 20 km altitude at approximately Mach 3. In addition, mission objectives impose specific
constraints on the final position and velocity azimuth, along with operational limits on load factor and
angle-of-attack (see table 1).

To train the surrogate model, the initial state of the vehicle is dispersed around nominal conditions
using Latin Hypercube Sampling (LHS) with a maximin criterion, ensuring a uniform coverage of the
operational envelope [18]. The dispersions apply to the key components of the initial kinematic state
as summarized in table 2, and are defined from mission tolerances and uncertainty analyses to ensure
physical relevance.
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Table 1. Nominal initial/final conditions and mission constraints

Parameter Symbol Value Unit

Initial altitude h0 60.0 km
Initial velocity v0 10.0 Mach
Initial longitude λ0 0.0 deg
Initial latitude φ0 0.0 deg
Initial slope γ0 −30.0 deg
Initial latitude χ0 −75.0 deg
Final altitude hf 20.0 km
Final longitude λf −14.0 deg
Final latitude φf 0.0 deg
Load factor constraint ηmax 100.0 m/s2
Final azimuth constraint χf −90.0 deg
Angle-of-attack constraint αmax 15.0 deg

Table 2. Initial condition dispersion ranges for LHS sampling (relative to nominal)

Variable Min Max Unit

Longitude −0.5 0.5 deg
Latitude −0.5 0.5 deg
Velocity magnitude −100.0 100.0 m/s
Flight path angle −2 2 deg
Azimuth −5.0 5.0 deg

For each sampled initial condition, an offline trajectory optimization is performed using a parametric
direct method [19]. The guidance laws for (α(t), µ(t)) are defined as piecewise polynomials, with
switching times between phases such as pull-up, glide, and terminal approach. The optimization seeks
to maximize the final velocity while satisfying:

• the final position and azimuth constraints,
• operational bounds on load factor and α,
• keep-out zone avoidance.

The trajectory must also avoid a Keep-Out Zone (KOZ) defined in the ground track (longitude-latitude
plane) [17]. In this work, the zone is modeled as a vertically unbounded cylinder, with an elliptical
cross-section in the longitude-latitude plane. The corresponding parameters (center longitude, latitude,
and semi-axes) are listed in table 3.

Table 3. Keep-out zone parameters

Parameter Symbol Value Unit

KOZ center (λKOZ , φKOZ) (−7.0, 0) deg
KOZ semi-axes (a, b) (2.0, 1.0) deg
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For the direct optimization problem, the constraint is enforced by a penalty method: the ellipse is
inflated by 5.0% on each semi-axis (a, b), and any trajectory entering this boundary incurs an added
cost, discouraging penetration while ensuring robustness.
The optimized trajectories are expressed in Cartesian coordinates and interpolated byN = 9 cubic Bézier
curves, as described in section 2.2. For the nominal mission profile, as few as four segments suffice to
provide an accurate representation. Nevertheless, a larger number of segments is deliberately employed
in all cases to guarantee sufficient interpolation fidelity, particularly for highly perturbed trajectories that
may exhibit irregular or complex shapes.
Each segment is defined by 4 control points, yielding a total output vector of size 3 × 4 × N = 108.
The control points are obtained by solving the interpolation problem formulated in section 2.2. This
nonlinear optimization (eq. (7)) is solved using a Quantum-behaved Particle Swarm Optimization (QPSO)
algorithm [20], which efficiently explores the search space of curvature and timing parameters and
provides the corresponding set of Bézier points {Pi,k} that best approximate the optimal trajectory. This
vector of control points {Pi,k} constitutes the output of the learning problem, while the corresponding
input is the 6D initial state vector (r0, v0). The final dataset comprises 10000 trajectories spanning the
full dispersion envelope. By construction, each trajectory is dynamically feasible and satisfies all mission
constraints. This guarantees that the surrogate model, once trained, generalizes reliably within the
operational domain while preserving feasibility.
3.3. Learning architecture and training setup
The surrogate model is implemented as a regressor chain [21] with a Multilayer Perceptron (MLP) [22]
as its base estimator. In this setup, the prediction of each Bézier control point component depends not
only on the input state but also on previously predicted outputs. This sequential dependency allows
the model to exploit correlations between control points, which is particularly advantageous for Bézier
curves where geometric continuity naturally couples adjacent segments.
Prior to training, both input and output spaces are normalized.

• On the input side, the initial state vector is first scaled to remove unit disparities: positions are
non-dimensionalized by the Earth’s radius RE and velocities by a reference time tref = 1000 s.
A subsequent standardization (zero mean, unit variance) is then applied, following common
practice in machine learning for physical systems.

• On the output side, the 108 Bézier control point coordinates are similarly standardized and
then reduced by Principal Component Analysis (PCA). Twenty-four principal components are
retained, capturing 99.029% of the total variance. This dimensionality reduction step both
accelerates convergence and mitigates overfitting by eliminating noise and redundancy in the
highly correlated outputs [11, 23].

The base estimator has four hidden layers of 16 neurons each, using hyperbolic tangents as activation
functions. This choice provides smooth nonlinear mappings bounded in [−1, 1] and helps maintain stable
gradients across a wide input range, which makes it well suited for regression tasks involving continuous
physical quantities such as trajectory coefficients [22].
The overall learning pipeline is illustrated in Figure 1. It not only summarizes the preprocessing and
dimensionality reduction steps (normalization and PCA), but also highlights surrogate model is trained
and subsequently used for trajectory reconstruction.
Training is carried out with the Adaptive Moment Estimation (Adam) optimizer [24], which adaptively
combines gradient descent with momentum and per-parameter learning-rate scaling. This often yields
faster and more stable convergence than vanilla stochastic gradient descent, particularly on noisy or
ill-conditioned problems such as high-dimensional trajectory regression.
A benchmark with alternative regressors — including polynomial ridge regression, partial least squares
(PLS), extra trees, gradient boosting, and stacking — showed that while tree-based methods
performed competitively on lower-dimensional subsets, the MLP regressor chain consistently achieved
the best trajectory-level accuracy. This strength can be attributed to its ability to capture nonlinear
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interactions and output correlations in structured-output regression tasks [25]. Furthermore, PCA was
found to accelerate convergence and reduce variance across folds, confirming its benefit for this
application [26].

Fig 1. Learning pipeline with preprocessing, regressor chain, and MLP base estimator.

4. Results and discussion
4.1. Analysis of Network Prediction Results
The performance of the surrogate model was first examined using classical regression metrics. Over the
validation folds, the mean coefficient of determination is R2 ≈ 0.75, where R2 quantifies the proportion
of variance in the target data explained by the model Although such a score may appear modest when
judged against conventional machine learning standards, it does not directly reflect the quality of the
reconstructed trajectories. The regression targets the full set of 108 Bézier control point coordinates,
and even small discrepancies in intermediate control points — which strongly affect R2 — often have
negligible consequences on the resulting geometric path. For this reason, the mean absolute error
(MAE) was adopted as the training loss, since it offers a more faithful measure of predictive accuracy
for this type of highly correlated, structured outputs.

A more relevant evaluation is obtained by focusing on the geometric fidelity of the reconstructed paths
rather than on raw regression scores. For each prediction, the surrogate-generated control points were
re-interpolated into smooth Bézier polylines using 100 samples per segment, and these were compared
with the corresponding reference trajectories from the optimized dataset. Here, a polyline denotes
the piecewise curve obtained by connecting successive sampled points, which provides a continuous
geometric representation of the predicted trajectory. This procedure allows one to assess how closely
the surrogate reproduces the actual shapes of trajectories in the testing set. Three complementary
metrics were employed:

• Root-mean-square error (RMSE) measures the average Euclidean distance between predicted
and reference polylines after reparametrization by arc length. For the present study, typical
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values remain below 4 km over the full entry profile, which is relatively small. compared with
the overall trajectory scale [27].

• Hausdorff distance [28] measures the maximum discrepancy between two curves, i.e. the
largest point-to-curve deviation. This reflects a worst-case separation and reaches about 7 km
in the most unfavorable instances.

• Chamfer distance [29] computes, in both directions, the average distance from each point in
one set to its nearest neighbor in the other. This yields a symmetric and balanced indicator of
global similarity. Reported values are close to 3 km, consistent with the RMSE.

It is worth stressing that these comparisons are purely geometric: they do not involve dynamic simulation
or guidance tracking, but only assess how faithfully the surrogate reproduces the optimized reference
shapes. Despite the relatively modest R2, the agreement at the trajectory level is strong, with deviations
remaining well within margins acceptable for guidance applications.

A closer inspection of the control-point predictions reveals a heterogeneous accuracy. The segment
endpoints, Pi,0 and Pi,3, which ensure continuity between successive Bézier curves, are generally
predicted with high reliability. By contrast, the intermediate points Pi,1 and Pi,2 — which govern local
curvature and indirectly influence speed distribution — are more challenging to approximate. The
largest errors occur near phases of high curvature, such as the aerodynamic pull-up or sharp lateral
turns, where trajectory variability is greatest and interpolation of synthetic trajectories is less
robust [8].

This observation highlights the intrinsic difficulty of predicting local geometric features while still ensuring
overall path consistency. It is worth noting that many of the discrepancies responsible for the reduced
R2 score are associated with degenerate cases. In nearly straight trajectory segments, the internal
Bézier nodes Pi,1 and Pi,2 become weakly sensitive: small prediction errors on these control points
produce negligible changes in the actual curve. As a result, coordinate-level regression metrics penalize
the model more severely than trajectory-level geometric measures.

Beyond the aggregate metrics discussed above, it is instructive to visualize the behavior of the surrogate
at the level of individual trajectories. Figure 2 illustrates the predicted versus optimized Bézier control
points for two randomly selected validation cases, while Figure 3 shows the corresponding reconstructed
polylines. These comparisons highlight that, although small deviations appear on the intermediate
control points, the overall polygonal structure is well preserved, leading to geometric paths that remain
very close to the optimized references.

Fig 2. Comparison of predicted versus optimized Bézier control points for two validation trajectories.
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Fig 3. Reconstructed Bézier polylines for the same validation cases.

4.2. Trajectory Simulation and Guidance
To assess the practical usefulness of the surrogate model, trajectory-following simulations were carried
out using the BCBG algorithm. Although other schemes such as proportional navigation could also be
employed, BCBG was selected here as a representative closed-loop law, since the objective is not to test
a specific controller but to evaluate the quality of the surrogate-generated references.

The simulations compare two initialization strategies:

• offline optimized reference where a trajectory optimized under nominal conditions is used
directly as the reference for all dispersed cases.

• Surrogate generation where a new reference trajectory is produced by the surrogate model,
consistent with the dispersed initial conditions.

In both cases, BCBG algortihm is applied to track the supplied reference.

For robustness, dispersions were introduced not only in the initial position and velocity, sampled from
Gaussian distributions whose 3σ intervals match the ranges defined in the LHS dataset (see table 2), but
also in the aerodynamic coefficients and atmospheric density profiles. Specifically, the vehicle drag and
lift coefficients, together with the atmospheric density, were perturbed according to Gaussian laws with
a standard deviation of ±10% around their nominal values, in order to emulate realistic uncertainties in
the entry conditions.

A campaign of 1000 Monte Carlo simulations was conducted, both with and without activation of the
predictive model. The outcomes are illustrated in Figures 4 and 5. In the ground track (longitude-
latitude, fig. 4b), surrogate-generated trajectories remain closely aligned with the optimized reference
path and consistently avoid the keep-out zone, even under large dispersions. In contrast, when relying
on the single offline reference, the guidance law drives the vehicle back towards the optimized path too
aggressively. This results in strong control actions during the early atmospheric phase, excessive energy
dissipation, and ultimately a reduced energy budget for the subsequent glide. The degraded state may
shorten the glide phase and, in extreme cases, cause premature descent.
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(a) Using a unique offline reference trajectory (b) Using surrogate-generated references

Fig 4. Ground track comparison under dispersed conditions. Left: trajectories obtained by tracking a
unique optimized reference trajectory. Right: trajectories obtained from surrogate-predicted references.
Thin grey lines correspond to dispersed runs, while the thick solid red line denotes the trajectory under
nominal conditions (identical in both cases, with or without surrogate initialization).

In the altitude profile (see fig. 5b), the surrogate-based strategy naturally guides the vehicle towards
the optimized solution throughout the trajectory. The characteristic pull-up and glide structure is
preserved, while convergence to the final position is ensured. In both plots, the thick solid red line
represents the trajectory under nominal conditions (with or without surrogate initialization), and thin
grey lines correspond to dispersed runs. Overall, the surrogate model maintains feasibility and
proximity to the desired reference, whereas reliance on the nominal path alone leads to energy losses
and may compromise the glide phase.

(a) Using a unique offline reference trajectory (b) Using surrogate-generated references

Fig 5. Altitude profile comparison under dispersed conditions. Left: trajectories obtained by tracking a
unique optimized reference trajectory. Right: trajectories obtained from surrogate-predicted references.
Thin grey lines correspond to dispersed runs, while the thick solid red line denotes the trajectory under
nominal conditions (identical in both cases, with or without surrogate initialization).

It is worth noting that simply shifting the offline reference to match the dispersed initial conditions would
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have avoided the premature loss of altitude observed with the offline reference strategy. However, such
rigid translations provide no guarantee of constraint satisfaction, since the shifted path may intersect
restricted zones. Designing meaningful deformations would therefore be necessary, explicitly accounting
for environmental and operational constraints.
To complement this geometric analysis of simulated trajectories, it is equally important to assess the
guidance effort. Figures 6 and 7 display the corresponding angle-of-attack and bank-angle histories,
providing additional insight into the control activity required to track the trajectories.

(a) Using a unique offline reference trajectory (b) Using surrogate-generated references

Fig 6. Angle of attack profiles. Thin grey lines correspond to dispersed runs, while the thick solid red
line denotes the trajectory under nominal conditions.

(a) Using a unique offline reference trajectory (b) Using surrogate-generated references

Fig 7. Bank angle profiles. Thin grey lines correspond to dispersed runs, while the thick solid red line
denotes the trajectory under nominal conditions.

With the offline reference strategy, the vehicle attempts to rejoin the optimized trajectory as early as
possible. This induces strong control actions in both bank angle and angle of attack, leading to excessive
energy dissipation during the initial pull-up. As a result, the subsequent glide phase is entered with
reduced velocity, forcing the vehicle to fly at a higher incidence to sustain lift. This degraded energy
state shortens the glide and may even result in a premature descent.
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By contrast, surrogate-generated references provide a trajectory already adapted to the dispersed
initial state. The corrective maneuver remains modest and coherent, preserving both energy and the
nominal pull-up glide structure. The guidance remains smooth and dynamically consistent, without the
overcompensation and degraded glide characteristic of the offline reference strategy.

The violin plots in Figure 8 provide a statistical view of how initial dispersions are propagated to the
terminal state under the two strategies.

Fig 8. Violin plots of initial and final state dispersions (longitude, latitude, velocity, azimuth). Each
violin shows the probability distribution of the corresponding variable, with shaded bands indicating
the 1σ, 2σ, and 3σ confidence intervals. The left set represents the initial dispersions, the central
set corresponds to final states obtained with a nominal offline reference trajectory, and the right set
to surrogate-based reference generation. Superscripts ref,0 denote normalization with respect to the
nominal offline reference.
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Each violin represents the probability distribution of trajectory dispersions for the initial conditions (left),
the final solutions obtained with a nominal offline reference (center), and the final solutions obtained
with the surrogate-based reference (right). Shaded bands correspond to the 1σ (68.3%), 2σ (95.4%),
and 3σ (99.7%) confidence intervals, thus highlighting both the concentration of trajectories around
the mean and the presence of outliers. All metrics are normalized with respect to the nominal offline
reference, emphasizing the systematic reduction in terminal dispersion achieved through surrogate-
based initialization.

Both the surrogate model and the offline reference approaches reduce final dispersion in longitude and
latitude. The surrogate model, however, consistently yields a tighter clustering of trajectories around
the target. In the offline reference case, a few outliers persist, corresponding to trajectories that
dissipate excessive energy during the early atmospheric phase and terminate prematurely. By
adapting the reference to the dispersed initial state, the surrogate strategy mitigates this behavior and
generates a coherent bundle of trajectories that progressively converge toward the target.

For velocity, the surrogate approach achieves a lower final standard deviation (approximately 60 m/s
versus 100 m/s while using an nominal reference), indicating improved preservation of the entry
energy budget despite the corrective maneuvers required for obstacle avoidance and terminal
constraint satisfaction. In addition, the mean final velocity with the surrogate remains close to that of
the offline optimized solution, providing a clear performance advantage.

Regarding azimuth, both strategies reduce dispersion, but the surrogate model again produces a
substantially tighter distribution. Although terminal dispersion is slightly larger than the initial spread
— mainly due to guidance-law saturation in the final phase — the time history (see fig. 9) shows that
surrogate-based trajectories progressively converge toward the desired heading, with dispersion
steadily decreasing as the flight evolves.

Overall, surrogate-based initialization offers a robust correction mechanism that ensures compliance
with mission constraints (e.g., keep-out zone avoidance, azimuth accuracy) while maintaining terminal
dispersions within acceptable tolerances. In contrast, reliance on a fixed nominal reference, although
computationally simpler, fails to compensate for inherited initial errors and thus lacks robustness under
large dispersions. These results demonstrate the advantages of surrogate-based reference adaptation in
enhancing robustness and dynamic consistency, making it a promising solution for precision-demanding
guidance applications.

(a) Using a unique offline reference trajectory (b) Using surrogate-generated references

Fig 9. Azimuth evolution under BCBG guidance.Thin grey lines correspond to dispersed runs, while the
thick solid red line denotes the trajectory under nominal conditions.
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5. Conclusion
This work investigated a compact representation of hypersonic entry trajectories based on cubic Bézier
curves, enabling efficient storage, interpolation, and online adaptation. A predictive surrogate model
was developed to map initial condition dispersions directly to the control-point parameters of this reduced
representation. By training on a large dataset of dynamically feasible trajectories, the surrogate provides
reference paths that are both accurate and compliant with mission constraints.
The proposed approach is naturally coupled with a trajectory-following guidance law, which exploits the
Bézier representation to compute commands (e.g., angle of attack and bank angle) ensuring adherence
to the reconstructed path. In this context, the surrogate does not replace the guidance algorithm itself,
but rather serves as an initializer, providing feasible and well-shaped references that can be tracked
in real time. Monte Carlo campaigns demonstrated that this combination preserves terminal accuracy,
geometric feasibility, and constraint satisfaction more reliably than rigid-body deformations of a nominal
trajectory.
Beyond the Bézier framework, the same learning-based methodology could be extended to indirect
optimal control formulations. In such cases, trajectories are parameterized by selected states and
costates at shooting nodes [2, 5]. A predictive model trained to map initial dispersions to these
quantities could enable rapid reconstruction of reference solutions while retaining the accuracy and
optimality properties of indirect methods. This perspective opens the way to hybrid strategies
combining analytical optimal control with data-driven surrogates for onboard implementation.
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