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Surrogate model-based strategy to assess the influence of the atmospheric
dispersions on the performance evaluation of a hypersonic vehicle

Mathieu Balesdent! Loic Brevault? Arnault Tremolet

Abstract

The design process of hypersonic vehicles requires trajectory optimization. For that purpose, the trajec-
tory simulation involves an atmosphere model that is used to predict the surrounding air flow conditions
all along the trajectory. These conditions are affected by variability depending on several parameters
such as the season, the location on Earth, the altitude, etc. This paper presents a comprehensive ap-
proach to assess the influence of the dispersions in atmospheric states on the performance evaluation of
hypersonic vehicles. The proposed method models atmospheric variability as a stochastic process and
combines model order reduction and Gaussian process regression in order to build a surrogate model
of the performance criterion as a function of the atmospheric dispersion. This surrogate is eventually
used to perform uncertainty quantification studies to evaluate the robustness of the hypersonic vehicle
performance with respect to the atmospheric variability.
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1. Introduction

Evaluating the performance of a hypersonic vehicle often involves trajectory optimization, which entails
optimizing the guidance of the vehicle while solving a system of ordinary differential equations (ODES)
representing the flight dynamics [6]. The performance of a hypersonic vehicle using air-breathing propul-
sion (turbojet, ramjet, scramjet) is directly affected by the air flow and the atmospheric conditions (e.g.,
air density, air temperature) in the vicinity of the vehicle. These atmospheric conditions mainly vary
according to the altitude along with the season, the location on Earth, the weather, etc. Classical mod-
els of atmosphere (e.g., US Standard Atmosphere 1976 [9], International Standard Atmosphere [8])
provide atmospheric “profiles” of temperature, pressure, density as a function of the altitude (Figure 1)
in the different layers of the atmosphere (e.g., troposphere, stratosphere, mesosphere).

Designing hypersonic vehicles requires to simulate and optimize trajectories for a large diversity of case
studies. The case studies parameters include different times and locations on Earth. However, the
atmospheric conditions can greatly vary between the different seasons or the locations on Earth and
suffer from aleatory uncertainties resulting from the weather conditions. Consequently, it is necessary
to take into account these variations in order to ensure a reliable performance estimation for the whole
flight conditions. A major challenge in accounting for variations of atmospheric conditions when esti-
mating hypersonic vehicle performance lies in the probabilistic modeling of these uncertain atmospheric
conditions and their propagation through the trajectory optimization.

The aim of this work is to propose a methodology to model atmospheric variability and to estimate
its influence on the performance of a hypersonic vehicle. The proposed approach (Figure 2) employs
a surrogate model-based strategy to carry out uncertainty propagation from the dispersion of atmo-
spheric conditions through trajectory optimization, ultimately obtaining the dispersion of the vehicle
performance. In the first step, the dispersion of atmospheric conditions (e.g., temperature as a func-
tion of the altitude) is modeled as a stochastic process to account for the inherent variability of local
temperature while considering its strong dependence on altitude. To reduce the dimensionality of this
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Fig 1. Example of temperature profile as a function of the altitude, International Standard Atmosphere
model [8]

functional model and make it compatible with a surrogate model-based strategy, a Karhunen—Loéve de-
composition [7] is performed using a limited dataset of representative atmospheric conditions, defining
a latent space. In a second step, a trajectory optimization is carried out for each atmospheric condition
in the limited dataset to estimate the hypersonic vehicle performance. Subsequently, a surrogate model
in the form of a Gaussian process [11] is trained to map the latent space representing the atmospheric
conditions to the vehicle performance. This surrogate model enables uncertainty propagation via Monte-
Carlo simulations, allowing the estimation of performance dispersion metrics (e.g., quantiles) thereby
quantifying the vehicle robustness to variations in the atmospheric conditions.
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Fig 2. Uncertainty propagation using exact model (top), proposed surrogate-based approach (bottom)

The rest of the paper is organized as follows. In Section 2, the modeling of atmospheric dispersions
as a stochastic process is described. Section 3 presents the surrogate-based approach for uncertainty
quantification. This approach is then applied to the performance evaluation of a generic hypersonic
vehicle in Section 4.

HiSST-2025-183 Page | 2
M. Balesdent, L. Brevault, A. Tremolet Copyright © 2025 by the author(s)



HiSST: International Conference on High-Speed Vehicle Science & Technology

2. Analysis of atmospheric dispersions

Atmospheric conditions greatly vary depending on a large number of factors, such as the location on
Earth, the seasons, the weather conditions, etc. Examples of such dispersions with the temperature
as a function of the altitude are given in Figure 3. In this paper, only the temperature dispersion is
considered, without loss of generality of the proposed approach about other quantities (e.g., density,
humidity).
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Fig 3. Example of dispersions of the temperature as a function for the altitude for different seasons
(normalized data)

These atmospheric dispersions can be modeled as a collection of random variables indexed by the alti-
tude. To analyze this joint probability distribution, marginal distributions of the normalized temperature
at different altitudes are displayed in Figure 4.

Marginal distributions of normalized temperature at different altitudes

— voF) — or
2.5
2.0
515 5
a a
1.0
0.5
0.0
Normalized temperature (-) Normalized temperature (-)
— PoF| — poF |
6
g4 &
a a
2
0
0.0 02 04 06 0.0 02 04 06
Normalized temperature (-) Normalized temperature (-)

Fig 4. Marginal PDF of the normalized temperature at different altitudes

As depicted in this figure, the probability distribution of the temperature greatly varies from one altitude
to another. Consequently, assuming a single probability distribution function (PDF) for all the altitudes is
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not a valid hypothesis. Furthermore, the PDFs cannot be modeled using classical univariate distributions
(Normal, Weibull, LogNormal, etc.). Another important feature in terms of probabilistic modeling is the
correlation (or statistical dependence) of the distributions at different altitudes. Indeed, the correlation
of atmospheric conditions at two different altitudes h; and h, can greatly vary depending on the con-
sidered atmosphere layers. This is depicted in Figure 5 which illustrates the covariance matrix of the
temperature. One can see in this figure that the temperatures at high altitudes are more correlated
than temperatures at medium altitudes.
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Fig 5. Covariance matrix of the normalized temperature

Consequently, the correlation of the uncertainty distribution for the different altitudes needs to be care-
fully defined. Using the Sklar theorem [5], a joint PDF of an aleatory vector can be decomposed be-
tween the influence of the marginal distributions (individual distributions of the variables composing
the aleatory vector) and the influence of the statistical dependence between these variables. Figure 6
represents the statistical dependence of the atmospheric uncertainty for different layers of the atmo-
sphere. Similarly to the marginal distributions, the shape of the statistical dependence suffers from large
variations with the considered altitudes.
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Fig 6. Statistical dependence analysis using copula for different layers of the atmosphere, on the left a
statistical dependence in the tails of the distributions is visible

Let us suppose a probability space (€2, A, P) with Q2 the sample set, A an event space and P a probability
measure. Using this probability formalism, the atmospheric conditions can be modeled as stochastic
processes indexed by the altitude. For example, the temperature can be defined as T'(h,w) with h the
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altitude and w € Q. In that way, for a given altitude, hy, T'(ho,w) represents a random variable defined
using a marginal PDF. For a given value of w = wq, T'(h,wy) is a realization of the stochastic process,
that represents a profile of temperature according to the altitude. The different profiles of temperature
depicted in Figure 3 correspond to different realizations of the stochastic process T'(h,w). A stochastic
process can be characterized by the definition of a collection of margins on a finite discretization of
the altitude {h4,...,h,} with n the number of nodes; and a copula, as illustrated in Figure 7 for two
altitudes. The number of nodes can be large in order to precisely describe the atmospheric evolution
depending on the altitude.
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Fig 7. Illustration of probabilistic modeling of the stochastic process of the temperature as a function
of the altitude

3. Goal-oriented surrogate-based approach for uncertainty quantification of at-
mospheric dispersions

In this section, an approach is proposed to build a surrogate model in order to carry out uncertainty
quantification of the impact of atmospheric dispersions on a generic performance criterion. The esti-
mation of hypersonic vehicles performance typically involves the optimization of the trajectory. This
includes the determination of the best guidance law in order to minimize (or maximize) a given criterion
(e.g., the consumption). This optimization implies the integration of a system of ordinary differential
equations according to the time. As a representative example, a simplified three-degrees-of-freedom
system of equations of motion can be written as:

7 = wvsin(y)
T - D
v = Teost)=D g sin(7y)
m
. L+ T sin(a) gceos(y) v cos(m)
o= - +
mV v r

m = —q

with r the radius, v the relative velocity, v the flight path angle, T the thrust, D the drag, L the lift,
a the angle of attack, m the mass and ¢ the mass flow rate. This system of ODEs can be numerically
integrated using for example a Runge Kutta algorithm [4] in order to provide the evolution of the state
variables as functions of the time. For hypersonic air-breathing vehicles, both thrust, drag and lift coef-
ficients depend on the ambient atmospheric conditions. Consequently, variations of such atmospheric
conditions will induce variations of the computed terms present in the right hand side of the equations
of motion. Thus, depending on the different atmospheric conditions, the resulting optimal control laws
on angles such as pitch, angle of attack, steering as well as the mixture ratio will vary in the optimization
process in order to reach the final trajectory conditions in terms of altitude, velocity, etc. and to ensure
the stability of the vehicle.
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To estimate the performance and robustness of the system, the naive approach that would consist
in sampling by Monte-Carlo a large number of atmospheric conditions and optimizing the trajectory for
these realizations of atmosphere is not affordable at a reasonable numerical cost. Indeed, this approach
typically requires three nested loops with trajectory simulation (ODEs integration involving computational
codes such as aeropropulsive model at each time step) embedded into the trajectory optimization, itself
embedded into the Monte-Carlo sampling. In this paper, an approach relying on surrogate models is
proposed. We suppose here that the goal is to estimate the dispersion of a generic quantity of interest
(Qol, for example, the consumption of the vehicle) due to the atmospheric variability, without loss of
generality. The proposed method is decomposed into several steps:

1. perform a model order reduction on the atmospheric dispersion through Karhunen—Loéve (KL)
decomposition in order to define a latent space corresponding to the coordinates of the atmospheric
profiles in the Karhunen-Loéve decomposition. This latent space is of lower dimension compared
to the initial discretization of the atmosphere temperature as a function of the altitude;

2. select a limited number of atmospheric conditions and perform trajectory optimization to get the
QoI values;

3. build a surrogate model of the relationship between the latent space (input) and the Qol (output),
and carry out validation process on the surrogate model;

4. use this surrogate model to perform uncertainty quantification to estimate the uncertainty measure
(here a quantile).

The main steps that are the model order reduction, the surrogate model construction as well as an
example of uncertainty quantification study are described in the following.

3.1. Model order reduction of atmospheric variability

In practice, the functional model of the temperature as a function of the altitude is discretized on a
mesh with a large number of nodes. Using directly a stochastic process on such a large dimensional
space is often untractable with the available data. Instead, a functional Principal Component Analysis
(also referred to as Karhunen-Loéve decomposition in the stochastic context) can be used to reduce the
dimension, by using a spectral decomposition of the stochastic process [7]. Using this formalism, any
realization of the stochastic process T (here the temperature) may be expanded over an estimated basis
(w is dropped in the equation for the sake of conciseness):

T(h) = p(h) + Y V/Ar&rLi(h) (1)
k=1

with \;, and £, the eigenvalues and eigenvectors of the autocovariance function of the stochastic pro-
cess. u(-) is the mean function, (¢x),>1 are, in the latent space, the coordinates of the stochastic process
realizations with respect to the deterministic basis functions £;(-). A set of orthonormal random vari-
ables (&)x>1 is defined by all the possible realizations of the stochastic process. Each random variable
& involved in the KL decomposition is defined by a linear transform (using the orthonormality of the
eigenfunctions):

1
& == /T (T(h) — p(h)) Li(h)dh @)

with 7 the integration domain. For numerical purposes, the KL expansion is truncated to the first Nx
most significant modes (with Nx; < n). These latter correspond to the most significant eigenvalues
and in practice, the KL expansion corresponds to:

Nkr

T(h) ~ p(h) + Y V&L (h) 3)
k=1

In that way, the stochastic process can be defined in the latent space through the random variables &,
whose dimension is significantly lower than the number of nodes. For the temperature, the normalized
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basis functions (£ (h)) are given in Figure 8. This model has been tested on a validation set of atmo-
spheric conditions through embedding into the latent space, mapping back to the original space and
analyzing the residuals (Figure 8). We can see a precise agreement between the estimated samples
resulting from the KL decomposition and the reference ones.

KL validation, Nmodes=20
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Fig 8. Normalized basis functions (modes) of the KL decomposition of the temperature (left). Validation
of KL-decomposition for a decomposition of 20 basis functions over a validation set (right)

3.2. Surrogate model of the performance metrics as a function of the latent variables

In order to perform uncertainty quantification on the performance metrics, one needs to assess the
mathematical relationship (mapping) between the atmospheric stochastic process T and the Qol y. A
classical way is to define this mapping from the latent space on the ¢ vector:

fiRN<E 5 R
£: [517"')5NKL] -y

The KL decomposition allows to reduce the input space for the mapping and therefore allows classical
surrogate modeling techniques to be applied. In this work, conditioned Gaussian processes (GP) [10]
are used to define this mapping. A Gaussian process is a stochastic process such as any finite collection
of its random variables has a multivariate Gaussian distribution. A GP is fully determined by its mean
and covariance functions. This covariance function is often defined through a parametric kernel func-
tion whose parameters are optimized by a supervised learning process (as well as the mean function
parameters). The kernel function allows to model the covariance between two locations on the input
space ¢ and ¢’ and is often a function of the distance between £ and ¢’ in the latent space (hypothesis
of stationary model). After all the GP hyperparameters have been determined, the GP is conditioned
on the data of the DoE {(&;,v1),...,(&y,yn)} With N the size of the DoE. Then, the GP allows to
provide both the prediction at an unknown ¢ and also the estimate a measure of its uncertainty through
the predictive variance (Figure 9). Gaussian processes have been widely used in association with KL
decomposition to define a mapping between the latent space and the quantity of interest [2, 3]. Here,
the training data are composed of the projected atmospheric realizations on the latent space and the
corresponding obtained Qol resulting from the trajectory optimizations.

3.3. Summary of the overall approach
In this section, the overall approach for uncertainty quantification is summarized.

e  First, a DoE of N atmosphere realizations is performed. From each of these realizations, a
trajectory optimization is performed in order to get the Qol value. At the end of this first step,
a collection of N atmosphere realizations {T;,..., Ty} and their corresponding QoI values
{y1,...,yn} are available. This step requires the main part of the computational cost of the
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Fig 9. Generic Gaussian process prediction and associated measure of uncertainty, taken from [2].

approach.

e The second step consists in reducing the model order of the stochastic process T. For that
purpose, a Karhunen-Loéve decomposition is used in order to project the stochastic process
realizations on a latent space of smaller dimension described by the basis formed by the eigen-
vectors L, (-) and the latent variables coordinates & = {¢&,...,¢n,, }. At this step, each re-
alization of the stochastic process corresponds to a value of the ¢ vector in the latent space.
At the end of the second step, a correspondence between the realizations of stochastic pro-
cess, their corresponding coordinates in the latent space and their Qol values is available:

{(T17€17y1)7 ERE (TstvaN)}-

e  The third step consists in defining the mapping between the latent space and the Qol. To do
so, a Gaussian process regressor is trained on the DoE composed of : {(&;,y1),.-., (En,Un)}-
At the end of the third step, the surrogate model is completely defined and can be used for
uncertainty quantification.

e The last step consists in carrying out uncertainty quantification using the surrogate model.
Example of uncertainty quantification studies (step 4) consists in sampling a large number of
atmosphere realizations and projecting them in the latent space using the embedding mapping
of the model order reduction. Once projected, the prediction of the performance criterion is
carried out with the conditioned Gaussian process using the corresponding coordinates in the
latent space. Finally, statistical metrics can be estimated on this large sample of performance
criterion, such as mean, variance, quantile, PDF, etc. The overall approach is summarized in
Figure 10. Confidence intervals on the estimated statistical metrics combining the Monte-Carlo
simulation variability and the uncertainty of the Gaussian Process can eventually be assessed.

4. Application to hypersonic vehicle performance estimation

The proposed approach is applied in this section to the performance estimation of a generic air-breathing
hypersonic vehicle. The goal is to estimate the effect of the atmosphere variability on the fuel consump-
tion of the vehicle resulting from trajectory optimization. A first DoE of 400 atmosphere realizations
has been randomly sampled based on an in-house ONERA model. From these latter, first the model
order reduction approach is carried out, using the OpenTURNS library [1]. Figure 11 depicts the relative
error of the model reconstruction with respect to the number of selected basis functions. In this work,
selecting 20 basis functions corresponds of a relative error of 0.1% that is sufficiently accurate for the
purpose of this study (Figure 11). It corresponds to a trade-off between the number of basis functions
(and therefore the input dimension of the GP) and the relative error introduced by the model order re-
duction. This relative error is computed by projecting a validation set of atmosphere realizations in the
latent space, then do the reverse-projection into the original space and comparing the reconstructed
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Fig 10. Overall approach for uncertainty quantification based on surrogate coupling Model Order Re-
duction and Gaussian Process

samples in the original space and the exact atmospheric realizations. Figure 12 illustrates the error
between exact and estimate values using 1, 3 and 20 basis functions in the KL decomposition.
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Fig 11. Relative error (in percentage) as a function of the number of selected KL basis functions (modes)

From the first DoE, trajectory optimizations have been carried out in order to get the values of the
performance criterion. In this study, the remaining mass of fuel (the more, the better) has been set as the
Qol. Figure 13 illustrates the resulting optimal normalized trajectories, with normalized relative velocity
as a function of the normalized altitude for the different realizations of the atmospheric conditions.

The uncertainty quantification study consists in estimating the extreme quantiles (upper and lower) on
the remaining fuel. To do so, a large number of atmosphere realizations have been sampled. Then,
these realizations have been projected into the latent space to get the latent variables coordinates.
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Fig 12. Errors of Model Order Reduction using 1 (left), 3 (center) and 20 (right) basis functions in the
KL decomposition
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Fig 13. Optimal trajectories : velocity as a function of the altitude (normalized values for different
realizations of the atmospheric conditions)

From these latter, the conditioned Gaussian process is used to predict the values of the remaining fuel
mass. Histogram of this quantity is displayed in Figure 14. On this output sample, extreme quantiles
can be eventually assessed. The PDF of the performance criterion can also be fitted in order to perform
other uncertainty quantification studies. In addition, from these quantiles on the quantity of interest,
it is possible to analyze which atmospheric profiles lead to these quantiles. One can mention that
these profiles correspond to existing atmosphere realizations and are not determined based on some
"conservative margins”.

5. Concluding remarks

This paper describes a surrogate model-based approach for the uncertainty quantification of hypersonic
vehicle performance due to atmospheric variability. Indeed, uncertainty quantification in the context of
trajectory optimization involves a three nested loop approach with uncertainty propagation in the outer,
uncertainty optimization in the middle and numerical ODE integration in the inner loop. Such a process
is unaffordable when the equation of motions involves numerically costly calculations such as aero-
propulsive forces estimation. By modeling atmospheric dispersions as stochastic processes, a method
combining model order reduction and Gaussian process is defined using a limited number of trajectory
optimizations. The overall approach is applied to a generic air-breathing vehicle in order to estimate
extreme quantiles of the performance depending on the atmospheric variability. This method allows
to improve classical engineering methods to adjust margins on vehicle design based on probabilistic
performance evaluation. Examples of perspectives include the development of active learning methods
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Fig 14. Histogram of the remaining fuel mass resulting from the uncertainty quantification and, the
0.01% and 99.9% quantiles

based on the uncertainty prediction of the Gaussian process in order to refine the surrogate-based model
prediction.
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