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Abstract

Simulating the trajectory of hypersonic vehicles using high-fidelity aeropropulsive performance models
is computationally intensive due to the need for thousands of evaluations during numerical ordinary dif-
ferential equations integration. To address this, an active learning surrogate-based trajectory simulation
strategy is proposed that enables accurate hypersonic vehicle trajectory computation while significantly
reducing computational cost. The method builds Gaussian process surrogates using a tailored design
of experiments and employs an adaptive enrichment process guided by trajectory simulation to selec-
tively add informative samples. By leveraging prediction uncertainty from the surrogates, the approach
identifies and evaluates new points with the high-fidelity aeropropulsive performance model only where
needed, ensuring accurate trajectory integration with a reduced number of high-fidelity calls. The pro-
posed methodology is demonstrated on a representative hypersonic vehicle ascent trajectory. Results
show that the approach achieves trajectory accuracy comparable of the high-fidelity reference while
reducing computational costs by more than an order of magnitude compared to direct integration and
offline surrogate-based strategies. This work highlights the potential of inline, active learning surro-
gate modeling for enabling high-fidelity trajectory simulation of hypersonic vehicles in computationally
constrained contexts.
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1. Introduction
The simulation of the trajectory of a hypersonic vehicle involves solving a system of ordinary differ-
ential equations (ODEs) representing the equations of motion. Estimating the evolution of the state
variables (e.g., altitude, velocity, flight path angle) over time requires numerically computing an integral
using an ODE integration algorithm (e.g., Runge-Kutta). However, a significant challenge arises when
the system of differential equations involves a high-fidelity model, such as Nose-to-Tail (NtT) CFD RANS
(Computational Fluid Dynamics, Reynolds-Averaged Navier-Stokes - CFD RANS) calculations, to estimate
aero-propulsive forces and moments. In such cases, numerical integration may require thousands of se-
quential evaluations of the high-fidelity model, which is unaffordable in practice. To enable the trajectory
simulation of hypersonic vehicles using high-fidelity models, a surrogate-based approach is proposed.
This methodology relies on an active learning strategy guided by the trajectory simulation.

In the literature only few papers focused on surrogate-based trajectory simulation combined with ac-
tive learning strategy. Most of the papers rely on Bayesian trajectory optimization and substitutes the
objective and constraints function using a surrogate model. Needels et al. [8] proposed a multi-fidelity
Gaussian process surrogate with a sensitivity-based strategy considering an hypersonic glider. The sen-
sitivities of trajectory quantities of interest to aerodynamic parameters modeled by surrogates based on
optimal control techniques is developed and relies on necessary adjoint equations for the dynamics of a
hypersonic glide vehicle. Most of the existing approaches relies on and offline surrogate-based strategy
in which the surrogate model is built before the final trajectory simulation of interest for instance using
neural networks [2, 9], hypernetworks [10], or Gaussian process [6] and multi-fidelity surrogates [7].
In addition, such a surrogate-based approach has also been used for post-treatment and interpolation
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between integration points based on an exact high-fidelity trajectory dataset [5].
In this work, an active learning surrogate-based strategy dedicated to the trajectory simulation which
involves a computationally intensive aeropropulsive balance model is proposed. This approach allows
to build a dedicated design of experiments for surrogate modeling with an adapted selection of Design
of Experiments (DoE) samples in adequacy with the trajectory simulation of interest. The proposed
approach relies on the following steps. The first step involves conducting a DoE tailored to the context
of trajectory simulation, allowing the evaluation of the high-fidelity model at a limited number of data
points. The DoE is performed with respect to input variables (e.g., altitude, Mach number, angle of
attack) to compute various quantities of interest—such as aerodynamic coefficients and thrust—after
evaluating the high-fidelity model. Based on this limited dataset, Gaussian processes (GPs) are used to
map the input variables to the output quantities of interest involved in the system of ODEs.
Using the GPs inside the right-hand side of the equations of motion instead of the high-fidelity simulator,
it becomes possible to solve the ODEs and approximate the vehicle trajectory. However, due to the
limited size dataset, the GPs only provide an approximation of the exact high-fidelity model, meaning
that the initial trajectory is not fully representative of one obtained through direct high-fidelity simulation.
In the second step, to improve the accuracy of the trajectory, an active learning strategy is developed
to adaptively update the DoE with new data points. Leveraging the uncertainty model of the GPs, this
strategy solves an optimization problem defined by an infill criterion to select new data points in specific
regions of the input space where the prediction uncertainty is large on the current trajectory. As a
result, the high-fidelity model is evaluated only at a limited number of points corresponding to regions
of interest for the trajectory.
The proposed approach is applied to a representative test case of hypersonic vehicle trajectory simulation
with a scramjet. A comparison is conducted between the proposed approach and a trajectory simulation
using the high-fidelity model combined with an offline surrogate-based strategy, focusing on metrics
such as accuracy of the trajectory and computational cost. The results demonstrate that the inline
surrogate-based approach provides an accurate trajectory while significantly reducing the computational
expense.
The rest of the paper is organized as follows. In Section 2, the general principle for trajectory simula-
tion is presented with details on numerical integration for ODEs and the flight dynamics of interest for
hypersonic vehicles. Then, in Section 3, the proposed approach is presented, with a brief introduction
of Gaussian process and a detailed presentation of the different steps of the enrichment process. Then
in Section 4, a representative test case of hypersonic vehicle trajectory simulation is carried out with an
analysis of the performance of the proposed approach compared to alternative strategies.

2. Trajectory simulation
2.1. Flight dynamics
The estimation of hypersonic vehicles performance typically involves the simulation and the optimization
of a trajectory. The trajectory simulation implies the integration of a system of Ordinary Differential
Equations (ODE) according to the time. Simplified three-degrees-of-freedom equations of motion can
be written as:

ṙ = v sin(γ)

v̇ =
T cos(α)−D

m
− g sin(γ)

γ̇ =
L+ T sin(α)

mV
− g cos(γ)

v
+

v cos(γ)
r

ṁ = −q

with r the radius, v the relative velocity, γ the flight path angle, T the thrust, D the drag, L the lift,
α the angle of attack, m the mass and q the mass flow rate. For hypersonic air-breathing vehicles,
thrust, drag and lift forces depend on the ambient atmospheric conditions. During the simulation of
a trajectory, a control law which depends on time is considered fixed. This latter is optimized in the
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context of trajectory optimization in order to determine the optimal control law to obtain the optimal
hypersonic vehicle performance. Classical control laws involve the definition of the temporal evolution
of angles such as pitch, angle of attack, control surface deflection angle as well as the mixture ratio in
order to reach the final trajectory target conditions in terms of state variables (altitude, velocity, etc.)
and also to ensure the stability of the vehicle.

2.2. Numerical integration
It is possible to generalize the flight dynamics of the previous section under the form of a dynamical
system governed by the following generic system of ODE:

ẋ(t) =
dx(t)
dt = f (x(t),u(t), t) (1)

x(ti) = xi (2)

with x(·) the vector of dimension dx of the state variables (e.g., altitude, velocity, flight path angle)
characterizing the evolution of the vehicle along the trajectory, u(·) the vector of dimension du of the
trajectory guidance (e.g., control law, mass flow rate), f(·) the vectorial function computing the flight
dynamics equations with an evaluation of the aeropropulsive performance and xi the vector of the initial
conditions of the state variables at the initial time ti.

In a trajectory simulation process, considering an initial state xi at ti and a fixed guidance law u(t)
(which depends of time), in order to get the state vector at the final time tf of interest, it is necessary
to determine :

x(tf ) = xi +

∫ tf

ti

ẋ(t)dt =
∫ tf

ti

f (x(t),u(t), t) dt (3)

As f(·) is not an analytic vector function, numerical techniques are required to compute this integral to get
access to the state variable vector at the final time (and all the intermediate time of interest). Numerical
integration consists in discretizing with respect to time the integral (using fixed or variable integration
steps) to estimate the value of the state variable vector at intermediate step times (ti+1, ti+2, . . . , tf ). At
each time step, depending on the numerical scheme used, one or several evaluations of the equations of
the flight dynamics f(·) are carried out requiring evaluations of the physical models for the aeropropulsive
performance (Figure 1).

Fig 1. Temporal discretization of the trajectory

The objective of numerical integration for ODE is to obtain the desired accuracy with a computational
budget (corresponding to the number of aeropropulsive model evaluations) as low as possible.

HiSST-2025-xxxx
Active learning-based approach for the trajectory simulation

Page | 3
Copyright © 2025 by the author(s)



HiSST: International Conference on High-Speed Vehicle Science & Technology

Different numerical integration techniques for ODE exist and may be organized according to different
categories (Figure 2) [3].

Fig 2. Classical numerical integration techniques for ODE

Among the time-marching approaches, the multi-step techniques consider one point (e.g., Euler for-
ward, Euler backward) or several points (e.g., Adams-Bashforth, Adams-Moulton) per integration steps
whereas the multi-stage techniques subdivide each interval of integration with several points of eval-
uation (e.g., Trapezoidal implicit, Hermite-Simpson implicit, Runge-Kutta). The collocation family of
approaches are based on a reformulation of the integration problem by the introduction of an approx-
imation of the state variable vector under the form of a polynomial where the polynomial coefficients
are optimized in order to satisfied defection constraints at the collocation nodes.

Among the different integration techniques for ODE, Runge-Kutta approach [3] is classically used as
it is simpler to implement compared to collocation methods and an adaptive time step can be defined
based on an estimation of the error of integration at a reasonable computational cost. To control the
integration error and adapt the step size, a Runge-Kutta 4-5 method (also known as the Runge-Kutta-
Fehlberg method [4]) is often employed. This approach relies on an embedded Runge-Kutta scheme that
computes two different approximations of the integral at each step: one using a fourth-order method
and the other using a fifth-order method that includes all the nodes of the former. By comparing these
two estimates, the integration error can be assessed with only one additional model evaluation. This
error estimate is then used to adjust the step size dynamically, ensuring error control throughout the
integration process.

Simulating the trajectory of a hypersonic vehicle using a classical integration scheme like Runge-Kutta
4-5 (which requires five model evaluations per time step) typically involves several thousand sequential
evaluations of the aeropropulsive model. However, when the aeropropulsive model includes CFD RANS
methods through NtT calculations, such a numerical integration approach becomes computationally
impractical.

Therefore, in order to achieve simulation of the trajectory of a hypersonic vehicle based on computa-
tionally intensive aeropropulsive model, a surrogate-based strategy is proposed in the following.

3. Proposed approach: surrogate-based trajectory simulation
Due to computational time constraints, performing high-fidelity online aeropropulsive model evaluations
during trajectory simulation is not possible (for example, in the context of Nose-to-Tail computations).
One way to enable trajectory simulation at a manageable computational cost is to replace the CFD-based
aeropropulsive model with a mathematical surrogate model (or metamodel), whose computational cost
is negligible compared to the ”exact” model. A key challenge then lies in controlling the impact of
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introducing an approximation of the aeropropulsive model on the simulated trajectory. To address this,
an adaptive metamodel construction strategy is implemented.

The idea is to carry out a DoE campaign to build an initial database from which a surrogate model is con-
structed. Various approaches for generating this database are discussed later. In this study, a simulation
model that provides both the aeropropulsive performance and the center of gravity position is used. The
inputs to the computational code are altitude, Mach number, angle of attack, control surface deflection
angle, thrust, mass flow rate, and the position of the center of gravity. The outputs of the computational
model include aerodynamic forces and moments referenced to the center of gravity.

Two main strategies can be identified for introducing surrogate models:

• Offline: the surrogate models are built prior to the analysis, in this case, before the trajectory
simulation.

• Online: the surrogate models are updated (i.e., enriched) during the trajectory simulation itself.

A major challenge lies in estimating the level of confidence in the results, given the approximations
introduced by using surrogate models. Online approaches (also called adaptive learning or goal ori-
ented) allow the surrogate models to be refined in regions of interest relevant to the study, thereby
improving both the predictive quality and the associated confidence level. These refinement strategies
typically require surrogate models that provide an estimate of uncertainty along with each prediction
(e.g., Gaussian Processes, as described later).

In the following, an online approach is presented within the context of the aeropropulsive performance
model used for trajectory simulation.

More generally, the process of using a surrogate model in a study consists of the following steps (Figure
3):

Fig 3. General process for surrogate model

1. Designing an initial DoE on which the computational code is evaluated,

2. Creating the surrogate model,

3. Training the surrogate model (optimizing the metamodel’s hyperparameters to align its predictions
with the DoE data),

4. Validating the metamodel,

5. Using the metamodel in the target application.

In the case of an online strategy, a loop is carried out between steps 4 and 1 until the desired accuracy
for the trajectory is reached or the total available simulation budget is meet.
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3.1. Active learning process
3.1.1. General process
To tailor the design of experiments (i.e., the database) to the specific needs of the trajectory simula-
tion using a computationally expensive model, an adaptive enrichment strategy is implemented. This
approach involves the following steps (Figure 4):

Fig 4. General active learning process for surrogate-based trajectory simulation

• Step 1: Generate a limited-size design of experiments using a tailored Latin Hypercube Sam-
pling (LHS) strategy, designed to be relevant in the context of trajectory simulation;

• Step 2: Evaluate the high-fidelity aeropropulsive performance model to obtain an initial training
dataset;

• Step 3: Construct a set of surrogate models in the form of Gaussian Processes, with one
surrogate model for each output of interest from the high-fidelity model;

• Step 4: Apply an adaptive enrichment strategy to the database, adding new, relevant data
points that improve the accuracy and confidence of trajectory predictions using the surrogate
models.

The exact computationally intensive aeropropulsive performance model is noted g : z ∈ Z ⊂ R6 → y =
g(z) ∈ R4. The input variable vector corresponds to the altitude, the Mach number, the angle of attack,
the control surface deflection angle, the fuel-to-air ratio and the mass of propellant. The output variable
vector corresponds to the drag and lift coefficients, the pitching moment coefficient and the air mass
flow rate through the engine. The objective is to construct a surrogate model for g(·) and to enrich it
through active learning. Each step of the proposed process is detailed in the following sections.

3.1.2. Step 1: initial DoE tailored for trajectory simulation
In the first step, it is necessary to define an initial DoE. Several approaches can be considered: grid-based
methods, Monte Carlo methods, and low-discrepancy methods (which aim to ensure a well-distributed
sampling of points across the input domain), among others.

In the following the illustrations (Figure 5) corresponds to a cut of the overall input space of dimension
6 considering the two input variables “altitude” and “Mach number”. First, it is important to note that
grid-based strategies (left of Figure 5) are often poorly suited for DoE construction. This is primarily
because they result in significant information loss due to the uniform spacing (iso-distance) of sampling
points along each dimension. Furthermore, the number of required points increases exponentially with
the dimensionality of the input space, making this approach practically infeasible for dimensions greater
than three.

Monte Carlo methods aim to randomly distribute points throughout the input space. These approaches
are dimension-independent and ensure broad coverage of the space. However, they can result in
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Fig 5. Different strategies for the initial DoE, left: grid-based approach, center: LHS over the entire
space, right: dedicated LHS based on a prior flight envelop

clusters of nearby points, leading to redundant information and unnecessary computational cost. Low-
discrepancy sampling methods (e.g., Sobol’ sequences, Halton sequences), which typically incorporate a
degree of randomness, are generally preferred for improving the distribution of training points across the
surrogate model’s input domain. One of the most widely used techniques is Latin Hypercube Sampling
(LHS), which is the method employed in this study (middle of Figure 5). However, another important
consideration when developing a surrogate model and its associated DoE is to tailor them to the specific
objectives of the study. For instance, in trajectory simulation, analyzing only the two variables “altitude”
and “Mach number” reveals that a full sampling across their entire definition domain would lead to a
large number of unnecessary computations (middle of Figure 5, red areas), since the relevant trajectory
is typically confined to a specific sub-region of the flight envelope.

Therefore, an adapted LHS sampling strategy to the context of hypersonic vehicle trajectory simulation
is proposed in order to avoid the generation of points in regions of limited interest regarding the input
space and therefore losses of computational resources.

To this end, a classical LHS is performed within the unit cube [0., 1.]6, denoted Znormn  , where n is the
number of points. Then, for each variable of the vector z ∈ Z ⊂ R6, bounds of variation (representing
a potential flight corridor) are defined to scatter the normalized data around a ”prior flight envelop,
yielding the appropriate design of experiments Zn = {z1, . . . , zn}. This reference trajectory may come
from a previous study, be obtained using an alternative guidance method, or be defined through a
broad potential flight corridor. It is not necessary for this flight corridor (and the bounds of variation)
to encompass the (unknown) trajectory intended for simulation. This “adapted LHS” approach makes
it possible to rationalize the positioning of points within the definition domain Z relative to a hyper-
sonic vehicle trajectory, thereby avoiding the generation of points in regions of Z outside the reachable
trajectory envelop (e.g., very high altitude and very low Mach number simultaneously).

For the variables related to the angle of attack and control surface deflection angle, since these values
are often defined by a trim process at each point along the trajectory (numerically solving for a zero),
the entire definition domain is covered by the initial DoE.

This initial DoE is intended solely to distribute points within regions of interest relative to a hypersonic
vehicle trajectory and to avoid wasting computational time. The adaptive enrichment strategy will
subsequently allow this initial DoE to be refined through a goal-oriented approach.

3.2. Step 2: evaluation of the exact computationally intensive aeropropulsive performance
model

This step aims to obtain the outputs corresponding to the design of experiments Zn = {z1, . . . , zn}
(noted Zn = [z1, . . . , zn]T under the matrix form) by evaluating the exact aeropropulsive performance
model, yielding Yn = {y1 = g(z1), . . . ,yn = g(zn)} (similarly Yn = [y1, . . . ,yn]T ). This step is compu-
tationally expensive since the high-fidelity model is evaluated n times. However, these evaluations can
be performed in parallel. Additionally, the size of the initial design of experiments is limited.
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3.3. Step 3: surrogate models creation based on Gaussian process
In this step, based on the design of experiments {Zn,Yn}, a surrogate model is constructed to approx-
imate the exact function g : z ∈ Z ⊂ R6 → y = g(z) ∈ R4. The surrogate model, denoted G(·), is
based on Gaussian processes (GP) [11]. A Gaussian process G(·) ∼ GP(µ(·), cov(·, ·)) is fully defined by
a prior through its mean function µ(·) and its covariance function cov(·, ·).

In the context of this study, one particular aspect of the function of interest g(·) is that it is a vector-
valued output function. Several strategies exist to approximate this type of function depending on its
intended use:

• constructing independent Gaussian processes, one for each component of the output vector y,

• constructing a single Gaussian process that predicts all components of the output vector simul-
taneously.

The enrichment strategy presented later does not require sampling realizations from the Gaussian pro-
cess, therefore there is no risk of consistency loss between the coordinate of the output vector if indepen-
dent GPs are built. For simplicity reasons and without loss of generality, independent Gaussian processes
for each component of the output vector are constructed : Gj=1,...,4(·) ∼ GP(µj(·), covj(·, ·)).

In practice, the covariance model is represented using a parametric multivariate kernel kθ(·, ·) with
parameter vector θ. The kernel is a symmetric positive semi-definite function. The most known kernels
[11] are the Squared Exponential kernel (also known as Radial Basis Function), the Rational Quadratic
kernel, the Matérn kernel, etc. The covariance function is a key element in GP. The covariance function
allows to encode some assumptions on the behavior of the exact function (e.g., smoothness, periodicity,
stationarity, separability). Multidimensional kernels may be obtained by combining single dimensional
kernels through for instance a product operator following the formalism of Reproducing - Kernel - Hilbert
- Space (RKHS) [1]. In addition, without any prior knowledge, a constant mean function µ is assumed
as a prior.

The training phase of the Gaussian process aims to determine the values of the parameters associated
with the mean function (generally assumed to be constant) and the parameter vector θ of the covariance
model. For that matter, from these input and output training sets and the prior on the GP, it is possible
to train the surrogate model using the marginal likelihood. It is obtained by integrating out the latent
function giving p (Yn|Zn,θ, µ, σ) = N (Yn|µ,Knn+ σ2Inn

)
with Inn the identity matrix of size n, Knn a

covariance matrix built from kθ(·, ·) evaluated on the input DoE Zn and σ2 a Gaussian homoscedastic
noise variance in the case of noisy numerical DoE (in can be adapted in case of heteroscedastic noise).
For instance, this numerical noise may be used to model the numerical convergence error of NtT calcu-
lations. To simplify the notations K̂nn = Knn +σ2Inn is introduced. In practice, the GP training requires
to minimize the negative Log-Marginal Likelihood (LML) with respect to the hyperparameters θ, µ and
σ. The LML L(·) is given by:

L (θ, µ, σ|Zn,Yn) = log (p (Yn|Zn,θ, µ, σ)) (4)
∝ log

(
|K̂nn|

)
− YT

n K̂−1
nnYn (5)

where all the kernel matrices implicitly depend on the hyperparameters θ (similarly for below). To
solve the optimization problem, any optimizer may be used (e.g., gradient-based, population-based
algorithms). Moreover, a closed form of the constant mean function may be sometimes determined
[11].

Once the training is complete and the optimal parameters have been identified, the Gaussian process
is conditioned on the design of experiments {Zn,Yn} to determine the Gaussian process posterior
distribution used for prediction. The prediction at a new unknown location z ∈ Z is done by using the
conditional properties of a multivariate normal distribution:

p
(
y|z,Zn,Yn, θ̂, µ̂, σ̂

)
= N

(
y|ĝ(z), ŝ2(z)

)
(6)
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where ĝ(z), ŝ2(z) are the mean prediction and the associated variance. These terms are defined
by:

ĝ(z) = µ̂+ kT
z
(
Knn + σ̂2Inn

)−1
(yn − 1µ̂) (7)

ŝ2(z) = kz,z − kT
z
(
Knn + σ̂2Inn

)−1 kz (8)

where kz,z = kθ̂(z, z) and kz =
[
kθ̂ (zi, z)

]
i=1,...,n

3.4. Step 4: active learning enrichment strategy
Once the Gaussian processesGj={1,...,4}(·) have been trained and conditioned to determine the posterior
predictive models, it becomes possible to replace the exact model with the obtained Gaussian processes
within the flight dynamics equations:

ẋ(t) = dx(t)
dt = f[x(t),u(t), t] ⇒ ˆ̇x(t) = dx̂(t)

dt = f̂Zn,Yn
[x̂(t),u(t), t],

where f̂Zn,Yn
[·] denotes the system of differential equations in which the exact model has been replaced

by the Gaussian processes Gj={1,...,4} constructed from the design of experiments {Zn,Yn}.

Trajectory simulation then allows the computation of the final state x̂(tf ) at time tf as:

x̂{Zn,Yn}(tf ) = xi +

∫ tf

ti

ˆ̇x{Zn,Yn}(t) dt = xi +

∫ tf

ti

f̂Zn,Yn
[x̂{Zn,Yn}(t),u(t), t] dt,

where x̂{Zn,Yn}(·) denotes the approximation of the state variable vector when using the surrogate
models. The numerical integration of the trajectory is computationally inexpensive since the exact
model is not used, but rather the surrogate models.

The objective of the adaptive enrichment strategy is to add new points to the database such that, in the
input space regions of interest:

Gj={1,...,4}{Zn,Yn}(·) −→ g(·),
meaning that the Gaussian processes converge toward the exact model, ensuring:

f̂Zn,Yn
(·) −→ f(·),

(convergence of the differential equations), and consequently:

x̂{Zn,Yn}(·) −→ x(·),

enabling the trajectory obtained using the surrogate models to converge toward the trajectory obtained
using the exact aeropropulsive performance model.

To select the next points to add to the database, the following optimization problems are proposed:

For each output of the exact model j = {1, . . . , 4}, solve:

topt(j) = argmax
tk={1,...,N}

ŝ2
[
Gj

(
x̂{Zn,Yn}(tk),u(tk), tk

)]
subject to:

ˆ̇x(tk) = f̂Zn,Yn
[x̂(tk),u(tk), tk],

where tk={1,...,N} are the N integration time steps used for numerically solving the system of differential
equations with the surrogate models.
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This optimization problem identifies, for each output component of the exact model, the time-point
along the integrated trajectory where the Gaussian process predictive variance is maximal. This allows
identifying where the surrogate models are the least “confident” along the trajectory, and these points
are added to the database. This optimization step does not add significant computational cost since
it only involves a maximum search over a finite list. From the optimal point x̂{Zn,Yn}(topt(j)) for j =
{1, . . . , 4}, it is possible to determine the corresponding input parameter vector zopt ∈ Z for the exact
model.
The points added to the database are thus relevant for trajectory simulation since they lie along the cur-
rent integrated trajectory (i.e., within the region of interest of the definition domain Z) and correspond
to regions of low confidence in the surrogate model predictions.
At each enrichment iteration, it is possible to add between 1 and 4 points to the database (depending
on whether the optima for the four output components correspond to the same time topt(j) for j =
{1, . . . , 4} or to different times). Furthermore, if multiple enrichment points are identified, the exact
model can be evaluated at these points in parallel. In the following, without loss of generality, the
notation considers the addition of a single point to the database. Once the enrichment point zopt is
defined, it is added to the database:

Zn+1 = Zn ∪ {zopt},
and the exact model is evaluated to enrich the output database:

Yn+1 = Yn ∪ {g(zopt)}.

Based on the new DoE {Zn+1,Yn+1}, the Gaussian processes are retrained, and a new enrichment
iteration is performed. Since the “exact” trajectory is not known, the stopping criterion for enrich-
ment is based on the stagnation of the convergence of the trajectory between successive enrich-
ment iterations (e.g., stagnation of the difference between the state variables x̂{Zn,Yn}

(
tk={1,...,N}

)
and x̂{Zn+q,Yn+q}

(
tk={1,...,N}

)
with q ∈ {1, . . . , 5}). Here, the number of iterations with stagnation used

to define convergence is set to 5.

4. Illustrative test case of hypersonic vehicle trajectory simulation
In order to illustrate the proposed approach, a representative test case is presented. It corresponds to
the flight of an hypersonic vehicle for an ascent mission.
The aeropropulsive performance model aims to compute trimmed flight conditions for an hypersonic
vehicle by ensuring: the longitudinal force balance between thrust and drag, the vertical force balance
between lift and weight component, the moment balance (pitching moment equilibrium) and consistent
engine operating point (matching mass flow rates, pressures, and combustion conditions). This model
is required for trajectory simulation.
The aeropropulsive performance model is provided by a representative model with a computational
cost lower than classical CFD RANS NtT calculations. However, the proposed method is dedicated to
computationally intensive model.
The reference unknown trajectory simulated with the exact aeropropulsive performance model is rep-
resented in Figure 6.
This exact unknown trajectory is obtained using a classical Runge-Kutta 45 (RK45) numerical ODE in-
tegrator, requiring 1982 evaluations of the exact aeropropulsive performance model. It is important to
note that the settings of the numerical ODE integrator (absolute and relative tolerances, integration or-
der, etc.), or even the choice of the numerical ODE integrator itself (Runge-Kutta, Adams/BDF method,
collocation with Radau technique, etc.), have a significant influence on both the number of exact model
evaluations and the accuracy of the resulting trajectory. Therefore, a trade-off must be made between
integration accuracy, computational cost, and the intrinsic uncertainty of the ”exact” aeropropulsive
model. Indeed, there is no benefit in performing a highly accurate numerical integration of a trajectory
when the underlying aeropropulsive model exhibits a high level of predictive uncertainty. In the present
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Fig 6. Reference unknown trajectory simulated with the exact aeropropulsive performance model

study, taking all these considerations into account, an appropriate trade-off has been established when
configuring the ODE integrator.

4.1. Initial DoE
To build the initial DoE, n = 20 samples are generated using the proposed adapted LHS strategy by
sampling within the hypercube [0, 1]6. Then, for each variable of the vector z ∈ Z ⊂ R6, bounds of
variation (representing a potential flight corridor) are defined to scatter the normalized data around a
“prior knowledge trajectory,” yielding the appropriate DoE Zn = {z1, . . . , zn}. Selected projections of
the initial DoE into subspaces are shown in Figure 7.

Certain subspaces are sampled within specific regions (for instance, the altitude–Mach number sub-
space), taking into account the global regions of interest for this type of vehicle and ascent trajectory.
In other subspaces of the input space (for example, angle of attack and Mach number), the entire do-
main of definition is covered since a trim process (numerically solving for a zero) is performed at each
point along the trajectory.

Fig 7. Initial DoE represented through cuts of the input space of dimension 6.

4.2. First iteration of the enrichment process
From the initial DoE, four Gaussian processes are constructed, and a first trajectory simulation is per-
formed using these surrogate models. As illustrated in Figure 8, the resulting surrogate-based trajectory
is far from the exact unknown trajectory obtained with the full aeropropulsive model. This discrepancy
arises from the limited size of the initial DoE (n = 20) and its lack of adaptation to the simulation of the
unknown trajectory.

To improve the accuracy of the surrogate-based trajectory, an enrichment strategy is implemented to
identify new simulations of the exact aeropropulsive performance model that should be performed to
refine the initial DoE. By solving the infill problem, new candidate points are determined. Figure 9 shows
the initial DoE in the input space, the surrogate-based trajectory using this initial DoE in the altitude–
Mach number and angle-of-attack–Mach number subspaces, and the two infill candidate points (green
dots) selected for the next iteration.

By evaluating the exact aeropropulsive performance model at these two infill candidate points, the DoE
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Fig 8. Reference unknown trajectory simulated with the exact aeropropulsive performance model and
the trajectory simulated with Gaussian process constructed from the initial DoE. Evolution as a function
of time of the normalized altitude (left), and normalized angle of attack (right).

Fig 9. Initial DoE represented in subspaces altitude-Mach number and angle of attack-Mach number of
the 6 dimension input space and corresponding surrogate-based trajectory.

can be enriched, allowing the Gaussian processes to be rebuilt. The updated DoE at iteration 1 (in
the altitude–Mach number subspace) and the resulting trajectory (altitude as functions of time) are
presented in Figure 10. This enrichment of the DoE allows the surrogate-based trajectory to approach
the exact unknown trajectory more closely.

Fig 10. DoE at iteration 1 in subspace altitude-Mach number (left), surrogate-based trajectory with the
altitude as a function of time (right).

4.3. Full enrichment process
The enrichment process is repeated over several iterations to rationally select new infill candidate points
on which the exact aeropropulsive performance model is evaluated. These evaluations enrich the DoE
and update the surrogate-based trajectory. The resulting surrogate-based trajectories at iterations 10,
30, and 79 (final iteration) are shown in Figure 11, illustrating the evolution of normalized altitude
and angle of attack as functions of time. A significant improvement in the accuracy of the surrogate-
based trajectory is observed, with the trajectory converging toward the exact unknown trajectory. This
demonstrates the value of an in-line approach for surrogate-based simulation of the trajectory of a
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hypersonic vehicle when using a computationally intensive aeropropulsive performance model.

Fig 11. Reference unknown trajectory simulated with the exact aeropropulsive performance model and
the surrogate-based trajectory simulated at iteration 10 (first row), 30 (middle row) and 79 (last row).
Evolution as a function of time of the normalized altitude (first column) and normalized angle of attack
(second column).

Additionally, Figure 12 displays the evolution of the DoE across the enrichment process for iterations 10
(first row), 30 (middle row), and 79 (last row). The samples added to the DoE correspond to specific
regions of the input space, primarily distributed along the unknown final trajectory, which is challenging
to target using an offline approach since the evolution of the trajectory within the six-dimensional input
space is unknown in practice. The enrichment process thus enables the selection of informative samples
on which the computationally intensive aeropropulsive performance model is evaluated.

In comparison, the adaptive enrichment strategy makes it possible to obtain a trajectory similar to the
reference one using only 232 calls to the exact aeropropulsive performance model (including the 20 calls
from the initial design of experiments), corresponding to an 8.5-fold reduction in the number of calls to
the exact model.

Moreover, these 232 calls correspond to 80 iterations of the enrichment process (one initial plus 79
enrichment iterations), which amounts to an average of 2.9 calls to the exact aeroropulsive performance
model per iteration. These 2.9 calls per iteration can be performed in parallel, and if a sufficiently large
computing cluster is available, they can be considered equivalent to a single call in terms of computation
time. Therefore, the 1982 sequential calls required by the “exact” approach should be compared with
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the 20 + 80 = 100 calls (with parallelization) in the refinement strategy, representing approximately a
20-fold reduction in computation time.

Fig 12. DoE represented in subspaces altitude-Mach number (left) and angle of attack-Mach number
(right) at iteration 10 (first row), 30 (middle row) and 79 (last row)

4.4. Robustness to initial DoE
To evaluate the robustness of the proposed surrogate-based trajectory simulation process with respect
to the initial DoE, 20 repetitions of the approach are performed using different initial DoEs. Further-
more, to illustrate the benefits of the proposed enrichment strategy, it is compared with two alternative
approaches:

• an offline approach (referred to as “No infill”), in which the surrogate-based trajectory relies
solely on an initial DoE (generated using the proposed adapted LHS strategy) with the same
number of samples as the current iteration of the enrichment process, allowing for comparison
at equal computational cost,

• an online approach (referred to as “Random infill”) that uses the proposed infill criterion but,
instead of selecting the samples that maximize the infill criterion, randomly selects samples
among those satisfying the infill constraints.

Figure 13 shows the convergence of the mean error (in percent) of the normalized altitude and normal-
ized Mach number as a function of the number of evaluations of the exact aeropropulsive performance
model, compared to the exact unknown trajectory. This error corresponds to the mean error com-
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puted over the entire trajectory (with respect to time). The shaded areas represent the 25% and 75%
interquartile ranges, while the line indicates the median across the repetitions.

Fig 13. Mean error in percent on normalized altitude (left) and normalized Mach number (right) com-
pared to the exact unknown exact trajectory for three surrogate-based trajectory strategies : an offline
approach (”No infill”), a random online infill (”Random infill”) and the proposed approach (”GP infill”).
The shaded areas correspond to the 25% and 75% interquartiles. The line corresponds to the median
of the repetitions.

First, it is interesting to note the benefit of adaptive enrichment strategies for the convergence of the
surrogate-based trajectory toward the exact unknown trajectory. Indeed, the offline strategy does not
converge toward the exact trajectory despite more than 200 calls to the exact aeropropulsive perfor-
mance model. Although a decrease in the mean error is observed as the size of the DoE increases,
the added points are not necessarily relevant for this specific trajectory. Furthermore, there is a large
dispersion between repetitions.

In contrast, enrichment strategies allow convergence toward the exact trajectory and are robust to
initialization (low dispersion around the median). It is observed that the adaptive enrichment strategy
with point selection based on the lowest prediction confidence enables faster convergence toward the
exact unknown trajectory. For example, after 75 calls to the exact aeropropulsive performance model,
the median error with the “random infill” strategy is 5 times higher to the median error with the proposed
approach. Indeed, the “random infill” strategy may potentially add points to the database in regions
where there is already a high confidence in the metamodel predictions, thereby “wasting” computational
cost by evaluating the exact performance model in areas of the definition domain Z where prediction
confidence is high.

Moreover, with the proposed enrichment strategy, it is noted that with a median of only 75 calls (20
initial points + 55 enrichment points), representing a 26.4-fold reduction in the number of calls, the
obtained accuracy is in the same order of magnitude of the trajectory simulation with the exact aero-
propulsive performance model considering both RK45 settings and uncertainty modeling associated to
the aeropropulsive model.

5. Conclusion
In this paper, a surrogate-based trajectory simulation strategy has been proposed for hypersonic vehicle
applications, where the aeropropulsive performance model relies on computationally intensive calcula-
tions such as CFD RANS NtT evaluations. The approach leverages an active learning strategy guided
by the uncertainty model of Gaussian Processes to substitute the exact aeropropulsive performance
model during trajectory simulation. By iteratively identifying and selecting new data points in specific
regions of the input space where the prediction uncertainty is high along the current trajectory, the
high-fidelity model is evaluated only at a limited number of informative points relevant to the trajectory
of interest.
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The proposed methodology has been applied to a representative test case of hypersonic vehicle trajec-
tory simulation. The results demonstrate that the surrogate-based approach can accurately reproduce
the reference trajectory while significantly reducing the computational cost compared to direct high-
fidelity simulations within the ODE integration process.
Future work will focus on incorporating engine operability constraints into the active learning process.
Additionally, the extension of the proposed approach to optimal control problems will be investigated
to enable the determination of guidance laws for hypersonic vehicles while maintaining control over
computational costs.
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