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Abstract

Boundary layer transition is of particular interest in the prediction of the aerodynamic performances and
maneuverability of a given hypersonic vehicle. However, it has been found to be highly sensitive to flow
parameters such as the Mach number, unit Reynolds number, cross-flow effects and wall temperature.
Besides, from a numerical point of view, it is particularly difficult to obtain representative boundary-layer
profiles to understand and then model these effects on the dominant instability modes. In this paper, a
methodology relying on metric-based mesh adaptation has been validated and applied to address these
issues. More specifically, the effects of the unit freestream Reynolds number, the wall temperature ratio
T,/ T, and the angle of attack on various boundary layer profiles and the typical instability waves (cross-
flow instability, first and second Mack modes) for a sharp 7-degree cone geometry are investigated.
It has been observed that the increase in unit Reynolds number destabilizes all modes. Moreover, it
was shown that the ratio T, /7, has a drastic effect on these modes. Indeed, although the second
Mack mode is strongly destabilized when lowering the T.,/T.. ratio, the highly oblique modes behaved
in the opposite fashion, being strongly destabilized with an increase of T,,/T,.. Below T, /T, ~ 0.3, the
first mode became completely stable and the crossflow mode was always unstable for all the chosen
T, /T, values. Finally, it has been found that the angle of attack significantly destabilized the crossflow
instability by increasing the values of |w,,.../U.| and the variation of edge quantities across the flowfield
due to a stronger azimuthal pressure gradient induced by the curved bow shock.
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Nomenclature

Latin Greek
u — Longitudinal velocity
v — Wall-normal velocity

w — Transverse velocity 1 — Molecular viscosity

p — Pressure o — Streamwise wavenumber

T — Temperature B8 — Transverse wavenumber

Ty — Stagnation temperature n — Normal body-fitted coordinate

M — Mach number ¢ — Streamwise body-fitted coordinate

Re — Reynolds number ¢ — Transverse body-fitted coordinate
AoA — Angle of attack _ w — Angular frequency
GIP — Generalized inflexion point a; — Amplification rate

T, — Wall temperature o — Growth rate
s — Curvilinear abscissa

6. — Cone half angle
¢ — Azimuthal angle around the cone

Ry — Nosetip radius Subscripts

L. — Cone length oo — Freestream values

f — Frequency e — Boundary layer edge values

m — Non-dimensional azimuthal wavenumber u — Regarding the longitudinal velocity
x,y,z — Spatial coordinates w — Regarding the crossflow velocity
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1. Introduction

The design of hypersonic vehicles requires a precise estimation of the heat fluxes at the wall, which
depend on the laminar or turbulent state of the boundary layer. Considering that the boundary layer state
affects the overall aerodynamic performance of the vehicle, being able to predict the flow transition is of
prominent importance. Recent design concepts require taking into account longitudinal instabilities but
also three-dimensional ones such as the crossflow instability, which is particularly difficult to characterize
and model. As a result, three-dimensional effects must be accounted for in transition modeling.

Moreover, the equations to be solved in order to generate reliable boundary-layer profiles are crucial
in the hypersonic regime. Indeed, Paredes et al. [1] have shown that the solutions obtained from the
stationary Navier-Stokes equations and self-similar solutions led to significant differences, especially in
the stability results. They found that the full Navier-Stokes solutions tended to predict a delayed transition
compared to self-similar solutions coupled to an inviscid or viscous solution for the region outside of the
boundary layer. The disagreement results from assuming certain simplifications that deteriorate the
representativeness of the boundary layer profiles, the stability results and hence the prediction of the
transition onset. Thus, choosing a strategy completely based on solving the Navier-Stokes equations
is of particular interest to improve our understanding of these instabilities in three-dimensional flows.
However, it is fair to say that generating a 3D mesh with suitable shock alignment and resolution is
extremely time-consuming. Consequently, a first study involving metric-based mesh adaptation for the
base flow computation followed by stability analysis has been investigated. Our fully automatic approach
has been validated by comparing stability results from the literature for both the Mack modes and the
crossflow instability, leading to an excellent agreement.

Furthermore, the effect of freestream conditions must also be considered in order to accurately predict
the flow transition in a wide range of flow conditions, thus allowing a model to be both precise and robust
in an entire trajectory. For example, for the HIFIRE-5 blunt elliptic cone geometry, it has experimentally
been shown by Juliano et al. [2] that the freestream unit Reynolds number had a significant influence
on the location of the transition onset for both quiet and noisy flow. Furthermore, it has also been shown
that the angle of attack, usually known to destabilize the crossflow instability, can actually stabilize and
destabilize this instability on the windward and leeward face respectively, thus highlighting the prominent
effect of the angle of attack. Besides, Mack [3] has shown that the Mach number has a prominent role in
the transition of laminar flows. For an adiabatic flat plate, the author [3] has for instance shown that the
second Mack mode prevailed over the first Mack mode when M, > 4, thus proving that the mechanisms
of transition are highly dependent on the Mach number. Moreover, it has also been found that these
two specific modes are highly sensitive to the wall temperature ratio 7;, /7. Indeed, the first and second
Mack modes are respectively stabilized and destabilized for a colder wall case usually representative
of flight data where an extremely cold wall can even completely stabilize the first Mack mode but at
the cost of significantly destabilizing the second Mack mode. As a result, it appears evident that the
freestream parameters M., Re, « and T,,/T,. must be quantitatively investigated and accounted for
in transition modeling. In this study, the aforementioned validated and automatic metric-based mesh
adaptation methodology is applied to tackle this challenge and study these effects. For now, only the
effects of Re.., a and T,,/T,. are investigated in this paper.

2. Theory

2.1. Metric-based mesh adaptation

Mesh adaptation techniques aim at adapting the mesh based on a given metric, constructed from a
prescribed sensor, in order to control the numerical errors, thus offering a higher fidelity and even a
guarantee of the numerical solutions through mesh convergence. Moreover, it significantly alleviates
the user time to reach a converged mesh and solution. In this subsection, all the formulas, concepts
and notations are taken from the work of Loseille and Alauzet [4, 5, 6].
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Based on the concepts of Riemannian metric space and continuous mesh theory, a control and a
quantification of the edge sizes in any direction are possible. According to Alauzet and Olivier [6], given
a metric tensor M (d x d symmetric positive definite matrix, where d is the domain dimension), various
geometric quantities can be computed. For instance, in the Riemannian metric space, the length of a
given edge ab, noted ¢4 (ab), is calculated as follows:

1 1
ZM(ab):/O H'y’(t)||Mdt:/O \/ab” M(a + tab)ab dt, 1)

using the straight line parameterization ~(t) = a + tab, where ¢ € [0, 1]. Besides, the volume of a given
element K, noted |K|, , is given by

K]y, = /K Vdet(M(x)) dz. (2)

As introduced by George et al. [7], the main idea of metric-based mesh adaptation is to generate a
unit mesh in the Riemannian metric space, meaning that each edge has a unit length (Ve, {,¢(e) = 1)
and each tetrahedron is regular (VK,|K|,, = v/2/12). Ultimately, the resulting mesh in the Euclidean
space will be anisotropic and adapted. This is precisely the reason why the Riemannian metric space
is used.

In the continuous mesh framework, the goal is to find the optimal continuous mesh MZ’;t that minimizes
the continuous interpolation error in L? norm, noted Er». Thus, for a given computational domain (2, the
goal is to find the optimal continuous mesh M{2" = (M (x)).eq which minimizes the error E;.», where
E» is the error between a sensor u, which is a function of the conservative variables, and the continuous
linear interpolate 7w u. Besides, adding another constraint called the complexity C, which enables the
user to prescribe a desired number of vertices N in the mesh, the global optimization problem to be
solved can be written as

1
P

Ep» (MP) = rrlwn Er(M) = mIViInHu — Tmull ey = mz\i4n (/Q lu(z) — WMu(l‘)lpdl‘> , (3)
under the constraint

(M) = / /S M X)) d = N (4)
Q
After derivation [4] 5] 6], the optimal continuous mesh MZ?,,” can be obtained with the formula
MP =N (/ (detIHu(X)I)ZpiddX) (det]Hu|) 77 |Hy|. (5)
Q

Here, N is the equivalent of the complexity C in the discrete mesh framework and H, is the hessian
of the previously-mentioned sensor u. Ultimately, M}jﬁit is unique and has optimal directions and ratios
as the hessian’s ones. In practice, the complexity C and the norm p are both prescribed by the user.
Besides, the optimal metric tensor M"Lﬂt is obtained with the computation of the hessian of the sensor «
which is usually the Mach number.
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2.2. Local stability theory

After using the mesh adaptation based on the principles described in the previous section, flow solutions
are obtained and their quality in the boundary layer region is assessed by means of stability analysis. It
will be described next.

Stability theory relies on the introduction of a small perturbation on a steady base flow, defined as

(&, ¢ t) =q(&,n, Q) +ed'(€,m,¢, 1), (6)

where ¢ = (u,v,w,p,T). Whereas the flow undergoes fast variations in the wall normal direction, its
streamwise and crosswise variations are slow compared to the perturbation variations. In the context
of Local Stability Theory (LST), this is accounted for via the parallel flow assumption. As stated by
Arnal and Casalis [8], this assumption indicates that the mean flow variation over a wavelength of the
perturbation is negligible. Under the LST framework, non-linear effects are also neglected, leading to
the following modal form of perturbation:

q (&, ¢, t) = qn)e'@sHhe=en, 7)

where the introduction of 3 is used to account for the azimuthal variations and to study oblique modes.
Here, w is the angular frequency (w = 27 f) and the coefficients « and 8 correspond respectively to the
axial and transverse wavenumbers. Besides, the axial and transverse wavelengths can be obtained
respectively with A¢ = 27 /a and X\; = 27/5. Furthermore, another parameter which is often introduced
is the non-dimensional transverse wavenumber mg, also noted n. For the specific case of a sphere-cone
geometry, mg = 5 X Reone(§) Which results in the product of 5 and the local radius of the cone R0 (&)
at a given axial location £ along the cone.

Introducing this formulation into the linearized Navier-Stokes equations leads to a linear generalized
eigenvalue problem AX = aBX. The vector X is composed of all ¢ and the matrices .4 and 5 both
depend on the values of w, § and the mean flow field. In practice, the numerical values of w and 3 are
imposed, thus resulting in the calculation of the eigenvalue « and the eigenfunctions in X. When the
imaginary part of «, also noted «;, is positive, the perturbation is damped along ¢ but it is amplified when
«; is negative.

From the LST results, various other parameters can be determined such as the ratio of local to initial
amplitude A(£)/ Ay or the local growth rate o = —«; defined as

1dA

U:Zd—g. (8)

This growth rate may be used to compute the total growth of a given mode, called the N-factor and
mathematically expressed as

13
N© = [ olds (©)

£o

Here, & is the location where the perturbation becomes unstable with an initial amplitude Ay.
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3. Methodology

3.1. Mesh adaptation methodology

An iterative process is required to tackle the non-linear problem of mesh adaptation. As shown in
Figure[1] the process starts with the generation of an initial mesh #, and an initial solution S, obtained
from a CFD solver. Once calculated, a convergence criterion is evaluated. If the criterion is verified,
the last mesh and solution are kept as final results. However, if it is not satisfied, the mesh adaptation
loop starts or continues. First, based on a computed error estimate metric, the mesh is adapted by a
remesher. In this work, the mesh adaptation is performed with the open-source software refine [9, 110]
to take advantage of its parallel/partitioned capability where the loop between the CFD solver and the
remesher is automatically handled with an in-house mesh adaptation tool.

Then, the previously-obtained solution is interpolated on the newly-obtained adapted mesh. Finally,
the new mesh and solution are put as new input of the CFD solver and the loop continues until the
user-defined convergence criterion is verified. In this work, approximately 50 boundary layer profiles are
chosen on the cone and various first and second derivatives of the boundary layer profiles
(u, p, 1) are plotted before each mesh adaptation. When the convergence of these derivatives are
deemed sufficient, the loop stops, the same or another set of boundary layer profiles are extracted and
stability analyses are performed for these profiles.

Initial mesh H,

(Ho)
croswve s [ e
(Hiv1, Si)
Mesh adaptation
‘ | (Hi, M)
Is convergence NO Compute error
(pg—;;, p%) reached ? (Hi, Si) estimate metric M;
(Hi, Si)
3

Final mesh H;
Final solution S

Fig 1. Block diagram of the mesh adaptation methodology.
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3.2. Geometry and CFD solver methodology

In this work, only sphere-cone geometries have been investigated. The geometry is thus defined by
the nosetip radius Ry, the cone semi-angle 6. and the cone length L.. In the following sections, two
other coordinates noted £ and ¢ are introduced where ¢ is the longitudinal abscissa along the cone and
¢ is the azimuthal angle from the windward symmetry plane at a given axial location &, as shown in

Figure[2]

To perform the CFD calculations, the solver SoNICS (ONERA-Safran property) [11] is used to take
advantage of its numerical robustness for meshes composed of highly anisotropic tetrahedra.
In particular, the V4 vertex-centered finite volume scheme, initially developed by Dervieux [12],
Rostand and Stoufflet [13] has been used in this work.

The control volumes are built around mesh vertices following the median cell approach to define the dual
cells. To compute the convective fluxes, a HLLC-Riemann solver is used and, for the viscous fluxes, a
five-point stencil approach is chosen. Moreover, time integration is performed using an implicit backward
Euler method, where the implicit procedure is a SSOR method.

Regarding the boundary conditions, supersonic inflow and outflow conditions are imposed in the inlet
and outlet, respectively. Symmetry boundary conditions are imposed for the leeward and windward
symmetry planes. Finally, an isothermal no-slip boundary condition was imposed on the sphere and the
cone.

Yy

A

| Leeward, ¢ = 180°

Rcone (5 )

Rcone (5)

~~Windward, ¢ = 0°

Fig 2. Definition of the azimuthal angle ¢ around the cone at a given axial location &.
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4. Validation of the methodology

4.1. Circular sharp cone

For validation purposes, our results will be compared against the recent ones in Liu et al. [14], focusing
only on stability diagrams. Table [T]indicates the flow conditions for the case taken from Liu et al. [14].
The geometry is a sharp cone with a nosetip radius of Ry = 0.05 mm, a semi-angle of §. = 7° and a
cone length of L, = 0.4 m. In the rest of the paper, the term 'sharp’ will be used to characterize a cone
where the nosetip radius is extremely small compared to the cone length.

Table 1. Flow conditions for the sharp cone.

My  Reo [/m] To [K] AoA[] Ty [K]
6.0 10.0 x 10°  48.00 6.0  300.0

First, the Mach number contours can be displayed to observe the detached shock and the boundary
layer, respectively. As shown in Figure[3] some known flow features are observed: a streamwise vortex,
a movement of the flow towards the leeward plane induced by the azimuthal pressure gradient and a
detached shock. It is clear from Figure [3| that the tetrahedral mesh elements are extremely well suited
to capture the detached shock.

(a) Mach number contours and skin friction lines (b) Mach number contours and adapted mesh
Fig 3. Mach number contours, skin friction lines and the associated mesh

To validate the methodology with the state of the art in base flow computation and LST, stability diagrams
at two locations on the cone are plotted in Figure [d] The boundary layer profiles are taken along a
streamline drawn in [14] at (¢, ¢) = (0.102 m,61°) and (£,¢) = (0.190 m,90°) which are respectively
called Point 1 and Point 2 in Figure[d] For both boundary layer profiles, a high-frequency second Mack
mode and a low-frequency crossflow instability are observed. Besides, the numerical values of o, 5 and
the frequency in the center of the lobes are in agreement with the results of Liu et al. [14]. For instance,
for the profile at (£, ¢) = (0.190 m,90°), values of 8 ~ 0.5 [/mm], o ~ 42 [/m] and f =~ 330 [kHz] are
obtained for the second Mack mode and 5 = 2.0 [/mm], ¢ =~ 60 [/m] and f ~ 30 [kHz] for the crossflow
instability.
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Point 1 sigma Point 2
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48
44
400 % 400}
e 24 =
200 e 200}
12
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0 0 0

-1012354567“‘ 10 12334567

(a) Results at ¢ = 61 [°] from current methodology (b) Results at ¢ = 90 [°] from current methodology

Point 1 Point 2

T T T

_ | -ai*(m™)
= 600 - || | w60

E -
=2 400 Second mode | ‘

Crossflow | <> . 0
~ N || |

-1012534567 101234567
p

(c) Results from Liu et al.
Fig 4. Growth rate o [/m] in terms of the frequency f [kHz] and the azimuthal wavenumber 5 [/mm].

4.2. Elliptic blunt cone (HIFIRE-5)

In this subsection, our results will be compared against those presented by Li et al. [15] on the HIFIRE-5
geometry (see Figure [5), as well as against some experimental data from Borg et al. under quiet
flow at zero angle of attack. The flow conditions are indicated in Table 2| The first flow condition was
used to validate the profiles of p‘é—’j} presented in Figure Ewhereas the second flow condition was used
to validate the 1D fluctuations and N-factors, respectively shown in Figureand in Figure@

Although this is a zero angle of attack case, there is still a movement of the fluid from the major axis
meridian (attachment line) towards the minor axis meridian due to the azimuthal pressure gradient
created by the curvature of the bow shock, as shown in Figure [5(d) using pressure contours. This
is due to the fact that the elliptic section of the geometry induces a shock located at a wall-normal
distance that differs for each azimuthal angle ¢ around the cone and thus creates a non-zero azimuthal
pressure gradient that drives the flow towards the minor axis meridian. Close to the latter, the flow lifts
up and a vortical structure forms similarly to the inclined circular cone case, as shown in Figure [5c).

Table 2. Flow conditions for the validation on the HIFIRE-5 geometry

My Rex[/m]  poo [kg/m®] T [K]  Pu [kPa]  Us [mis] Ty, [K]
6.0 9.843x 10°  0.04034 52.8 0.611 873.92 300
6.0 8275x10°  0.03121 49.9 0.477 849.84 300
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a) Mach number contours b) Adapted mesh

— 6.0e+00

(c) Mach number contours (slice at = 0.2 [m]) (d) Pressure contours (slice at x = 0.2 [m])
Fig 5. Mach number contours, pressure contours and associated mesh for the HIFIRE-5 geometry.

Regarding the validation of the methodology on this geometry, profiles of p P “ have been plotted at
various locations along the attachment line. As shown in Figure [6] it has been found that the current
methodology was able to reproduce the profiles from Li et al. with negligible discrepancies.

Moreover, 1D fluctuations and N-factors for both the crossflow instability and the second Mack mode
at a specific location around the cone have been extracted. It corresponds to the location where a
Kulite sensor (sensor 1) was placed by Borg et al. at x = 0.3125 [m] and z = 0.0371 [m]. As
shown in Figure [7| the wall-normal distribution of |«/|, |T”| and |p’| are in very good agreement with
the results from Li et al. [15]. It has been observed that the pressure fluctuation is not maximum at
the wall but at a wall-normal distance located at the generalized inflexion point (GIP) for the crossflow
velocity profile. This is probably the reason why the small peak frequency of the crossflow mode is often
difficult to measure experimentally, considering that mostly wall pressure sensors are used. Moreover,
as shown in the N-factor distribution in Figure 8] the most unstable frequency predicted numerically for
the crossflow instability matches the experimental measurements, thus highlighting the validation of the
methodology but also of the domain of validity of the local stability theory. From the numerical results,
it is fair to say that a good agreement has also been found for the second Mack mode (N = 2) and the
crossflow instability (V ~ 11.5—12). Itis fair to mention that a slight difference has been obtained for the
maximum N-factor at f = 40 [kHz] compared to the results of Li et al. [15]. It could be hypothesized that
this difference of AN = 0.5 could originate from slightly different locations of the boundary layer profiles
along the streamline but also the number of azimuthal wavenumbers 3 (or m) used in the calculations.
Besides, it could also come from the fact that Li et al. [15] have used QPWC to compute the growth
rates, whereas only LST was used in the current methodology. QPWC stands for Quasi-Parallel With
Curvature, which is LST including the curvature effects.
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—— 5=0.05 [m] (SoNICS)
—— 5=0.1 [m] (SoNICS)
—— 5=0.2 [m] (SoNICS)
—— 5=0.3 [m] (SoNICS)
0.5 1 —— 5=0.39 [m] (SoNICS)

® 5=0.05[m] (L et al.)
® s5=0.1[m](Lietal)
0.4 7 ® s=0.2 [m](Lietal)
® s5=0.3[m](Lietal)
0.3 ® 5=0.39[m](Lietal)
0.2 4
0.1+
0.0 T T T L T T T T T T
0.0 50000.0 100000.0 150000.0

pg—: [kgm—3.571]

Fig 6. Comparison between the current methodology and the results from Li et al. of the profiles of
p‘j—z at various locations along the attachment line for the HIFIRE-5 geometry

5
5|u’|
|
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500|p'|
s}
— 31
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1,
0 1. | | | I
0.0 0.2 0.4 0.6 0.8 1.0

1D fluctuations

(a) Results from current methodology

PN T N [N N T N [N ST |
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(b) Results from Li et al.

Fig 7. Fluctuations at f = 40 [kHZz] (crossflow instability) at sensor 1 location on the HIFIRE-5 geometry
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(a) Results from current methodology
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Frequency (Hz)

(b) Results from Li et al. [15]

Fig 8. N-factor at sensor 1 location and comparison with experimental data for the HIFIRE-5 geometry
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5. Parametric study
In this section, a parametric study on the parameters T,,/T.., Re,, and « is performed for an inclined
circular sharp cone with Ry = 0.05 mm, 8. =7°and L. = 0.5 m.

5.1. Wall temperature effects
In this subsection, the effect of the parameter T, /T or, more precisely, of the ratio T,, /T, where the
recovery temperature can be calculated with the formula

T, =T. <1 + 721\/ﬁM§O> , (10)

where Pr = 0.72 and T, = 369.69 [K], is studied in the range including typical values for conventional
wind tunnels. As presented in Table [3] the freestream flow conditions are kept constant and only the
wall temperature is changed from T, = 100 [K] (T, /T, = 0.2705) to T, = 388 [K] (T',, /T = 1.0495). The
angle of attack has been fixed at a sufficiently high incidence of o = 3° to illustrate the effect of the ratio
T, /T, on the crossflow instability.

Table 3. Flow conditions considered for the study on the effects of the wall temperature ratio 7., /7.

My Reso [/m] A0A[] Ty Kl T Kl Tow Kl Tw/To Tuw/T,
6.0 10.0x105 3.0  100.0 52.00 4264 0.2345 0.2705
6.0 100x105 3.0 2000 5200 4264 0.4690 0.5410
6.0 10.0x105 3.0 3000 5200 4264 0.7036 0.8115
6.0 10.0x105 3.0 3880 5200 4264 09099 1.0495

To highlight the effect of this parameter, boundary layer profiles are taken at the same axial location
along the cone but at various azimuthal angles ¢, ranging from ¢ = 0° to ¢ = 140° with a spacing of
20°, and stability analyses are performed for the first and second Mack modes but also for the crossflow
instability. For the sake of conciseness, only the stability results at = = 0.2 [m] are presented. Besides,
it is worth mentioning here that, considering that the edge quantities vary for each value of ¢ as shown in
Figure@], the results cannot technically be compared for a given value of T,,/T,.. However, not only is it
useful to get an order of magnitude of this effect, but itis reasonable to compare the results at fixed values
of (z, ¢) for various T, /T values because the values of M., T, and Re. = p.U./u. are roughly constant.
Indeed, as shown in Figure@], the values of M., T., U, and p. vary less than 3% and consequently this
variation can be neglected. Nevertheless, as shown in Figure[9] it is clear that increasing the ratio T3, /T,
leads to an increased displacement effect that might slightly displace the shock location, thus possibly
explaining the slight variation of the edge quantities when the wall temperature is changed. Indeed, it
has been found at ¢ = 80° that §; = 0.4 [mm] for T,,/T,- = 0.2705 and &; = 0.7 [mm] for T,/ T, = 0.8115,
thus quantitatively proving that this increased displacement effect is far from negligible.

Then, the non-dimensional temperature T'/T,. profiles are displayed in Figure It has been observed
that the gradient at the wall (wall heat flux) at a given value of ¢ decreases until T,, /T, = 1.0495 where
it is almost zero due to the fact that the wall is almost adiabatic. Besides, at a given value of T,, /7., it
can be seen that it decreases because of the thickening of the boundary layer when ¢ increases. From
the temperature profiles, it is also clear that the viscosity is also significantly affected by the values of
T, /T.. Moreover, as presented in Figure , the values of (pdu/dn)|,_, differ significantly when the
ratio T, /T is increased, with values ranging at ¢ = 0° from (pdu/dn)|,_, ~ 175000 [kg.m~*.s~'] at
T /T, = 0.2705 to (pdu/dn)l,_, ~ 17000 [kg.m~3.s71] at T, /T, = 1.0495. This highlights the impact
specifically at the wall that the ratio T, /T, can have on the boundary layer profiles. Considering that
T,/T. <0.3and Ty, /T, ~ 0.8 are respectively representative of flight and wind tunnel flow conditions, it
is clear that a wide range of T,, /T, values must be taken into account in transition modeling for a broad
scope of applications.
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Fig 9. Wall temperature (or T,,/T;) effects on the edge quantities M., Res,, Tw/Tr, pe, Te, Pe,
|Wiaz/Ue|, 01 and Ree uni fOr various azimuthal angles ¢ around the cone at z = 0.2 [m].
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Regarding the three-dimensional effects, the previous remark still holds when looking at the p‘fﬁ profiles
plotted in Figure Indeed, the values of (pdw/dn)|,_, varied tremendously, ranging at ¢ = 80° from
(pdw/dn)|,_, = —15000 [kg.m~*.s~'] at T, /T;. = 0.2705 to (pdw/dn)|,_, = —3000 [kg.m3.s~'] at
T,/T,. = 1.0495. Besides, although the boundary layer thickness increases significantly when 7., /T,
increases, the variation of (pdw/dn)|,_q;p, is surprisingly small with a minor increase. Moreover,
as presented in Figure [12] it has been found that the T,,/T; ratio influences significantly the values
of |wmaz/Ue| ranging at ¢ = 120° from |wmas/Ue| =~ 4.7% at T,, /T, = 0.2705 0 |Wymax/Ue| = 8.7%
at T, /T, = 1.0495 for the chosen freestream flow conditions. This shows that the ratio T,,/7.. does
not simply affect the temperature and viscosity profiles, it also increases the three-dimensionality of
the flow. It is here worth noting that this correlates with the observations of Wang et al. [17] where
increased values of u, ., (different notation but same definition as |w.,q,/U.|) were observed when
the wall temperature was increased from T,, = 150 [K] to T3, = 450 [K] for a blunt cone (R = 1 [mm]) at
a = 5°. Besides, it had been shown by the authors of [17] that the value of |w,;,q./U.| doubled between
the lowest and highest wall temperature, which is an increase of the same order of magnitude as in this
present work.

Theoretically, the shape of the pj—z and p‘fl—’;]’ profiles is indicative of the presence or absence of certain
instability waves. Indeed, the first Mack mode and the crossflow instability being of inflectional nature,
they can only exist if a generalized inflexion point exists, respectively on the longitudinal and crossflow
velocity component, defined as follows:

d du
£ ()

d dw
i (pdn) =0 (12)

Equivalently, they cannot exist if the profiles of pj—?,; and p%‘; do not admit local extrema respectively.
Consequently, as shown in Figure for the p(d% profiles, the first Mack mode is not expected to be
unstable for T,, /T, = 0.2705 but is expected to be unstable for T}, /T, = 0.5410. However, as shown in
Figure the crossflow instability is always expected to be unstable because the profiles ofp‘c% always
admit a local extrema, except at ¢ = 0° because the crossflow velocity must be zero in the symmetry
plane. This has been verified using the growth rate variation in terms of the frequency presented in
Figure where the first Mack mode is stable at ¢ = 0° for the T,,/7,. = 0.2705 wall condition yet
becomes unstable for T,, /T,- = 0.5410 at the same location. Besides, it has been found that both the first
Mack mode and the crossflow instability are destabilized by an increase in T,, /7T, and that both the most
unstable frequency and the range of unstable frequencies increased with T, /T,.. Considering that the
only boundary layer parameters changing at a given ¢ location when the wall temperature is increased
are Ty, /T, Res, and |wyq. /U, | (S€€ Figure@), it is thus worth noting that these frequencies must depend
on these specific parameters. However, since the ratio T, /7. is only the driver for variations of Re;, and
|wmaz/Uel, the unstable frequencies can be expressed in terms of those quantities modified by T, /7,
amongst which Re;s, and |w.,q./U.| should be included.

Regarding the second Mack mode, Figure [T3] clearly highlights that it is stabilized by an increase in
T, /T, where the crossflow instability becomes even dominant for some values of ¢ at T, /7T, = 1.0495.
Moreover, as the boundary layer thickens, the most unstable frequency of the second Mack mode has
been found to decrease notably, ranging from 240 — 600 [kHz] for T,, /T, = 0.2705 to 170 — 470 [kHZz] for
T,/T,. = 1.0495. The observed trend is consistent with the widely used estimate for the second Mack
mode frequency given by:

Ue
fmodeQ ~ % (13)
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Fig 10. Wall temperature (or T,,/T..) effects on the non-dimensional wall-normal temperature T'/T,.
profiles at z = 0.2 [m] for various azimuthal angles ¢ around the cone.
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Fig 11. Wall temperature (or T,,/T..) effects on the profiles of pj—“jl and p%‘; at 2 = 0.2 [m] for various
azimuthal angles ¢ around the cone.
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Fig 12. Wall temperature (or T,,/7,.) effects on the non-dimensional crossflow velocity w/U, at
x = 0.2 [m] for various azimuthal angles ¢ around the cone.
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Fig 13. Wall temperature (or T,,/T.) effects on the Mack modes and crossflow instability growth rates
and frequencies at x = 0.2 [m] for various azimuthal angles ¢ around the cone.
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5.2. Reynolds number effect

In this subsection, the effect of the freestream unit Reynolds number is studied. As shown in Table[4] this
parameter is being varied from Re., = 8.0x 10° [/m]to Re,, = 14.0x 10° [/m]. In order to study the effect
of this parameter on the crossflow instability, the angle of attack is fixed at o = 3°. Besides, considering
the observation from the wall temperature effects, the temperature ratio is fixed at T3, /7, = 0.8115 to
make sure that the three modes are unstable.

Table 4. Flow conditions considered for the study on the unit Reynolds number effects.

Mo  Reso [/m]  AoA[] Tu[Kl T Kl Tow [KI Tw/T:
60 80x105 30 3000 5200 4264 08115
6.0 100x105 3.0 300.0 5200 4264 0.8115
6.0 120x105 3.0 3000 52.00 4264 08115
6.0 140x105 3.0 300.0 5200 4264 0.8115

The non-dimensional longitudinal velocity « /U, profiles are presented in Figure It has been observed
that the Reynolds number induces a lower boundary layer thickness for all values of ¢. Moreover, as
shown in Figure |15/ and contrary to the wall temperature ratio 7., /7, effects, the freestream Reynolds
number does not affect the three-dimensionality of the flow. Indeed, at a given ¢ location, the value
of |wmaz/Ue| is completely unchanged when increasing the Reynolds number. However, as shown
in Figure , the values of p% and p‘fﬁ have notably changed with the increase in Reynolds num-
ber. Indeed, the values of (pdw/dn)l,_, at ¢ = 80° went from (pdw/dn)|,_, = —3000 [kg.m~*.s~'] at
Resw = 8.0 x 10° [/m] to (pdw/dn)|,_, = —6500 [kg.m ?.s7'] at Re,, = 14.00 x 10° [/m].
Besides, a similar observation can be made for values of (pdw/dn)|,_c;p, at ¢ = 80° that went
from (pdw/dn)|,_g;p, = 4000 [kg.m~3.s7'] at Reo, = 8.0 x 10° [/m] to (pdw/dn)|,_g;p, = 9100
[kg.m~3.s7!] at Re,, = 14.00 x 10° [/m]. This shows that the Reynolds number has a strong effect on
the profiles in the near-wall region but also in the outer part of the boundary layer.

Regarding the stability results, Figure sheds light on the variation of the growth rate in terms of
the frequency for all the chosen Reynolds numbers and the selected ¢ locations. It appears that the
Reynolds number has a destabilizing effect on all the modes: the first Mack mode at ¢ = 0°, the crossflow
instability at ¢ > 0° and the high-frequency second Mack mode. For instance, it has quantitatively been
found for the first Mack mode at ¢ = 0° that o ~ 12 [/m] at Re., = 8.0 x 10° [/m] and ¢ ~ 17.5 [/m] at
Reo, = 14.00 x 10° [/m], thus representing an increase of approximately 46%.

Additionally, at a given ¢ location, the most unstable frequency of the first Mack mode or the crossflow
instability did not vary notably for an increased freestream Reynolds number. However, at a given value
of Re., and various ¢ locations, it can be seen that the most unstable frequency of the crossflow instability
decreases slightly when ¢ increases (when Res, increases significantly, as shown in Figure @ This
confirms that the frequency of the highly oblique modes might depend on the values of Re;, . However,
it is important to mention that the unstable frequency range has widened, going from 20 — 130 [kHz] to
20 — 200 [kHz]. Besides, similar observations can be made for the crossflow instability where the growth
rates and the unstable frequency range increase with the Reynolds number (or Res, ) value.

Finally, regarding the second Mack mode, it has been found as expected that the most unstable
frequency increased for a higher Reynolds number due to a thinner boundary layer. Besides, it has
also been observed that the mode is destabilized by the parameter as the growth rates increased
notably from Re., = 8.0 x 10 [/m] to Re,, = 14.00 x 10° [/m].

HiSST-2025-174 Page | 18
T. Zielinski, J. Cardesa, G. Bégou, J.P. Brazier, L. Muscat, M. Olazabal-Loumé Copyright © 2025 by the author(s)



HiSST: International Conference on High-Speed Vehicle Science & Technology

M. Reg, TwlT,
16000 - 1.0
—8— Re=8M[/m] —8— Re =8M|[/m] —8— Re=8M][/m]
Re = 10 M [/m] Re = 10 M [/m] Re = 10 M [/m]
5.5 4 Re =12 M [/m] Re =12 M [/m] Re =12 M [/m]
—8— Re =14 M [/m] 14000 1 —@— Re = 14 M [/m)] 0.9 —&— Re =14 M [/m]
12000 081
s I~
& &
0.7
10000
0.6
8000 +
T T T T T T T T T T T T 0.5 T T T T T T
0 20 40 60 80 100 120 140 0 20 40 60 80 100 120 140 0 20 40 60 80 100 120 140
¢ 1] o[ ¢ 101
Pe Te Pe
—8— Re=8M[/m] 70 4 —8— Re =8M[/m] —8— Re =8M[/m]
0.11 4 Re =10 M [/m] Re = 10 M [/m] 2200 Re = 10 M [/m]
Re = 12 M [ym] Re = 12 M [/m] Re =12 M [/m]
0.10 4 & Re=14M{[/m] 684 —&— Re =14 M[/m] 2000 4 —e— Re =14 M[/m]
0.09 4 1800 A
’ 66
1600 4
& 0.081 = o
64
1400
0.07
62 4 1200 -
0.06
1000
0.05 607
800 +
T T T T T T T T T T T T T T T T T T
0 20 40 60 80 100 120 140 0 20 40 60 80 100 120 140 0 20 40 60 80 100 120 140
o [°] #1°] S 1]
|Wmaxfue| 61 1e7 Unit Re.
—8— Re=8M[/m] —8— Re =8 M[/m]
0.07 4 0.0012 - Re = 10 M [/m] Re = 10 M [/m]
Re =12 M [/m] 1.8 4 Re =12 M[/m]
0.06 0.0011 1 —® Re =14 M [/m] —8— Re =14 M [/m]
0.05 1 0.0010 4 16 -
= 0.0009 4 ¥
2 0.04 - o @
E ° £ 14
E 144
2 0.0008 4 =
0.03 4
0.0007
0.02 1.2 4
—8— Re =8 M [/m] 0.0006 4
0.01 4 Re = 10 M [/m]
Re=12 M
€ [/m] 0.0005 104
0.00 —e— Re =14 M [jm]
T T T T T T T T T T T T T T T T T T
(1] 20 40 60 80 100 120 140 0 20 40 60 80 100 120 140 0 20 40 60 80 100 120 140
¢ [°] ¢ 1] $1°1

Fig 14. Freestream unit Reynolds number effects on the edge quantities M., Res,, Tw/Tr, pe, Te, Pe,
|Wiaz/Ue|, 01 and Ree uni fOr various azimuthal angles ¢ around the cone at z = 0.2 [m].
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Fig 15. Freestream unit Reynolds number effects on the non-dimensional longitudinal velocity u/U,
and crossflow velocity w/U, at z = 0.2 [m] for various azimuthal angles ¢ around the cone.
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Fig 17. Freestream unit Reynolds number effects on the Mack modes and crossflow instability growth
rates and frequencies at x = 0.2 [m] for various azimuthal angles ¢ around the cone.
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5.3. Angle of attack effects

In this subsection, the effect of the angle of attack will be studied with fixed freestream parameters and
geometry. As shown in Table [5, the angle of attack is varied from o = 1° to « = 6° with a larger
increment between o = 3° and a = 6° to better visualize the differences in the profiles. Besides,
following the conclusions taken in the previous subsection regarding the wall temperature effects, the
wall temperature has been chosen high enough to make sure that the p% and p%’;’ profiles all have a
local extrema and consequently that all three modes are unstable.

Table 5. Flow conditions considered for the study on the angle of attack effects.

My Reoo [/m]  AoA[P] Tu[Kl T Kl Tooo Kl Tw/T,
60 100x105 1.0 3000 5200 4264 08115
6.0 100x105 20  300.0 5200 4264 0.8115
60 100x105 3.0 3000 52.00 4264 08115
6.0 100x105 6.0 300.0 5200 4264 0.8115

Firstly, edge quantities are plotted in Figure [18] at = = 0.2 [m] for various ¢ locations. It has been
observed that the angle of attack widened significantly the range of values of each quantity. Besides,
the longitudinal velocity can be plotted for each case. As presented in Figure[T9] it has been found, at
a given angle of attack, that the boundary layer thickness increases when ¢ increases. However, when
the angle of attack is increased, it decreases for low values of ¢ but increases for high values of ¢, thus
leading to a wide range of values for § at high angles of attack (varying from § ~ 0.0007 [m] at ¢ = 0° to
0 ~ 0.0019 [m] at ¢ = 140°). These variations of boundary layer thickness will directly be related to the
unstable frequency range of the second Mack mode, known to be highly dependent on the value of 4.
Indeed, Figure [21] shows that, as the angle of attack and the variation of 4 in terms of ¢ is increased,
the range of unstable frequencies for the second Mack mode widens notably from 200 — 400 [kHz] to
140 — 600 [kHz].

Secondly, the crossflow velocity is also plotted in Figure [T9 For all the chosen angles of attack, the
absolute maximum value of w/U,, noted |w,q./U.|, increases when ¢ increases but decreases after a
threshold value of ¢; which is approximately ¢; = 100° at « = 1° but ¢; = 120° at « = 6°. This is logical
because the crossflow velocity must be zero in the symmetry planes (¢ = 0° and ¢ = 180°) but strictly
nonzero for the other values of ¢. Moreover, it has also been found that an increase in angle of attack
resulted in an increase in |wy,q./U.|, varying from |wy,q./Ue| = 3% at a = 1° t0 |wmaz/Ue| = 13.5%
at a = 6°. As expected, and in addition to the previous observation, this quantitatively confirms that
the angle of attack amplifies the three-dimensional effects. Indeed, these 3D effects can also be mea-
sured using the profiles of p% and p%‘]’. As shown in Figure it can be visualized that the values

of (pdu/dn)|,_, and max (pg—;) increase tremendously at a given ¢ location when the angle of attack

is increased. Moreover, when looking at the values of (pdw/dn)l,_, and (pdw/dn)|,_g;p, . it appears
evident that the angle of attack clearly affects both the near-wall and outer region of the boundary layer
profiles.
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Fig 19. Angle of attack effects on the non-dimensional longitudinal velocity «/U, and crossflow velocity
w/U, at x = 0.2 [m] for various azimuthal angles ¢ around the cone.
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Fig 20. Angle of attack effects on the profiles of p “ and p at x = 0.2 [m] for various azimuthal
angles ¢ aroung the con
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Finally, regarding the stability results, the growth rate is plotted in terms of the frequency in Figure 21]
for various boundary layer profiles around the cone at = 0.2 [m]. Generally, it has been found that an
increased angle of attack strongly destabilized the crossflow instability which became dominant over the
second Mack mode at high angles of attack for the considered freestream flow conditions. Moreover,
although it appears more subtle at o = 1°, it appears evident at « = 3° or o = 6° that the dominant
frequency of the crossflow mode decreases when ¢ increases. However, considering that the values of
M., T., U, Res, and |wnq./U.| change at each ¢ location, it is challenging to interpret this behavior.
Then, regarding the first Mack mode at ¢ = 0°, it has unexpectedly been found that, despite values
of M., T., U, but also pj—;; that vary significantly when increasing the angle of attack (see Figure ,
the growth rate stayed at a roughly constant value of ¢ ~ 13 [/m] and a most unstable frequency of
f =~ 45 [kHZz].

Regarding the second Mack mode, it has been found at o = 1° that the growth rates are roughly constant
for all values of ¢ due to the fact that the values of M., T., U, are fairly unchanged as well and that the
three-dimensionality of the flow is weak (|wq./U.| is small). However, when the angle of attack is
increased, it has generally been found that the growth rates tended to decrease slightly until « = 6°
where it was more pronounced at ¢ < 60° only. This is possibly due to the fact that, going from o = 3°
to a = 6°, the variation of edge quantities was found to be the highest at ¢ < 60°.
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Fig 21. Angle of attack effects on the Mack modes and crossflow instability growth rates and
frequencies at x = 0.2 [m] for various azimuthal angles ¢ around the cone.
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6. Conclusions and perspectives

In this paper, a feature-based mesh adaptation methodology has been validated to reproduce boundary
layer profiles and their derivatives, stability diagrams on isolated boundary layer profiles and N-factors
along a given streamline. It has been used to study the effect of some flow parameters such as the unit
Reynolds number Re.,, the angle of attack « and the wall temperature ratio T, /T, on the profiles and
the typical instability waves (Mack modes and crossflow instability) that lead to transition. This paper
thus provides an insight into their effects and a first glimpse at pertinent boundary layer quantities that
would help to characterize and model more effectively these modes in a wide range of flow conditions.
For instance, it seemed that the most unstable frequency of the crossflow instability was highly related
to the value of Res,, similarly to the first Mack mode.

Regarding the effect of the wall-to-recovery temperature ratio 7., /T, it was found to significantly change
the boundary layer profiles and thus the growth rates and frequencies of the instability waves. As T, /T,
increased, the second Mack mode was less unstable whereas the first Mack mode and the crossflow
instability became notably more unstable. Although the first Mack mode can be completely stable at
low values of T,, /T, due to the absence of a generalized inflexion point for the longitudinal velocity, the
crossflow instability was found to always be unstable due to the necessary presence of a generalized
inflexion point on the crossflow velocity when it is not zero. It is also worth mentioning that LST always
predicts a higher growth rate for the traveling (f > 0 [Hz]) crossflow mode compared to its stationary
(f = 0 [HZz]) counterpart. Moreover, as T,,/T, increased, the boundary layer thickened and the most
unstable frequency of the second Mack mode decreased. Besides, a significant displacement effect
was measured using values of §; when T, /T, increased.

Regarding the effect of the Reynolds number, it has unsurprisingly been observed that the higher the
value, the more unstable these modes will be and the more upstream the transition will be expected.
Besides, it has been found that the most unstable frequency of the second Mack mode is highly sensitive
to the boundary layer thickness §. However, a deeper study on the effect of Res, must be conducted in
order to quantify its effect on the most unstable frequency of the crossflow instability.

Finally, regarding the effect of the angle of attack, it has been found to strongly affect the boundary layer
profiles and quantities such as ¢, M., T. and |w.../U.|. Besides, the variation of these parameters
was highly dependent on the values of ¢ (i.e. on the position around the cone where the boundary
layer profile was taken), thus highlighting significant three-dimensional effects. As a result, it has been
shown that the angle of attack significantly destabilizes the crossflow instability while its effect on the
Mack modes’ growth rates were found to be moderately stabilizing. However, due to a wider range of §
values, the unstable frequency range of the second Mack mode has been observed to widen drastically
as the angle of attack was increased.

In future work, the generated database of boundary layer profiles and stability results will be used to
improve correlations in RANS-based transition models.
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