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Abstract

Boundary layer transition is of particular interest in the prediction of the aerodynamic performances and

maneuverability of a given hypersonic vehicle. However, it has been found to be highly sensitive to flow

parameters such as the Mach number, unit Reynolds number, cross-flow effects and wall temperature.

Besides, from a numerical point of view, it is particularly difficult to obtain representative boundary-layer

profiles to understand and then model these effects on the dominant instability modes. In this paper, a

methodology relying on metric-based mesh adaptation has been validated and applied to address these

issues. More specifically, the effects of the unit freestream Reynolds number, the wall temperature ratio

Tw/Tr and the angle of attack on various boundary layer profiles and the typical instability waves (cross-

flow instability, first and second Mack modes) for a sharp 7-degree cone geometry are investigated.

It has been observed that the increase in unit Reynolds number destabilizes all modes. Moreover, it

was shown that the ratio Tw/Tr has a drastic effect on these modes. Indeed, although the second

Mack mode is strongly destabilized when lowering the Tw/Tr ratio, the highly oblique modes behaved

in the opposite fashion, being strongly destabilized with an increase of Tw/Tr. Below Tw/Tr ≈ 0.3, the
first mode became completely stable and the crossflow mode was always unstable for all the chosen

Tw/Tr values. Finally, it has been found that the angle of attack significantly destabilized the crossflow

instability by increasing the values of |wmax/Ue| and the variation of edge quantities across the flowfield
due to a stronger azimuthal pressure gradient induced by the curved bow shock.
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Nomenclature

Latin

u – Longitudinal velocity

v – Wall-normal velocity

w – Transverse velocity

p – Pressure

T – Temperature

T0 – Stagnation temperature

M – Mach number

Re – Reynolds number

AoA – Angle of attack

GIP – Generalized inflexion point

Tw – Wall temperature

s – Curvilinear abscissa

RN – Nosetip radius

Lc – Cone length

f – Frequency

m – Non-dimensional azimuthal wavenumber

x, y, z – Spatial coordinates

Greek

θc – Cone half angle

φ – Azimuthal angle around the cone

µ – Molecular viscosity

α – Streamwise wavenumber

β – Transverse wavenumber

η – Normal body-fitted coordinate

ξ – Streamwise body-fitted coordinate

ζ – Transverse body-fitted coordinate

ω – Angular frequency

αi – Amplification rate

σ – Growth rate

Subscripts

∞ – Freestream values

e – Boundary layer edge values

u – Regarding the longitudinal velocity

w – Regarding the crossflow velocity
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1. Introduction

The design of hypersonic vehicles requires a precise estimation of the heat fluxes at the wall, which

depend on the laminar or turbulent state of the boundary layer. Considering that the boundary layer state

affects the overall aerodynamic performance of the vehicle, being able to predict the flow transition is of

prominent importance. Recent design concepts require taking into account longitudinal instabilities but

also three-dimensional ones such as the crossflow instability, which is particularly difficult to characterize

and model. As a result, three-dimensional effects must be accounted for in transition modeling.

Moreover, the equations to be solved in order to generate reliable boundary-layer profiles are crucial

in the hypersonic regime. Indeed, Paredes et al. [1] have shown that the solutions obtained from the

stationary Navier-Stokes equations and self-similar solutions led to significant differences, especially in

the stability results. They found that the full Navier-Stokes solutions tended to predict a delayed transition

compared to self-similar solutions coupled to an inviscid or viscous solution for the region outside of the

boundary layer. The disagreement results from assuming certain simplifications that deteriorate the

representativeness of the boundary layer profiles, the stability results and hence the prediction of the

transition onset. Thus, choosing a strategy completely based on solving the Navier-Stokes equations

is of particular interest to improve our understanding of these instabilities in three-dimensional flows.

However, it is fair to say that generating a 3D mesh with suitable shock alignment and resolution is

extremely time-consuming. Consequently, a first study involving metric-based mesh adaptation for the

base flow computation followed by stability analysis has been investigated. Our fully automatic approach

has been validated by comparing stability results from the literature for both the Mack modes and the

crossflow instability, leading to an excellent agreement.

Furthermore, the effect of freestream conditions must also be considered in order to accurately predict

the flow transition in a wide range of flow conditions, thus allowing a model to be both precise and robust

in an entire trajectory. For example, for the HIFIRE-5 blunt elliptic cone geometry, it has experimentally

been shown by Juliano et al. [2] that the freestream unit Reynolds number had a significant influence

on the location of the transition onset for both quiet and noisy flow. Furthermore, it has also been shown

that the angle of attack, usually known to destabilize the crossflow instability, can actually stabilize and

destabilize this instability on the windward and leeward face respectively, thus highlighting the prominent

effect of the angle of attack. Besides, Mack [3] has shown that the Mach number has a prominent role in

the transition of laminar flows. For an adiabatic flat plate, the author [3] has for instance shown that the

second Mack mode prevailed over the first Mack mode whenMe > 4, thus proving that the mechanisms
of transition are highly dependent on the Mach number. Moreover, it has also been found that these

two specific modes are highly sensitive to the wall temperature ratio Tw/Tr. Indeed, the first and second

Mack modes are respectively stabilized and destabilized for a colder wall case usually representative

of flight data where an extremely cold wall can even completely stabilize the first Mack mode but at

the cost of significantly destabilizing the second Mack mode. As a result, it appears evident that the

freestream parameters M∞, Re∞, α and Tw/Tr must be quantitatively investigated and accounted for

in transition modeling. In this study, the aforementioned validated and automatic metric-based mesh

adaptation methodology is applied to tackle this challenge and study these effects. For now, only the

effects of Re∞, α and Tw/Tr are investigated in this paper.

2. Theory

2.1. Metric-based mesh adaptation

Mesh adaptation techniques aim at adapting the mesh based on a given metric, constructed from a

prescribed sensor, in order to control the numerical errors, thus offering a higher fidelity and even a

guarantee of the numerical solutions through mesh convergence. Moreover, it significantly alleviates

the user time to reach a converged mesh and solution. In this subsection, all the formulas, concepts

and notations are taken from the work of Loseille and Alauzet [4, 5, 6].
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Based on the concepts of Riemannian metric space and continuous mesh theory, a control and a

quantification of the edge sizes in any direction are possible. According to Alauzet and Olivier [6], given

a metric tensor M (d× d symmetric positive definite matrix, where d is the domain dimension), various
geometric quantities can be computed. For instance, in the Riemannian metric space, the length of a

given edge ab, noted `M(ab), is calculated as follows:

`M(ab) =

∫ 1

0

‖γ′(t)‖Mdt =

∫ 1

0

√
ab

TM(a+ tab)ab dt, (1)

using the straight line parameterization γ(t) = a+ tab, where t ∈ [0, 1]. Besides, the volume of a given
element K, noted |K|M, is given by

|K|M =

∫
K

√
det(M(x)) dx. (2)

As introduced by George et al. [7], the main idea of metric-based mesh adaptation is to generate a

unit mesh in the Riemannian metric space, meaning that each edge has a unit length (∀e, `M(e) = 1)
and each tetrahedron is regular

(
∀K, |K|M =

√
2/12

)
. Ultimately, the resulting mesh in the Euclidean

space will be anisotropic and adapted. This is precisely the reason why the Riemannian metric space

is used.

In the continuous mesh framework, the goal is to find the optimal continuous meshMopt
Lp that minimizes

the continuous interpolation error in Lp norm, noted ELp . Thus, for a given computational domain Ω, the
goal is to find the optimal continuous meshMopt

Lp = (Mopt
Lp (x))x∈Ω which minimizes the error ELp , where

ELp is the error between a sensor u, which is a function of the conservative variables, and the continuous
linear interpolate πMu. Besides, adding another constraint called the complexity C, which enables the
user to prescribe a desired number of vertices N in the mesh, the global optimization problem to be

solved can be written as

ELp(Mopt
Lp ) = min

M
ELp(M) = min

M
‖u− πMu‖Lp(Ω) = min

M

(∫
Ω

|u(x)− πMu(x)|pdx
) 1

p

, (3)

under the constraint

C(M) =

∫
Ω

√
det(M(x))dx = N . (4)

After derivation [4, 5, 6], the optimal continuous mesh Mopt
Lp can be obtained with the formula

Mopt
Lp = N 2

d

(∫
Ω

(det|Hu(x)|)
p

2p+d dx

)− 2
d

(det|Hu|)
−1
2p+d |Hu|. (5)

Here, N is the equivalent of the complexity C in the discrete mesh framework and Hu is the hessian

of the previously-mentioned sensor u. Ultimately, Mopt
Lp is unique and has optimal directions and ratios

as the hessian’s ones. In practice, the complexity C and the norm p are both prescribed by the user.

Besides, the optimal metric tensorMopt
Lp is obtained with the computation of the hessian of the sensor u

which is usually the Mach number.
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2.2. Local stability theory

After using the mesh adaptation based on the principles described in the previous section, flow solutions

are obtained and their quality in the boundary layer region is assessed by means of stability analysis. It

will be described next.

Stability theory relies on the introduction of a small perturbation on a steady base flow, defined as

q(ξ, η, ζ, t) = q̄(ξ, η, ζ) + εq′(ξ, η, ζ, t), (6)

where q = (u, v, w, p, T ). Whereas the flow undergoes fast variations in the wall normal direction, its

streamwise and crosswise variations are slow compared to the perturbation variations. In the context

of Local Stability Theory (LST), this is accounted for via the parallel flow assumption. As stated by

Arnal and Casalis [8], this assumption indicates that the mean flow variation over a wavelength of the

perturbation is negligible. Under the LST framework, non-linear effects are also neglected, leading to

the following modal form of perturbation:

q′(ξ, η, ζ, t) = q̂(η)ei(αξ+βζ−ωt), (7)

where the introduction of β is used to account for the azimuthal variations and to study oblique modes.

Here, ω is the angular frequency (ω = 2πf ) and the coefficients α and β correspond respectively to the

axial and transverse wavenumbers. Besides, the axial and transverse wavelengths can be obtained

respectively with λξ = 2π/α and λζ = 2π/β. Furthermore, another parameter which is often introduced
is the non-dimensional transverse wavenumbermβ , also noted n. For the specific case of a sphere-cone
geometry, mβ = β ×Rcone(ξ) which results in the product of β and the local radius of the cone Rcone(ξ)
at a given axial location ξ along the cone.

Introducing this formulation into the linearized Navier-Stokes equations leads to a linear generalized

eigenvalue problem AX = αBX. The vector X is composed of all q̂ and the matrices A and B both

depend on the values of ω, β and the mean flow field. In practice, the numerical values of ω and β are

imposed, thus resulting in the calculation of the eigenvalue α and the eigenfunctions in X. When the

imaginary part of α, also noted αi, is positive, the perturbation is damped along ξ but it is amplified when
αi is negative.

From the LST results, various other parameters can be determined such as the ratio of local to initial

amplitude A(ξ)/A0 or the local growth rate σ = −αi defined as

σ =
1

A

dA

dξ
. (8)

This growth rate may be used to compute the total growth of a given mode, called the N-factor and

mathematically expressed as

N(ξ) =

∫ ξ

ξ0

σ(s) ds. (9)

Here, ξ0 is the location where the perturbation becomes unstable with an initial amplitude A0.
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3. Methodology

3.1. Mesh adaptation methodology

An iterative process is required to tackle the non-linear problem of mesh adaptation. As shown in

Figure 1, the process starts with the generation of an initial mesh H0 and an initial solution S0 obtained

from a CFD solver. Once calculated, a convergence criterion is evaluated. If the criterion is verified,

the last mesh and solution are kept as final results. However, if it is not satisfied, the mesh adaptation

loop starts or continues. First, based on a computed error estimate metric, the mesh is adapted by a

remesher. In this work, the mesh adaptation is performed with the open-source software refine [9, 10]

to take advantage of its parallel/partitioned capability where the loop between the CFD solver and the

remesher is automatically handled with an in-house mesh adaptation tool.

Then, the previously-obtained solution is interpolated on the newly-obtained adapted mesh. Finally,

the new mesh and solution are put as new input of the CFD solver and the loop continues until the

user-defined convergence criterion is verified. In this work, approximately 50 boundary layer profiles are

chosen on the cone and various first and second derivatives of the boundary layer profiles

(u, ρ, µ) are plotted before each mesh adaptation. When the convergence of these derivatives are

deemed sufficient, the loop stops, the same or another set of boundary layer profiles are extracted and

stability analyses are performed for these profiles.

Initial mesh H0

CFD Solver

Is convergence(
ρdu
dη , ρ

dw
dη

)
reached ?

Compute error

estimate metric Mi

Mesh adaptation

Interpolation to

newly-adapted mesh

Final mesh Hf

Final solution Sf

(H0)

NO

(Hi, Si)

(Hi, Mi)

(Hi+1, Si)

YES (Hi, Si)

(Hi+1, Si+1)

Fig 1. Block diagram of the mesh adaptation methodology.
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3.2. Geometry and CFD solver methodology

In this work, only sphere-cone geometries have been investigated. The geometry is thus defined by

the nosetip radius RN , the cone semi-angle θc and the cone length Lc. In the following sections, two

other coordinates noted ξ and φ are introduced where ξ is the longitudinal abscissa along the cone and
φ is the azimuthal angle from the windward symmetry plane at a given axial location ξ, as shown in

Figure 2.

To perform the CFD calculations, the solver SoNICS (ONERA-Safran property) [11] is used to take

advantage of its numerical robustness for meshes composed of highly anisotropic tetrahedra.

In particular, the V4 vertex-centered finite volume scheme, initially developed by Dervieux [12],

Rostand and Stoufflet [13] has been used in this work.

The control volumes are built around mesh vertices following the median cell approach to define the dual

cells. To compute the convective fluxes, a HLLC-Riemann solver is used and, for the viscous fluxes, a

five-point stencil approach is chosen. Moreover, time integration is performed using an implicit backward

Euler method, where the implicit procedure is a SSOR method.

Regarding the boundary conditions, supersonic inflow and outflow conditions are imposed in the inlet

and outlet, respectively. Symmetry boundary conditions are imposed for the leeward and windward

symmetry planes. Finally, an isothermal no-slip boundary condition was imposed on the sphere and the

cone.

φ = 45◦

Rcone(ξ)

Windward, φ = 0◦

Rcone(ξ)

Leeward, φ = 180◦

z

y

φ

Fig 2. Definition of the azimuthal angle φ around the cone at a given axial location ξ.
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4. Validation of the methodology

4.1. Circular sharp cone

For validation purposes, our results will be compared against the recent ones in Liu et al. [14], focusing

only on stability diagrams. Table 1 indicates the flow conditions for the case taken from Liu et al. [14].

The geometry is a sharp cone with a nosetip radius of RN = 0.05 mm, a semi-angle of θc = 7◦ and a
cone length of Lc = 0.4 m. In the rest of the paper, the term ’sharp’ will be used to characterize a cone

where the nosetip radius is extremely small compared to the cone length.

Table 1. Flow conditions for the sharp cone.

M∞ Re∞ [/m] T∞ [K] AoA [◦] Tw [K]

6.0 10.0× 106 48.00 6.0 300.0

First, the Mach number contours can be displayed to observe the detached shock and the boundary

layer, respectively. As shown in Figure 3, some known flow features are observed: a streamwise vortex,

a movement of the flow towards the leeward plane induced by the azimuthal pressure gradient and a

detached shock. It is clear from Figure 3 that the tetrahedral mesh elements are extremely well suited

to capture the detached shock.

(a) Mach number contours and skin friction lines (b) Mach number contours and adapted mesh

Fig 3. Mach number contours, skin friction lines and the associated mesh

To validate the methodology with the state of the art in base flow computation and LST, stability diagrams

at two locations on the cone are plotted in Figure 4. The boundary layer profiles are taken along a

streamline drawn in [14] at (ξ, φ) = (0.102 m, 61◦) and (ξ, φ) = (0.190 m, 90◦) which are respectively

called Point 1 and Point 2 in Figure 4. For both boundary layer profiles, a high-frequency second Mack

mode and a low-frequency crossflow instability are observed. Besides, the numerical values of σ, β and

the frequency in the center of the lobes are in agreement with the results of Liu et al. [14]. For instance,

for the profile at (ξ, φ) = (0.190 m, 90◦), values of β ≈ 0.5 [/mm], σ ≈ 42 [/m] and f ≈ 330 [kHz] are
obtained for the second Mack mode and β ≈ 2.0 [/mm], σ ≈ 60 [/m] and f ≈ 30 [kHz] for the crossflow
instability.
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(a) Results at φ = 61 [◦] from current methodology (b) Results at φ = 90 [◦] from current methodology

(c) Results from Liu et al. [14]

Fig 4. Growth rate σ [/m] in terms of the frequency f [kHz] and the azimuthal wavenumber β [/mm].

4.2. Elliptic blunt cone (HIFIRE-5)

In this subsection, our results will be compared against those presented by Li et al. [15] on the HIFIRE-5

geometry (see Figure 5), as well as against some experimental data from Borg et al. [16] under quiet

flow at zero angle of attack. The flow conditions are indicated in Table 2. The first flow condition was

used to validate the profiles of ρdu
dη presented in Figure 6 whereas the second flow condition was used

to validate the 1D fluctuations and N-factors, respectively shown in Figure 7 and in Figure 8.

Although this is a zero angle of attack case, there is still a movement of the fluid from the major axis

meridian (attachment line) towards the minor axis meridian due to the azimuthal pressure gradient

created by the curvature of the bow shock, as shown in Figure 5(d) using pressure contours. This

is due to the fact that the elliptic section of the geometry induces a shock located at a wall-normal

distance that differs for each azimuthal angle φ around the cone and thus creates a non-zero azimuthal

pressure gradient that drives the flow towards the minor axis meridian. Close to the latter, the flow lifts

up and a vortical structure forms similarly to the inclined circular cone case, as shown in Figure 5(c).

Table 2. Flow conditions for the validation on the HIFIRE-5 geometry

M∞ Re∞ [/m] ρ∞ [kg/m3] T∞ [K] P∞ [kPa] U∞ [m/s] Tw [K]

6.0 9.843× 106 0.04034 52.8 0.611 873.92 300

6.0 8.275× 106 0.03121 49.9 0.477 849.84 300
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(a) Mach number contours (b) Adapted mesh

(c) Mach number contours (slice at x = 0.2 [m]) (d) Pressure contours (slice at x = 0.2 [m])

Fig 5. Mach number contours, pressure contours and associated mesh for the HIFIRE-5 geometry.

Regarding the validation of the methodology on this geometry, profiles of ρdu
dη have been plotted at

various locations along the attachment line. As shown in Figure 6, it has been found that the current

methodology was able to reproduce the profiles from Li et al. [15] with negligible discrepancies.

Moreover, 1D fluctuations and N-factors for both the crossflow instability and the second Mack mode

at a specific location around the cone have been extracted. It corresponds to the location where a

Kulite sensor (sensor 1) was placed by Borg et al. [16] at x = 0.3125 [m] and z = 0.0371 [m]. As

shown in Figure 7, the wall-normal distribution of |u′|, |T ′| and |p′| are in very good agreement with

the results from Li et al. [15]. It has been observed that the pressure fluctuation is not maximum at

the wall but at a wall-normal distance located at the generalized inflexion point (GIP) for the crossflow

velocity profile. This is probably the reason why the small peak frequency of the crossflow mode is often

difficult to measure experimentally, considering that mostly wall pressure sensors are used. Moreover,

as shown in the N-factor distribution in Figure 8, the most unstable frequency predicted numerically for

the crossflow instability matches the experimental measurements, thus highlighting the validation of the

methodology but also of the domain of validity of the local stability theory. From the numerical results,

it is fair to say that a good agreement has also been found for the second Mack mode (N ≈ 2) and the
crossflow instability (N ≈ 11.5−12). It is fair to mention that a slight difference has been obtained for the
maximum N-factor at f = 40 [kHz] compared to the results of Li et al. [15]. It could be hypothesized that
this difference of ∆N ≈ 0.5 could originate from slightly different locations of the boundary layer profiles

along the streamline but also the number of azimuthal wavenumbers β (or m) used in the calculations.

Besides, it could also come from the fact that Li et al. [15] have used QPWC to compute the growth

rates, whereas only LST was used in the current methodology. QPWC stands for Quasi-Parallel With

Curvature, which is LST including the curvature effects.
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Fig 6. Comparison between the current methodology and the results from Li et al. [15] of the profiles of

ρdu
dη at various locations along the attachment line for the HIFIRE-5 geometry

(a) Results from current methodology (b) Results from Li et al. [15]

Fig 7. Fluctuations at f = 40 [kHz] (crossflow instability) at sensor 1 location on the HIFIRE-5 geometry

(a) Results from current methodology (b) Results from Li et al. [15]

Fig 8. N-factor at sensor 1 location and comparison with experimental data for the HIFIRE-5 geometry
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5. Parametric study
In this section, a parametric study on the parameters Tw/Tr, Re∞ and α is performed for an inclined

circular sharp cone with RN = 0.05 mm, θc = 7◦ and Lc = 0.5 m.

5.1. Wall temperature effects

In this subsection, the effect of the parameter Tw/T0 or, more precisely, of the ratio Tw/Tr where the

recovery temperature can be calculated with the formula

Tr = T∞

(
1 +

γ − 1

2

√
PrM2

∞

)
, (10)

where Pr = 0.72 and Tr = 369.69 [K], is studied in the range including typical values for conventional

wind tunnels. As presented in Table 3, the freestream flow conditions are kept constant and only the

wall temperature is changed from Tw = 100 [K] (Tw/Tr = 0.2705) to Tw = 388 [K] (Tw/Tr = 1.0495). The
angle of attack has been fixed at a sufficiently high incidence of α = 3◦ to illustrate the effect of the ratio
Tw/Tr on the crossflow instability.

Table 3. Flow conditions considered for the study on the effects of the wall temperature ratio Tw/Tr.

M∞ Re∞ [/m] AoA [◦] Tw [K] T∞ [K] T0,∞ [K] Tw/T0 Tw/Tr

6.0 10.0× 106 3.0 100.0 52.00 426.4 0.2345 0.2705

6.0 10.0× 106 3.0 200.0 52.00 426.4 0.4690 0.5410

6.0 10.0× 106 3.0 300.0 52.00 426.4 0.7036 0.8115

6.0 10.0× 106 3.0 388.0 52.00 426.4 0.9099 1.0495

To highlight the effect of this parameter, boundary layer profiles are taken at the same axial location

along the cone but at various azimuthal angles φ, ranging from φ = 0◦ to φ = 140◦ with a spacing of

20◦, and stability analyses are performed for the first and second Mack modes but also for the crossflow
instability. For the sake of conciseness, only the stability results at x = 0.2 [m] are presented. Besides,
it is worth mentioning here that, considering that the edge quantities vary for each value of φ as shown in
Figure 9, the results cannot technically be compared for a given value of Tw/Tr. However, not only is it

useful to get an order of magnitude of this effect, but it is reasonable to compare the results at fixed values

of (x, φ) for various Tw/Tr values because the values ofMe, Te andRee = ρeUe/µe are roughly constant.

Indeed, as shown in Figure 9, the values of Me, Te, Ue and µe vary less than 3% and consequently this

variation can be neglected. Nevertheless, as shown in Figure 9, it is clear that increasing the ratio Tw/Tr

leads to an increased displacement effect that might slightly displace the shock location, thus possibly

explaining the slight variation of the edge quantities when the wall temperature is changed. Indeed, it

has been found at φ = 80◦ that δ1 = 0.4 [mm] for Tw/Tr = 0.2705 and δ1 = 0.7 [mm] for Tw/Tr = 0.8115,
thus quantitatively proving that this increased displacement effect is far from negligible.

Then, the non-dimensional temperature T/Tr profiles are displayed in Figure 10. It has been observed

that the gradient at the wall (wall heat flux) at a given value of φ decreases until Tw/Tr = 1.0495 where
it is almost zero due to the fact that the wall is almost adiabatic. Besides, at a given value of Tw/Tr, it

can be seen that it decreases because of the thickening of the boundary layer when φ increases. From

the temperature profiles, it is also clear that the viscosity is also significantly affected by the values of

Tw/Tr. Moreover, as presented in Figure 11, the values of (ρ du/dη)|η=0 differ significantly when the

ratio Tw/Tr is increased, with values ranging at φ = 0◦ from (ρ du/dη)|η=0 ≈ 175000 [kg.m−3.s−1] at

Tw/Tr = 0.2705 to (ρ du/dη)|η=0 ≈ 17000 [kg.m−3.s−1] at Tw/Tr = 1.0495. This highlights the impact

specifically at the wall that the ratio Tw/Tr can have on the boundary layer profiles. Considering that

Tw/Tr ≤ 0.3 and Tw/Tr ≈ 0.8 are respectively representative of flight and wind tunnel flow conditions, it

is clear that a wide range of Tw/Tr values must be taken into account in transition modeling for a broad

scope of applications.
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Fig 9. Wall temperature (or Tw/Tr) effects on the edge quantities Me, Reδ1 , Tw/Tr, ρe, Te, Pe,

|wmax/Ue|, δ1 and Ree,unit for various azimuthal angles φ around the cone at x = 0.2 [m].
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Regarding the three-dimensional effects, the previous remark still holds when looking at the ρdw
dη profiles

plotted in Figure 11. Indeed, the values of (ρ dw/dη)|η=0 varied tremendously, ranging at φ = 80◦ from

(ρ dw/dη)|η=0 ≈ −15000 [kg.m−3.s−1] at Tw/Tr = 0.2705 to (ρ dw/dη)|η=0 ≈ −3000 [kg.m−3.s−1] at

Tw/Tr = 1.0495. Besides, although the boundary layer thickness increases significantly when Tw/Tr

increases, the variation of (ρ dw/dη)|η=GIPw
is surprisingly small with a minor increase. Moreover,

as presented in Figure 12, it has been found that the Tw/Tr ratio influences significantly the values

of |wmax/Ue| ranging at φ = 120◦ from |wmax/Ue| ≈ 4.7% at Tw/Tr = 0.2705 to |wmax/Ue| ≈ 8.7%
at Tw/Tr = 1.0495 for the chosen freestream flow conditions. This shows that the ratio Tw/Tr does

not simply affect the temperature and viscosity profiles, it also increases the three-dimensionality of

the flow. It is here worth noting that this correlates with the observations of Wang et al. [17] where

increased values of uc,max (different notation but same definition as |wmax/Ue|) were observed when

the wall temperature was increased from Tw = 150 [K] to Tw = 450 [K] for a blunt cone (RN = 1 [mm]) at
α = 5◦. Besides, it had been shown by the authors of [17] that the value of |wmax/Ue| doubled between
the lowest and highest wall temperature, which is an increase of the same order of magnitude as in this

present work.

Theoretically, the shape of the ρdu
dη and ρdw

dη profiles is indicative of the presence or absence of certain

instability waves. Indeed, the first Mack mode and the crossflow instability being of inflectional nature,

they can only exist if a generalized inflexion point exists, respectively on the longitudinal and crossflow

velocity component, defined as follows:

d

dη

(
ρ
du

dη

)
= 0 (11)

d

dη

(
ρ
dw

dη

)
= 0. (12)

Equivalently, they cannot exist if the profiles of ρdu
dη and ρdw

dη do not admit local extrema respectively.

Consequently, as shown in Figure 11 for the ρdu
dη profiles, the first Mack mode is not expected to be

unstable for Tw/Tr = 0.2705 but is expected to be unstable for Tw/Tr = 0.5410. However, as shown in
Figure 11, the crossflow instability is always expected to be unstable because the profiles of ρdw

dη always

admit a local extrema, except at φ = 0◦ because the crossflow velocity must be zero in the symmetry

plane. This has been verified using the growth rate variation in terms of the frequency presented in

Figure 13 where the first Mack mode is stable at φ = 0◦ for the Tw/Tr = 0.2705 wall condition yet

becomes unstable for Tw/Tr = 0.5410 at the same location. Besides, it has been found that both the first
Mack mode and the crossflow instability are destabilized by an increase in Tw/Tr and that both the most

unstable frequency and the range of unstable frequencies increased with Tw/Tr. Considering that the

only boundary layer parameters changing at a given φ location when the wall temperature is increased

are Tw/Tr,Reδ1 and |wmax/Ue| (see Figure 9), it is thus worth noting that these frequencies must depend
on these specific parameters. However, since the ratio Tw/Tr is only the driver for variations ofReδ1 and
|wmax/Ue|, the unstable frequencies can be expressed in terms of those quantities modified by Tw/Tr,

amongst which Reδ1 and |wmax/Ue| should be included.

Regarding the second Mack mode, Figure 13 clearly highlights that it is stabilized by an increase in

Tw/Tr where the crossflow instability becomes even dominant for some values of φ at Tw/Tr = 1.0495.
Moreover, as the boundary layer thickens, the most unstable frequency of the second Mack mode has

been found to decrease notably, ranging from 240− 600 [kHz] for Tw/Tr = 0.2705 to 170− 470 [kHz] for
Tw/Tr = 1.0495. The observed trend is consistent with the widely used estimate for the second Mack
mode frequency given by:

fmode2 ≈ Ue

2δ
. (13)
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(a) T/Tr, Tw/Tr = 0.2705 (b) T/Tr, Tw/Tr = 0.5410

(c) T/Tr, Tw/Tr = 0.8115 (d) T/Tr, Tw/Tr = 1.0495

Fig 10. Wall temperature (or Tw/Tr) effects on the non-dimensional wall-normal temperature T/Tr

profiles at x = 0.2 [m] for various azimuthal angles φ around the cone.
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(a) ρ du
dη
, Tw/Tr = 0.2705 (b) ρ dw

dη
, Tw/Tr = 0.2705

(c) ρ du
dη
, Tw/Tr = 0.5410 (d) ρ dw

dη
, Tw/Tr = 0.5410

(e) ρ du
dη
, Tw/Tr = 1.0495 (f) ρ dw

dη
, Tw/Tr = 1.0495

Fig 11. Wall temperature (or Tw/Tr) effects on the profiles of ρ
du
dη and ρdw

dη at x = 0.2 [m] for various
azimuthal angles φ around the cone.
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(a) w/Ue, Tw/Tr = 0.2705 (b) w/Ue, Tw/Tr = 0.5410

(c) w/Ue, Tw/Tr = 0.8115 (d) w/Ue, Tw/Tr = 1.0495

Fig 12. Wall temperature (or Tw/Tr) effects on the non-dimensional crossflow velocity w/Ue at

x = 0.2 [m] for various azimuthal angles φ around the cone.
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(a) σ [/m], Tw/Tr = 0.2705 (b) σ [/m], Tw/Tr = 0.5410

(c) σ [/m], Tw/Tr = 0.8115 (d) σ [/m], Tw/Tr = 1.0495

Fig 13. Wall temperature (or Tw/Tr) effects on the Mack modes and crossflow instability growth rates

and frequencies at x = 0.2 [m] for various azimuthal angles φ around the cone.
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5.2. Reynolds number effect

In this subsection, the effect of the freestream unit Reynolds number is studied. As shown in Table 4, this

parameter is being varied fromRe∞ = 8.0×106 [/m] toRe∞ = 14.0×106 [/m]. In order to study the effect
of this parameter on the crossflow instability, the angle of attack is fixed at α = 3◦. Besides, considering
the observation from the wall temperature effects, the temperature ratio is fixed at Tw/Tr = 0.8115 to
make sure that the three modes are unstable.

Table 4. Flow conditions considered for the study on the unit Reynolds number effects.

M∞ Re∞ [/m] AoA [◦] Tw [K] T∞ [K] T0,∞ [K] Tw/Tr

6.0 8.0× 106 3.0 300.0 52.00 426.4 0.8115

6.0 10.0× 106 3.0 300.0 52.00 426.4 0.8115

6.0 12.0× 106 3.0 300.0 52.00 426.4 0.8115

6.0 14.0× 106 3.0 300.0 52.00 426.4 0.8115

The non-dimensional longitudinal velocity u/Ue profiles are presented in Figure 15. It has been observed

that the Reynolds number induces a lower boundary layer thickness for all values of φ. Moreover, as
shown in Figure 15 and contrary to the wall temperature ratio Tw/Tr effects, the freestream Reynolds

number does not affect the three-dimensionality of the flow. Indeed, at a given φ location, the value

of |wmax/Ue| is completely unchanged when increasing the Reynolds number. However, as shown

in Figure 16, the values of ρdu
dη and ρdw

dη have notably changed with the increase in Reynolds num-

ber. Indeed, the values of (ρ dw/dη)|η=0 at φ = 80◦ went from (ρ dw/dη)|η=0 = −3000 [kg.m−3.s−1] at

Re∞ = 8.0 × 106 [/m] to (ρ dw/dη)|η=0 = −6500 [kg.m−3.s−1] at Re∞ = 14.00 × 106 [/m].
Besides, a similar observation can be made for values of (ρ dw/dη)|η=GIPw

at φ = 80◦ that went

from (ρ dw/dη)|η=GIPw
= 4000 [kg.m−3.s−1] at Re∞ = 8.0 × 106 [/m] to (ρ dw/dη)|η=GIPw

= 9100

[kg.m−3.s−1] at Re∞ = 14.00 × 106 [/m]. This shows that the Reynolds number has a strong effect on
the profiles in the near-wall region but also in the outer part of the boundary layer.

Regarding the stability results, Figure 17 sheds light on the variation of the growth rate in terms of

the frequency for all the chosen Reynolds numbers and the selected φ locations. It appears that the

Reynolds number has a destabilizing effect on all themodes: the first Mackmode at φ = 0◦, the crossflow
instability at φ > 0◦ and the high-frequency second Mack mode. For instance, it has quantitatively been
found for the first Mack mode at φ = 0◦ that σ ≈ 12 [/m] at Re∞ = 8.0 × 106 [/m] and σ ≈ 17.5 [/m] at
Re∞ = 14.00× 106 [/m], thus representing an increase of approximately 46%.

Additionally, at a given φ location, the most unstable frequency of the first Mack mode or the crossflow

instability did not vary notably for an increased freestream Reynolds number. However, at a given value

ofRe∞ and various φ locations, it can be seen that themost unstable frequency of the crossflow instability

decreases slightly when φ increases (when Reδ1 increases significantly, as shown in Figure 14). This

confirms that the frequency of the highly oblique modes might depend on the values of Reδ1 . However,
it is important to mention that the unstable frequency range has widened, going from 20 − 130 [kHz] to
20− 200 [kHz]. Besides, similar observations can be made for the crossflow instability where the growth

rates and the unstable frequency range increase with the Reynolds number (or Reδ1 ) value.

Finally, regarding the second Mack mode, it has been found as expected that the most unstable

frequency increased for a higher Reynolds number due to a thinner boundary layer. Besides, it has

also been observed that the mode is destabilized by the parameter as the growth rates increased

notably from Re∞ = 8.0× 106 [/m] to Re∞ = 14.00× 106 [/m].
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Fig 14. Freestream unit Reynolds number effects on the edge quantities Me, Reδ1 , Tw/Tr, ρe, Te, Pe,

|wmax/Ue|, δ1 and Ree,unit for various azimuthal angles φ around the cone at x = 0.2 [m].
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(a) u/Ue, Re∞ = 8.0× 106 [/m] (b) w/Ue, Re∞ = 8.0× 106 [/m]

(c) u/Ue, Re∞ = 12.0× 106 [/m] (d) w/Ue, Re∞ = 12.0× 106 [/m]

(e) u/Ue, Re∞ = 14.0× 106 [/m] (f) w/Ue, Re∞ = 14.0× 106 [/m]

Fig 15. Freestream unit Reynolds number effects on the non-dimensional longitudinal velocity u/Ue

and crossflow velocity w/Ue at x = 0.2 [m] for various azimuthal angles φ around the cone.
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(a) ρ du
dη
, Re∞ = 8.0× 106 [/m] (b) ρ dw

dη
, Re∞ = 8.0× 106 [/m]

(c) ρ du
dη
, Re∞ = 12.0× 106 [/m] (d) ρ dw

dη
, Re∞ = 12.0× 106 [/m]

(e) ρ du
dη
, Re∞ = 14.0× 106 [/m] (f) ρ dw

dη
, Re∞ = 14.0× 106 [/m]

Fig 16. Freestream unit Reynolds number effects on the profiles of ρdu
dη and ρdw

dη at x = 0.2 [m] for
various azimuthal angles φ around the cone.
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(a) σ [/m], Re∞ = 8.0× 106 [/m] (b) σ [/m], Re∞ = 10× 106 [/m]

(c) σ [/m], Re∞ = 12× 106 [/m] (d) σ [/m], Re∞ = 14× 106 [/m]

Fig 17. Freestream unit Reynolds number effects on the Mack modes and crossflow instability growth

rates and frequencies at x = 0.2 [m] for various azimuthal angles φ around the cone.
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5.3. Angle of attack effects

In this subsection, the effect of the angle of attack will be studied with fixed freestream parameters and

geometry. As shown in Table 5, the angle of attack is varied from α = 1◦ to α = 6◦ with a larger

increment between α = 3◦ and α = 6◦ to better visualize the differences in the profiles. Besides,

following the conclusions taken in the previous subsection regarding the wall temperature effects, the

wall temperature has been chosen high enough to make sure that the ρdu
dη and ρdw

dη profiles all have a

local extrema and consequently that all three modes are unstable.

Table 5. Flow conditions considered for the study on the angle of attack effects.

M∞ Re∞ [/m] AoA [◦] Tw [K] T∞ [K] T0,∞ [K] Tw/Tr

6.0 10.0× 106 1.0 300.0 52.00 426.4 0.8115

6.0 10.0× 106 2.0 300.0 52.00 426.4 0.8115

6.0 10.0× 106 3.0 300.0 52.00 426.4 0.8115

6.0 10.0× 106 6.0 300.0 52.00 426.4 0.8115

Firstly, edge quantities are plotted in Figure 18 at x = 0.2 [m] for various φ locations. It has been

observed that the angle of attack widened significantly the range of values of each quantity. Besides,

the longitudinal velocity can be plotted for each case. As presented in Figure 19, it has been found, at

a given angle of attack, that the boundary layer thickness increases when φ increases. However, when

the angle of attack is increased, it decreases for low values of φ but increases for high values of φ, thus
leading to a wide range of values for δ at high angles of attack (varying from δ ≈ 0.0007 [m] at φ = 0◦ to
δ ≈ 0.0019 [m] at φ = 140◦). These variations of boundary layer thickness will directly be related to the
unstable frequency range of the second Mack mode, known to be highly dependent on the value of δ.
Indeed, Figure 21 shows that, as the angle of attack and the variation of δ in terms of φ is increased,

the range of unstable frequencies for the second Mack mode widens notably from 200 − 400 [kHz] to
140− 600 [kHz].

Secondly, the crossflow velocity is also plotted in Figure 19. For all the chosen angles of attack, the

absolute maximum value of w/Ue, noted |wmax/Ue|, increases when φ increases but decreases after a

threshold value of φt which is approximately φt = 100◦ at α = 1◦ but φt = 120◦ at α = 6◦. This is logical
because the crossflow velocity must be zero in the symmetry planes (φ = 0◦ and φ = 180◦) but strictly
nonzero for the other values of φ. Moreover, it has also been found that an increase in angle of attack
resulted in an increase in |wmax/Ue|, varying from |wmax/Ue| ≈ 3% at α = 1◦ to |wmax/Ue| ≈ 13.5%
at α = 6◦. As expected, and in addition to the previous observation, this quantitatively confirms that

the angle of attack amplifies the three-dimensional effects. Indeed, these 3D effects can also be mea-

sured using the profiles of ρdu
dη and ρdw

dη . As shown in Figure 20, it can be visualized that the values

of (ρ du/dη)|η=0 and max
(
ρ du
dη

)
increase tremendously at a given φ location when the angle of attack

is increased. Moreover, when looking at the values of (ρ dw/dη)|η=0 and (ρ dw/dη)|η=GIPw
, it appears

evident that the angle of attack clearly affects both the near-wall and outer region of the boundary layer

profiles.
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Fig 18. Angle of attack effects on the edge quantities Me, Reδ1 , Tw/Tr, ρe, Te, Pe, |wmax/Ue|, δ1 and
Ree,unit for various azimuthal angles φ around the cone at x = 0.2 [m] along the cone.
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(a) u/Ue, α = 1◦ (b) w/Ue, α = 1◦

(c) u/Ue, α = 3◦ (d) w/Ue, α = 3◦

(e) u/Ue, α = 6◦ (f) w/Ue, α = 6◦

Fig 19. Angle of attack effects on the non-dimensional longitudinal velocity u/Ue and crossflow velocity

w/Ue at x = 0.2 [m] for various azimuthal angles φ around the cone.
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(a) ρ du
dη
, α = 1◦ (b) ρ dw

dη
, α = 1◦

(c) ρ du
dη
, α = 3◦ (d) ρ dw

dη
, α = 3◦

(e) ρ du
dη
, α = 6◦ (f) ρ dw

dη
, α = 6◦

Fig 20. Angle of attack effects on the profiles of ρdu
dη and ρdw

dη at x = 0.2 [m] for various azimuthal
angles φ around the cone.
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Finally, regarding the stability results, the growth rate is plotted in terms of the frequency in Figure 21

for various boundary layer profiles around the cone at x = 0.2 [m]. Generally, it has been found that an
increased angle of attack strongly destabilized the crossflow instability which became dominant over the

second Mack mode at high angles of attack for the considered freestream flow conditions. Moreover,

although it appears more subtle at α = 1◦, it appears evident at α = 3◦ or α = 6◦ that the dominant

frequency of the crossflow mode decreases when φ increases. However, considering that the values of
Me, Te, Ue, Reδ1 and |wmax/Ue| change at each φ location, it is challenging to interpret this behavior.

Then, regarding the first Mack mode at φ = 0◦, it has unexpectedly been found that, despite values

of Me, Te, Ue but also ρdu
dη that vary significantly when increasing the angle of attack (see Figure 18),

the growth rate stayed at a roughly constant value of σ ≈ 13 [/m] and a most unstable frequency of

f ≈ 45 [kHz].

Regarding the secondMack mode, it has been found at α = 1◦ that the growth rates are roughly constant
for all values of φ due to the fact that the values of Me, Te, Ue are fairly unchanged as well and that the

three-dimensionality of the flow is weak (|wmax/Ue| is small). However, when the angle of attack is

increased, it has generally been found that the growth rates tended to decrease slightly until α = 6◦

where it was more pronounced at φ ≤ 60◦ only. This is possibly due to the fact that, going from α = 3◦

to α = 6◦, the variation of edge quantities was found to be the highest at φ ≤ 60◦.

(a) σ [/m], α = 1◦ (b) σ [/m], α = 2◦

(c) σ [/m], α = 3◦ (d) σ [/m], α = 6◦

Fig 21. Angle of attack effects on the Mack modes and crossflow instability growth rates and

frequencies at x = 0.2 [m] for various azimuthal angles φ around the cone.
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6. Conclusions and perspectives
In this paper, a feature-based mesh adaptation methodology has been validated to reproduce boundary

layer profiles and their derivatives, stability diagrams on isolated boundary layer profiles and N-factors

along a given streamline. It has been used to study the effect of some flow parameters such as the unit

Reynolds number Re∞, the angle of attack α and the wall temperature ratio Tw/Tr on the profiles and

the typical instability waves (Mack modes and crossflow instability) that lead to transition. This paper

thus provides an insight into their effects and a first glimpse at pertinent boundary layer quantities that

would help to characterize and model more effectively these modes in a wide range of flow conditions.

For instance, it seemed that the most unstable frequency of the crossflow instability was highly related

to the value of Reδ1 , similarly to the first Mack mode.

Regarding the effect of the wall-to-recovery temperature ratio Tw/Tr, it was found to significantly change

the boundary layer profiles and thus the growth rates and frequencies of the instability waves. As Tw/Tr

increased, the second Mack mode was less unstable whereas the first Mack mode and the crossflow

instability became notably more unstable. Although the first Mack mode can be completely stable at

low values of Tw/Tr due to the absence of a generalized inflexion point for the longitudinal velocity, the

crossflow instability was found to always be unstable due to the necessary presence of a generalized

inflexion point on the crossflow velocity when it is not zero. It is also worth mentioning that LST always

predicts a higher growth rate for the traveling (f > 0 [Hz]) crossflow mode compared to its stationary

(f = 0 [Hz]) counterpart. Moreover, as Tw/Tr increased, the boundary layer thickened and the most

unstable frequency of the second Mack mode decreased. Besides, a significant displacement effect

was measured using values of δ1 when Tw/Tr increased.

Regarding the effect of the Reynolds number, it has unsurprisingly been observed that the higher the

value, the more unstable these modes will be and the more upstream the transition will be expected.

Besides, it has been found that the most unstable frequency of the second Mack mode is highly sensitive

to the boundary layer thickness δ. However, a deeper study on the effect of Reδ1 must be conducted in
order to quantify its effect on the most unstable frequency of the crossflow instability.

Finally, regarding the effect of the angle of attack, it has been found to strongly affect the boundary layer

profiles and quantities such as δ, Me, Te and |wmax/Ue|. Besides, the variation of these parameters

was highly dependent on the values of φ (i.e. on the position around the cone where the boundary

layer profile was taken), thus highlighting significant three-dimensional effects. As a result, it has been

shown that the angle of attack significantly destabilizes the crossflow instability while its effect on the

Mack modes’ growth rates were found to be moderately stabilizing. However, due to a wider range of δ
values, the unstable frequency range of the second Mack mode has been observed to widen drastically

as the angle of attack was increased.

In future work, the generated database of boundary layer profiles and stability results will be used to

improve correlations in RANS-based transition models.
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