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Abstract

This work is motivated by the unresolved influence of nose bluntness on hypersonic boundary-layer
transition. Linear stability theory explains why small increases in bluntness delay transition, but it
cannot account for the reversal of this trend at larger bluntness. This reversal is believed to arise
from the growth of non-modal perturbations, yet their receptivity to freestream disturbances has not
been quantified. In this paper, we introduce a highly efficient shock-fitting harmonic linearized Navier-
Stokes (SF-HLNS) method to quantify non-modal perturbation receptivity. We show that this receptivity
mechanism plays the dominant role in the transition-reversal phenomenon. By coupling SF-HLNS with
nonlinear parabolized stability equations and secondary-instability analysis, we accurately predict the
onset of transition across a range of nose radii. Comparison with experimental data confirms both the
reliability and efficiency of our theoretical framework.

Keywords: Hypersonic boundary layer transition, bluntness, receptivity, shock-fitting, harmonic lin-
earized Navier-Stokes

1. Introduction
Laminar-turbulent transition in hypersonic boundary layers is of particular interest due to its relevance
to surface drag and heat transfer on high-speed flying vehicles. This task becomes even more chal-
lenging when a hypersonic boundary layer features a blunt leading edge, a common design choice for
hypersonic vehicles to prevent damage from the extreme heat loads at the stagnation point. Wind-
tunnel experiments [1, 2, 3, 4, 5] have revealed that the effect of nose bluntness on transition location
is not monotonic. For configurations with relatively small bluntness, an increase in nose radius leads
to a delay in transition; however, the opposite effect occurs when the nose radius surpasses a certain
threshold. This phenomenon, known as the transition reversal phenomenon, is influenced by several
factors, including the Mach number, Reynolds number, and the level of background noise.
Depending on the instability property of the boundary layer and the environmental perturbation level,
the boundary-layer transition proceed along two distinct routes: (1) natural transition, in which modal
instabilities (such as the Mack modes) accumulate to finite amplitude; (2) bypass transition, in which
the non-modal modes (streaks) reach nonlinear saturation phase and trigger secondary instability with
high growth rates. Experimental observations [5] show that at small bluntness the transition onset
is dominated by two-dimensional disturbances consistent with planar Mack instability. By contrast,
at larger bluntness the transition front develops longitudinal streaks, aligning with a bypass transition
driven by non-modal perturbations.
Evidently, increasing the leading-edge bluntness intensifies the entropy layer forming from the nose
region. Linear stability theory (LST) shows that this strengthened entropy layer has a stabilizing effect on
Mack modes in the downstream boundary layer, explaining the observed delay in transition for small nose
radii. However, LST cannot capture the growth of non-modal disturbances, so alternative methods are
required. One such approach is the optimal growth theory (OGT), which treats perturbation evolution as
an input¨Coutput problem and seeks the maximum energy amplification over a specified spatial interval
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Fig 1. Sketch of the physical model, where 'a', 'v' and 'e' denote acoustic, vortical and entropy distur-
bances, respectively.

[6, 7]. A major limitation of OGT, however, is its neglect of receptivity of the non-modal perturbations
to freestream forcing, which is crucial for describing the transition-reversal phenomenon.

In this paper, we will particularly focus on developing a highly efficient numerical approach, the shock-
fitting harmonic linearized Navier-Stokes (SF-HLNS) approach, designed to quantitatively describe the
excitation of boundary-layer non-modal perturbations by freestream perturbations. Then, we will show
the nonlinear evolution and secondary instability of the non-modal perturbations, and finally predict the
transition onset to compare with experimental data.

2. Methodology
2.1. Physical problem
The physical model to be considered is a blunt wedge with a semi-tip-angle θ and a radius r∗ embedded
in a hypersonic stream with zero angle of attack, as sketched in Figure 1. A detached bow shock
wave forms from the leading edge region, and a boundary layer and an entropy layer form in the
region sandwiched between the shock and the wall. In the free stream, any small perturbations can
be decomposed into a superposition of acoustic, vortical and entropy disturbances. Any of the three
components introduced in the oncoming stream can interact with the bow shock and transmit to all
the three components behind the shock. These perturbations can further penetrate the entropy and
boundary layers, generating either the modal or non-modal perturbations.

In the dimensionless form, the system is described in the Cartesian coordinate system (x, y, z), and the
time is denoted by t. the governing equations are the dimensionless compressible Navier-Stokes (N-S)
equations. Two key controlling parameters emerge, the Reynolds number Re and the Mach number
M .

2.2. Freestream forcing
The freestream disturbance in the uniform stream uuu∞ = (1, 0, 0) can be expressed as

φφφ′
∞(x, y, z, t) =

ε∞
2
φ̂φφ∞ei(k1x+k2y+k3z−ωt) + c.c., (1)

where kkk = (k1, k2, k3) and ω are the wave-number vector and the frequency of the disturbance, respec-
tively, ε∞ measures the disturbance amplitude, and c.c. denotes the complex conjugate. Denote the
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declination angle by
ϑ = tan−1(k2/k3). (2)

The acoustic, entropy, and vortical perturbations exhibit distinct dispersion relations, which are outlined
as follows.
(i) An acoustic wave could propagate either faster or slower than the base flow, which are referred to
as the fast and slow acoustic waves, respectively. The dispersion relations of the two waves can be
expressed

ω = k1 ±
1

M
|kkk|, (3)

where the plus and minus signs distinguish the fast and slow acoustic waves, respectively. The eigen-
function, normalized by the amplitude of the pressure fluctuation, reads

(ρ̂, û, v̂, ŵ, T̂ , p̂)∞ = (M2,± k1
|kkk|

M,± k2
|kkk|

M,± k3
|kkk|

M, (γ − 1)M2, 1). (4)

(ii) For an entropy wave, we have the dispersion relation

ω = k1, (5)

and the eigenfunction is
(ρ̂, û, v̂, ŵ, T̂ , p̂)∞ = (1, 0, 0, 0,−1, 0)T . (6)

(iii) For a vortical wave, the dispersion relation is the same as (5), but the engenfunction is changed
to

(ρ̂, û, v̂, ŵ, T̂ , p̂)∞ = (0, û∞, v̂∞, ŵ∞, 0, 0)T , (7)

where k1û∞ + k2v̂∞ + k3ŵ∞ = 0. For normalization, we let
√

û2
∞ + v̂2∞ + ŵ2

∞ = 1, but we still need
another condition to uniquely determine the values of û∞, v̂∞ and ŵ∞. Introduce the vertical vorticity
Ω̂2 ≡ k3û∞ − k1ŵ∞, then the oncoming perturbation field can be expressed as

(û∞, v̂∞, ŵ∞) =
(−k1k2 + k3Ã, k

2
1 + k23,−k2k3 − k1Ã)

B̃
sgn(k2). (8)

where Ã = Ω̂2|kkk|sgn(k2)/
√
k21 + k23 − Ω̂2

2, B̃ = (k21 + k23)|kkk|/
√
k21 + k23 − Ω̂2

2, and sgn(k2) = 1 for k2 ≥ 0

and = −1 for k2 < 0.

2.3. Shock-fitting harmonic linearized Navier-Stokes (SF-HLNS) approach
To study the perturbation evolution, we need to first calculate the base flow solving the steady N-
S equations. Then, we calculate the receptivity of the boundary-layer non-modal perturbations to the
perturbations in the oncoming stream. The latter can be an acoustic wave, an entropy wave or a vortical
wave. After interacting with the bow shock, the three types of perturbations are all excited. Then, these
perturbations propagate to the boundary layer through the potential region sandwiched between the
shock and the boundary-layer edge, eventually excite boundary-layer non-modal perturbations. To
describe this process is challenging, and in this paper, we develop a novel SF-HLNS approach.
The principle idea of the SF-HLNS approach is to perform Fourier transform with respect to t and z for
the linearize N-S system, and impose shock-fitting method at the bow shock position to determine the
upper boundary condition. A distinct feature of this system is the movement of the shock excited by
the unsteady oncoming perturbation. Thus, the perturbation field φφφ′ and the shock-movement H ′ are
expressed in the harmonic form,

φφφ′(ξ, η, ζ, τ) =
ε

2
φ̂φφ(ξ, η)exp[i(k3ζ − ωτ)] + c.c., (9a)

H ′(ξ, ζ, τ) =
ε

2
Ĥ(ξ)exp[i(k3ζ − ωτ)] + c.c.. (9b)
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Case
Mach
number

M

Oncoming
temperature

T ∗
∞

Wall
temperature

T ∗
w

Reynolds
number

Re

Nose
radius
r∗

semi-tip-angle
θ

A 5.96 87K 290K 3.34× 104 1 mm 4◦

B 5.96 87K 290K 1.67× 105 5 mm 4◦

C 5.96 87K 290K 3.34× 105 10 mm 4◦

Table 1. Controlling parameters for receptivity studies.
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Fig 2. Contours of the entropy increment (a) and local Mach number (b) in the x-y plane for the three
cases. The edges of the boundary layer and entropy layer are marked by dashed and dash-dotted lines,
respectively.

Substituting (9) into the linearised N-S equations, we derive the SF-HLNS equation system,

L1φ̂φφ(ξ, η) + L2Ĥ(ξ) = 0, (10)

where L1 and L2 are the the linear operators. The boundary conditions for system (10) consist of
no-slip, isothermal conditions at the wall, as well as the linearized Rankine-Hugoniot relation at the
shock, based on the incoming perturbations. Additionally, the compatibility relation is also imposed at
the shock. Detailed formulas and algebraic derivations can be found in the work of [8].

3. Numerical results
3.1. Receptivity of non-modal perturbations

Three case studies as outlined in Table 1 are selected. For perturbation evolution, we adopt a two-
digit identifier to denote different case studies. The first digit distinguishes the nose radius (Reynolds
number) selected from Table 1, while the second digit indicates the freestream perturbation, with 'f',
's', 'e' and 'v' denoting the fast acoustic, slow acoustic, entropy and vorticity waves, respectively. For
instance, case Bf signifies a case study involving a nose radius r∗ = 5mm subject to a fast acoustic
forcing.

The contours of the entropy increment and local Mach number for the three cases are compared in
Fig. 2, showing a notable expansion of the entropy layer with increasing the nose radius. Performing
linear instability analyses, we find that there is no unstable Mack mode in the computational domains
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Fig 3. Contours of the streaky structure for case Av with ω = 0, k3 = 1.5 and ϑ = 15◦ in z − xs plane
at a fixed yn = 1.2. (a): u′

s; (b): T ′.

for the three cases, and the unstable entropy-layer modes are found to be growing with rather mild
rate, indicating that the transition is unlikely to be triggered by the natural transition route.

As pointed out by [9] and [10], the most amplified non-modal perturbations in boundary-layer flows often
exhibit a longitudinal streaky structure attributed to the lift-up mechanism, commonly known as streaks.
In figure 3, we present the contours of the velocity and temperature perturbation in the z − xs plane
at yn = 1.2 for case Av at ω = 0, illustrating prominent streaky structures. The receptivity processes of
the non-modal perturbations to each type of freestream forcing, at various frequencies, wavenumbers,
inclined angles, are all studied, which help identify the most amplified non-modal perturbations. To
ensure a fair comparison of the receptivity efficiency, the energy of freestream perturbations across
different case studies needs to be rescaled. Drawing inspiration from [11], we introduce a positive
definite energy norm:

E(φ̂φφ;xs, yn) = ||φ̂φφ||E = φ̂φφHMMMφ̂φφ, (11)

where the superscript H presents the conjugate transpose, and

MMM = diag
( T̄

γM2ρ̄
, ρ̄, ρ̄, ρ̄,

ρ̄

γ(γ − 1)M2T̄

)
. (12)

In the freestream, the energy norm is denoted by E∞ ≡ E(φ̂φφ∞). Thus, for freestream acoustic, entropy
and vortice disturbances illustrated in (2.2), the corresponding energy norms are given by

Ea
∞ = 2M2, Ee

∞ =
1

(γ − 1)M2
, Ev

∞ = 1.

At each streamwise location xs, we define the total energy encompassing the wall-normal perturbation
profile as

Ē(φ̂φφ;xs) =

∫ ys

0

E(φ̂φφ;xs, yn)dyn, (13)

where the upper band of the integral is selected as the edge of the entropy layer. Figure 4 compares the
streamwise evolution of the normalised total energy Ē(xs)/E∞ across all the cases involving different
nose radii and freestream perturbations. The red, green and blue solid lines depict the results for
cases Av, Bv and Cv, respectively. It is evident that in the downstream region, the total energy of the
non-modal perturbation excited by freestream vortical perturbations decreases as the nose radius r∗

expands, with the decrease for relatively larger r∗ values being rather mild. Conversely, in cases forced
by freestream acoustic and entropy perturbations, depicted by the symboled and dashed lines, the
excited perturbations achieve greater downstream energy as the nose radius increases. Upon examining
the magnitude of the excited perturbations by unity energy forcing, it is evident that the receptivity of
boundary-layer non-modal perturbations in downstream positions to freestream vortical perturbations is
rather ineffective, whereas the receptivity to freestream fast or slow acoustic and entropy perturbations
is comparable, with the acoustic receptivity demonstrating slightly superior effectiveness. Particularly,
the nose-region response to freestream acoustic and entropy forcing is reinforced with increasing nose
radius, which could be the dominant factor contributing to the heightened receptivity efficiency observed
in the downstream region.
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Fig 4. Streamwise evolution of the normalised total energy Ē/E∞ across all the cases, where ω = 0,
k∗3 = 1.5 mm−1 and ϑ = 15◦.

Case
Nose
radius
r∗

Reynolds
number
Re(×105)

Transition onset
location

xtr

Transition onset
Reynolds number

Ret(×106)

A 1.20 mm 0.696 129 8.98
B 1.80 mm 1.044 72 7.52
C 2.00 mm 1.160 43 4.99
D 2.60 mm 1.508 30 4.52
E 3.00 mm 1.740 23 4.00

Table 2. Parameters for case studies.

Notably, we have also performed OGT to predict the energy growth of the non-modal perturbations for
comparison, and a reversed trend, showing a decrease in non-modal energy growth as the nose radius
increases, is observed, which directly contradicts the experimental observations.

3.2. Nonlinear evolution of the non-modal perturbations and its secondary instability
To pursue a direct comparison with the experimental data [5], we choose five cases with various nose
radii (Reynolds numbers) as outlined in Table 2. Performing nonlinear parabolized stability equation
(NPSE) initiated from the small perturbations obtained by SF-HLNS calculations, we can calculate the
nonlinear evolution of non-modal perturbations. Fig. 5 demonstrates the base flow for case E. The
streaky structures are clearly visible, with their amplitude increasing downstream along x. At a down-
stream location x = 146, pronounced gradients are apparent in both the yn and z directions, suggesting
the potential streak instabilities.
Figure 6 displays the secondary instability properties of the streaky base flow at x = 12 for case E. Five
unstable branches of the fundamental SI modes are identified, among which mode I is the most unstable.
The phase speed of mode I ranges approximately from 0.6 to 0.7, closely resembling that observed
in case A. Remarkably, the maximum growth rate for the current profile is almost 0.3, significantly
greater than that in cases A to D. This indicates that increasing the nose radius not only enhances the
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Fig 5. Demonstration of the streaky base flow for case E. (a) Contours of ū in the entire computational
domain; (b) contours of ū and T̄ at x = 146; (c) Contours of ∂ū/∂yn and ∂ū/∂z at x = 146.
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Fig 6. Temporal bi-global analysis of the fundamental SI modes for case E at x = 12. (a, b) Dependence
on α of ω̄i and Cr. (c) The real part (top) and modulus (bottom) of the eigenfunction eiσdk3z ûSI(yn, z)
of mode I with α = 6.4, for which ω̄i = 0.275. The eigenfunction is normalised by its maximum.
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Fig 7. Comparison of the transition Reynolds number Retr predicted by the e-N approach (solid lines)
with the experimental data (black circles). Three values of Ntr are selected.

receptivity of the non-modal perturbations but also promotes the amplification of secondary instability
modes, consequently leading to an earlier onset of transition.

3.3. Comparison of the theoretical prediction with the experimental data

The amplitude accumulation of the secondary instability modes can be predicted by integrating their
growth rates along the streamwise location, which is the principle of the e-N method. Based on this
method, we can estimate the bypass transition onset based on a suitable transition threshold Ntr. The
selection of the threshold Ntr is empirical, as prescribing the receptivity of secondary instability modes
in streaky base flows is not straightforward. However, as the background noise level in the wind tunnel
experiments remains almost unchanged, the receptivity efficiency of the SI modes can be assumed
to be comparable across different nose-radius configurations. Therefore, we can reasonably choose a
consistent Ntr for all the cases considered. Based on this concept, we predict Retr for three Ntr values
--3.5, 5 and 6--as shown by the solid curves in figure 7. Notably, all three curves display a consistent
trend: an increase in Re leads to a decrease in Retr, indicating an upstream shift in the transition onset
with increased the nose bluntness. Additionally, due to the relatively high growth of the SI modes, the
discrepancies among the three curves are not large. The figure also includes experimental results from
[5], indicated by circles, which agree overall with our theoretical predictions when Re is above 0.7×105,
the critical Reynolds number for the transition reversal phenomenon. At lower Reynolds numbers, the
transition is likely triggered by the natural route, dominated by the accumulation of Mack instability,
distinct from the mechanism considered in this study. Despite this, the agreement at relatively high
Re values confirms that our transition prediction approach not only captures the physical mechanisms
of transition for large bluntness observed in experiments, but also provides a quantitative method to
describe the bypass transition process stemming from the receptivity of non-modal perturbations.

4. Concluding remarks
Motivated by experimental observations of transition reversal in hypersonic boundary layers, we intro-
duce a highly efficient and accurate shock-fitting harmonic linearized Navier-Stokes (SF-HLNS) approach
to systematically quantify the receptivity of non-modal perturbations to freestream acoustic, entropy,
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and vortical forcing. Our numerical results reveal that the non-modal perturbations are more suscep-
tible to freestream acoustic and entropy disturbances than to vortical ones, with an optimal spanwise
wavelength comparable to the downstream boundary-layer thickness. Crucially, as the nose bluntness
increases, receptivity to acoustic and entropy forcing intensifies, reproducing the transition reversal
trend seen in experiments at larger bluntness. We also examine the credibility of the optimal growth
theory (OGT) on describing the evolution of non-modal perturbations: although OGT captures the gen-
eral streaky structure downstream, it fails to predict the early-stage evolution and energy amplification
accurately.
Based on the SF-HLNS downstream perturbation profiles, we then apply nonlinear parabolized stability
equations (NPSE) to follow streak evolution and perform bi-global stability analysis to assess secondary
instabilities. By combining computed growth rates with an appropriate transition threshold, we predict
the transition onset in excellent agreement with experimental data.
Compared with traditional LST, PSE, and conventional HLNS methods, the present SF-HLNS approach
fully accounts for bow shock and entropy layer effects and their interaction with perturbations. Moreover,
each SF-HLNS calculation takes under five minutes, three to four orders of magnitude faster than DNS,
making it a powerful tool for future studies of hypersonic blunt-body boundary-layer transition under
realistic environmental disturbances.
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