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Abstract: The large wind turbine blades, while enhancing the efficiency of wind energy capture, 

inevitably lead to more complex nonlinear aeroelastic problems. This work aims to establish a 

nonlinear aeroelastic model for wind turbine blades by coupling strain-based beam with rotational 

effects and finite-state inflow theory with Prandtl tip loss correction. Numerical studies were 

conducted on a real blade model and compared with measured data.  

1 INTRODUCTION 

The trend in the offshore wind turbine industry is towards more energy harvesting capacity, 

resulting in larger and more flexible structural components for these huge rotating machines. These 

large flexible structures must withstand aerodynamic, hydrodynamic, gravitational, and 

geotechnical loads while in service due to their installation in harsh environments[1].  

The flexible blades make aeroelasticity becomes one of the most critical issues during the design 

of modern wind turbines. To study the aeroelastic characteristics of wind turbine blades, various 

models with varying complexity are used at different design stages[2]. Mostly, at the component 

level beam models are used while at the complete wind turbine level, modal and multi-body 

approaches are usually adopted[3]. As for aerodynamic aspects, the Beddoes -Leishman (B-L) 

dynamic stall model is often used for predicting the aerodynamic loads in stall conditions [4]. 

Besides, researchers also utilize generalized dynamic wake (GDW) and unsteady vortex lattice 

method to consider the corresponding dynamic inflow effects[5]. The aerodynamic force and 

structural components together constitute the basis of fluid-solid interaction (FSI) modelling 

techniques. The most widely used aeroelastic model is based on the blade element momentum 

(BEM) theory and 1D beam structural models due to their high efficiency and reasonable accuracy.  

However, one prominent feature of the large wind turbine blades is the large deformation during 

service, which can cause geometrically nonlinearities. Besides, researchers have found that 

unstable oscillations are more likely to occur with longer blades. Volk et al.[6] found that blades 

can exhibit edgewise instabilities beyond a critical rotor speed by field tests and simulation on a 7 

MW wind turbine. The large flapwise deflections lead to coupling between the edgewise motion 

of the blade and its torsional motion, and further induce edgewise instabilities due to the reduction 

of the damping in the edgewise direction[7]. Zhou et al. [8] showed that nonlinear analysis predicts 
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both flutter and edgewise non-flutter instabilities, while only flutter instability can be detected in 

linear analysis.  

In this work, the authors will develop a nonlinear aeroelastic model for wind turbine blades by 

coupling strain-based beam with the finite-state inflow theory. Some experimental data from wind 

energy company indicate that the blades exhibit typical edgewise oscillations. Numerical studies 

are conducted to investigate the oscillations through aeroelastic simulations under conditions 

similar to measured data.  

2 THEORETICAL FORMULATION 

2.1 Coordinate system definition 

As shown in Fig. 1, the base vector 3E of the reference coordinate system E is pointing upwards 

along the wind turbine frame. 1E  is perpendicular to the rotation plane with zero inclination and 

cone angle. Denote the inclination angle of the rotation plane as  , the cone angle as  . The 

rotation matrix from the reference coordinate system E to the body coordinate system B can be 

expressed by  

 ( ) ( ) ( )BE

y x yt = C L L L  (1)\ 

where   is the rotational speed and ( ) ( ) ( ), ,x y z  L L L are the Euler rotation matrix denoted 

by 

 ( ) ( ) ( )

1 0 0 cos 0 sin cos sin 0

0 cos sin , 0 1 0 , sin cos 0

0 sin cos sin 0 cos 0 0 1

x y z

   

      

   

−     
     

= = = −
     
     −     

L L L  (2) 

 

Fig. 1 Coordinate system definition 
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2.2 Structural modelling of rotating beam 

A rotating beam, as shown in Fig. 2, is defined by a spatial curve parameterized with the arc length 

coordinate  0,s L   and a family of cross-sections.  

 

Fig. 2 Kinematic description of a rotating beam 

For a balanced system, the sum of the virtual work done by all inertial forces, elastic forces, and 

external forces on possible virtual displacements is zero： 

 ( )
0

0
L

a eW W W ds  + + =  (3) 

in which, aW , W and eW  are the virtual work of inertial force, elastic force and external force 

per unit length, respectively. The key to derive these virtual works is to determine the kinematic 

relations. The rotating frame B rotates around the ( )3 tB  axis at an angular velocity of Bω .Assuming 

that the inertial reference frame E coincides with the rotating frame B at the initial time, the position 

vector of an arbitrary point P in the beam can be expressed as 

 ( ) ( ) ( ) ( ) ( ) ( )1 1, 2 2, 3 3,, , , , ,P EB

E B B B Bs t t s t s t s t s t   = + + + R C R G G G  (4) 

where ( ),B s tR  is the position vector of the origin of the local coordinate system G, and 

 1 2 3

T

G   =ξ  is the position vector of the point P in the local frame G. With the assumption 

that the cross-section is rigid, the vector Gξ  remains constant. The subscripts here indicate that these 

vectors’ components are expressed in the corresponding coordinate systems.  

Similar to Ref.[10], the nodal position and orientation information within the rotating frame can 

be denoted as： 

 ( ) ( ) ( ) ( ) ( )1, 2, 3,, , , , ,
T

T T T T

B B B Bs t s t s t s t s t =  q R G G G  (5) 

Accordingly，the position vector ( ),P

E s tR  can be expressed as： 
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 ( ) ( ) ( ), ,P EB

E s t t s t=R C Γq  (6) 

in which  1 2 3  =Γ Δ Δ Δ Δ  and Δ  is a 3 by 3 unit matrix. The velocity and acceleration of 

the point P can be calculated by taking time derivatives of the position vector ( ),P

E s tR : 

 
( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

, , ,

, , , 2 , ,

P

B B

P

B B B B B

s t t s t s t

s t s t s t s t s t

= +

= + + +

V ω Γq Γq

a ω Γq ω ω Γq ω Γq Γq
 (7) 

in which, the angular velocity Bω  of the body frame satisfies ( ) BE EB

B t =ω C C . 

The virtual work of the inertial force per unit length is  

 ( ) ( )
( )

P T EB P

a E B

A s

W dA  = −  R C a  (8) 

in which, ( )A s is the cross-sectional aera and   is the mass density.  

  The virtual work of the elastic force per unit length is  

 
T

T T T T T T

G G csW       = − − = −   γ F κ M γ κ S γ κ  (9) 

in which,  11 12 13= 2 2
T

  γ  represents the force strain composed of tensile strain and shear 

strain, which physically describes the difference between the tangent vectors of the beam reference 

line before and after deformation pulled back to the material coordinate system (local coordinate 

system) and is used to describe the deformation of the beam section.  1 2 3

T
  =κ  represents 

the moment strain composed of torsional and bending curvature, which physically describes the 

overall deformation of the beam reference line. csS is the cross-sectional stiffness matrix.  

  The virtual work of the external force per unit length is  

 ( )
( )

( )P T T T T

e E E B B B B B B B B

A s

W dA    = = + + + R X φ R f m R f Θ m  (10) 

in which, EX is the body force. Bφ and BΘ are the infinitesimal rotation vectors and 

BE EB

B =φ C C ,
BG GB

B =Θ C C . Bf and Bm are the external forces and moments, respectively.  

  Substituting Eqs.(8)-(10) into Eq. (3) and yields, 
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( )

( )

( )

( )

0

0

2

2 0

L

a e

T

cs cs B cs B B

L
T T T T

B cs cs B cs B B

T T T T T

G G B B B B B B B B

W W W ds

ds

  





    

+ +

 − + +
 
 = − + + =
 
  − − + + + +
 





q M q M Π q M Π qω

φ q M q q M Π q q M Π qω

γ F κ M φ R f m R f Θ m

 (11) 

in which, ( )
( )

T

cs

A s

s dA= M Γ Γ  represents the cross-sectional mass property. q and BΠ are 

defined by 

 
1,

2,

3,

T

BB

T

BB

BT

BB

T

BB

   
   
   = =
   
   
    

ωR

ωG
q Π

ωG

ωG

，  (12) 

Eq.(11) can be decomposed into two parts: the external force balance equation and the internal 

force balance equation.  

 ( )
0

2 0
L

T T T T

B B B B cs cs B cs B B ds  + − + + =
 φ R f m q M q q M Π q q M Π qω  (13) 

 ( )( )
0

2 0
L

T T T T T

cs cs B cs B B G G B B B B ds    − + + − − + + = q M q M Π q M Π qω γ F κ M R f Θ m (14) 

  In this work, we assume the angular velocity is given, which means that Eq.(13) is automatically 

satisfied. Eq. (14) is then solved by finite-element analysis. 

  The beam can be discretized into N elements with constant strains, which yields the strain vector 

of the i-th element  

 
11, 12, 13, 1, 2, 3,2 2

T TT T

i i i i i i i i i        = =   ε γ κ  (15) 

and we have 
1 2

T
T T T T

i N
 =  ε ε ε ε ε . According to Ref [10], q , BR and BΘ can be 

related to  ε  by 

 

, ,q B R B

q

q q

  



 

     = = =

=

= +

q J ε R J ε Θ J ε

q J ε

q J ε J ε

 (16) 

in which qJ , RJ and J are the Jacobian matrices.  

  By piecewise integration of Eq. (14), one can finally obtain the discretized dynamic equilibrium 

equation 

 ( ) 02T T T T T

B B B B B+ + + + = + +qε qε qε qε qε qε Rε ΘεJ MJ ε J M J Ξ J ε J MΞ Ξ q Kε Kε J f J m  (17) 



IFASD-2024-027 

 6 

in which, 

1 1

2 2
, = ,

csB

csB

B

N csNB

s

s

s

    
    


    = =
    
    

    

e1

e2

eN

M SΠ

M SΠ
M Ξ K

M SΠ

 (18) 

2.3 Unsteady aerodynamics based on finite-state inflow theory  

  Aerodynamic loads are calculated by the two-dimensional finite-state inflow theory and the 

Prandtl blade tip loss model is used for spanwise correction. The theory provides aerodynamic 

forces on a thin airfoil undergoing large motions in an incompressible flow. The lift L and moment 

1/4M  of a thin 2-D airfoil are expressed by 

 

( )2

0

3

1 4

1
2

2

1 1

2 8 2

L b h U ba Ub h U b a

a
M b h U b

      

  

 



   
= + − + + + − −   

   


   = − + + −     

&& && && &

&& & &&

 (19) 

in which b is the semi-chord, ba is the distance of the mid-chord in front of the reference axis, 

is the airflow density and U is airflow speed. With regard to airfoil motions, h represents the 

plunging motion and   represents the pitching motion. The inflow parameter 0  accounts for 

induced flow due to free velocity. Consider N induced-flow states: 

 0

1

1

2

N

n n

n

b 
=

   (20) 

where nb  are calculated by the least-squares method. The governed equation of inflow states is  

 
1

2

U
h U b a

b
 

  
+ = + + −  

  
Aλ λ c &&& & && (21) 

The matrices A and c are given described in Ref. [12] and  1 2=
T

N  Lλ . 

According to the kinematic relations described in Fig. 3, the speed of plunging motion and 

pitching motion, the airflow speed can be expressed in terms of the structural motion and free 

inflow velocity, 

 

( )

( )

( )

2,

3,

1,

=

T

B

T

B

T

B B

h

U



= −

= − −

Rε

φε

Rε

i J ε

i J ε

i U J ε

& &

& &

&

 (22) 
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Fig. 3 Kinematics of the two-dimensional airfoil 

The effect of the tip loss is modelled using Prandtl’s theory that is used widely for aeroelastic 

simulations of turbines. The main result is summarized in the Prandtl’s tip loss factor F by the 

equation 

 ( )
2

arccos wfF e


−
=  (23) 

where 

 
2 sin

w

B R r
f

r 

 −
=  

 
 (24) 

Here B is the number of blades, R is the rotor radius, r is the local radius of the blade element, 

while  is the inflow angle.  

2.4 Nonlinear aeroelastic formulation 

The governed equation of inflow states can be expressed in terms of strain vector: 

 1 2 3= + +λ Q ε Q ε Q λ& && &   (25) 

in which， 

 

1

1 3, 1,

1 1

2 1, 3

1

2

,

T T

B B

T

B

b a

U
U

b

−

− −

  
= − + −  

  

= = −

Rε φε

φε

Q A ci J i J

Q A c i J Q A

  (26) 

Combining Eqs.(17) and (25), we have the formulation of nonlinear aeroelastic system： 
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( ) 0

1 2 3

2T T T T T

B B B B B
 + + + + = + +


= + +

qε qε qε qε qε qε Rε ΘεJ MJ ε J M J Ξ J ε J MΞ Ξ q Kε Kε J f J m

λ Q ε Q ε Q λ

&&& &

& && &
 (27) 

   The above equations will be solved using the implicit Newmark integration scheme incorporating 

Newton-Raphson iterations for solving nonlinear equations[13]. The basic idea is to firstly provide 

the predictions of the state variables and their time derivatives at each time step and employ a 

Newton-Raphson sub-iteration technique to correct the predictions. The overall flowchart of time 

response simulation for wind turbine blade is shown in Fig. 4. 

 

Fig. 4 Time response simulation flowchart 

3 RESULTS AND ANALYSIS 

3.1 Model description 

A real wind turbine blade with length of 87 meters is modelled and analyzed. The CAD model is 

shown in Fig. 5. Cross-sectional properties were extracted firstly to form the beam model. Table 

1 lists the modal results, followed by the first four mode shapes depicted in Fig. 6. 
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Fig. 5 CAD model of the wind turbine blade 

Table 1 Modal results 

No. Modal shape Mode freq.（Hz） 

1 1
st

 Vertical bend 0.392 

2 1
st

 Inplane bend 0.615 

3 2
nd

 Vertical bend 1.028 

4 2
nd

 Inplane bend 1.552 

11 1
st

 Torsion 5.562 

 

(a) 1st vertical bend                                             (b) 1st inplane bend 

 

(c)2nd vertical bend                                       (d) 2nd inplane bend 

Fig. 6 The first four mode shapes 
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3.2 Measured data 

Fig. 7 and 8(a) respectively show the time series data of blade rotation speed and root bending 

moments monitored by a wind energy company. The fan starts to work after about 40,000 s. Figure 

8(b) shows the time period from 50,000 s to 60,000 s, in which the blue line represents the 

edgewise moment about the x-axis and the red line represents the flapping moment about the y-

axis. The blade rotation speed within this time period is approximately stable near 10 RPM. Fig. 9 

shows the fast Fourier transform (FFT) results of time-domain response of moment from 50000s 

to 60000s. The steady-state moment component corresponding to a frequency of zero is mainly 

the flapping moment, with an amplitude of 1.46e7 N · m. While the moment component 

corresponding to a frequency of 0.17 Hz is mainly the edgewise moment, with an amplitude of 

1.89e6 N·m. The wind speed during the operation of the blade in this time period is approximately 

10-15 m/s, as shown in Fig. 10. It can be found that the blade suffered an unexpected edgewise 

oscillation during normal operation. This may have an impact on the structural safety and fatigue 

characteristics of the blade. Next, we will try to reproduce this process through numerical 

simulation and investigate the influence of various parameters on the blade oscillations. 

 

Fig. 7 Blade rotation speed  

 

（a）Time series of moment               (b)Time series of moment from 50000s to 60000s 

Fig. 8 Time series of bending moments  
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Fig. 9 FFT results of time-domain response of moment from 50000s to 60000s 

 

Fig. 10 Wind speed 

3.3 Numerical simulation 

Based on the measured data, the simulation parameters are set as listed in Table 2. The blade 

rotation speed is always 10 rpm. Two typical wind speeds have been selected from 10 to 15 m/s: 

12 m/s and 14 m/s. The wind angle refers to the angle between the wind speed and the horizontal 

ground. The inclination angle and the cone angle have been defined in Section 2.1. The pitch angle 

is the angle between the chord line of the blade cross section and the rotating plane. The yaw angle 

is the angle between the wind speed and the rotating plane. 
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Table 2 Simulation parameters  

No. 
Rotation 

Speed 
Wind 
Speed 

Wind 
Angle 

Cone 
Angle 

Inclination 
Angle 

Pitch 
Angle 

Yaw 
Angle 

CASE1 

10rpm 

14 m/s 

8
。

 6
。

 6
。

 

9
。

 0
。

 

CASE2 14 m/s 9
。

 -8
。

 

CASE3 12 m/s 4
。

 0
。

 

CASE4 12 m/s 6
。

 0
。

 

CASE5 14 m/s 9
。

 8
。

 

 

Taking CASE1 as an example, Fig. 11(a)-Fig. 13(a) respectively plot the time-domain response 

curves of the root bending moment, the aerodynamic resultant force, and the tip displacement. All 

curves have a periodic response consistent with the rotational frequency. The flapping moment 

and the edgewise moment are much larger than the torsional moment, which is consistent with the 

distribution of the aerodynamic force. The aerodynamic force in the X direction is the largest, 

generating the flapping moment. The x-direction deformation of the tip is approximately at the 

order of 10 meters, which is about 11.5% of the length. By FFT analysis, the frequency-domain 

results are obtained and as shown in Fig. 11(b)-Fig. 13(b). The amplitudes corresponding to the 

frequency of 0Hz are listed in Table 3, and the amplitudes corresponding to the frequency of 0.17 

Hz are listed in Table 4. It can be observed that: 

1) The steady-state moment component corresponding to a frequency of zero is mainly the 

flapping moment. The amplitudes are pretty close to the measured data 1.46e7 N·m. While the 

moment components corresponding to a frequency of 0.17 Hz are much higher than the measured 

edgewise moments. The error may be due to the inconsistency between the input parameters and 

the actual situation. All in all, the numerical results can to some extent capture the atypical 

vibration characteristics of flexible blades. 

2) When there is a yaw angle, the average flapwise displacement response decreases regardless 

of whether it is positive or negative.  

3)As the yaw angle changes from negative to positive, the flapwise displacement response 

amplitude increases at 0.17Hz, while the edgewise displacement response amplitude decreases. 

4)As the pitch angle increases, the displacement response levels in all directions decrease. 

5)The pitch angle has a more significant effect than the wind speed on the load. 
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（a）                                                                                    (b) 

Fig. 11 （a）Time-domain response of root moment;(b)FFT results of root moment 

 

 

   

（a）                                                                                    (b) 

Fig. 12 （a）Time-domain response of aerodynamic force; (b)FFT results of aerodynamic force 
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（a）                                                                                    (b) 

Fig. 13 （a）Time-domain response of tip displacements; (b)FFT results of tip displacements 

 

Table 3 Magnitudes in FFT results at frequency equals to zero 

Case No. CASE1 CASE 2 CASE 3 CASE 4 CASE 5 

X-force,N 2.31E+05 2.29E+05 2.88E+05 2.51E+05 2.27E+05 

Y-force,N 7.96E+04 7.82E+04 7.79E+04 7.01E+04 7.77E+04 

Z-force,N 2.60E+04 2.54E+04 4.87E+04 3.53E+04 2.55E+04 

Torsion,N·m 4.33E+03 4.64E+03 3.68E+04 1.46E+04 1.88E+03 

Flapping moment, N·m 1.04E+07 1.03E+07 1.33E+07 1.15E+07 1.02E+07 

Edgewise moment, N·m 2.96E+06 2.91E+06 3.14E+06 2.76E+06 2.90E+06 

X-Dis,m 9.87 9.80 13.41 11.57 9.77 

Y-Dis,m 0.83 0.82 0.99 0.84 0.82 

Z-Dis,m 0.54 0.52 1.23 0.84 0.53 
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Table 4 Magnitudes in FFT results at frequency equals to 0.17Hz 

Case No. CASE1 CASE 2 CASE 3 CASE 4 CASE 5 

X-force,N 3.08E+04 2.76E+04 2.68E+04 2.97E+04 3.70E+04 

Y-force,N 1.41E+04 1.27E+04 1.06E+04 1.09E+04 1.65E+04 

Z-force,N 9.19E+03 7.70E+03 1.35E+04 1.15E+04 1.08E+04 

Torsion,N·m 9.99E+04 1.03E+05 1.34E+05 1.18E+05 9.56E+04 

Flapping moment, N·m 1.54E+06 1.20E+06 1.53E+06 1.61E+06 1.94E+06 

Edgewise moment, N·m 5.52E+06 5.69E+06 5.61E+06 5.59E+06 5.34E+06 

X-Dis,m 1.90 1.66 2.02 2.02 2.18 

Y-Dis,m 1.37 1.41 1.48 1.44 1.33 

Z-Dis,m 0.29 0.25 0.48 0.39 0.34 

 

4 CONCLUSIONS 

In this work, a nonlinear aeroelastic formulation for large wind turbine blade has been established. 

The strain-based nonlinear beam model considering rotational effects is derived for structural 

modelling. The unsteady aerodynamic loads are calculated by the finite-state inflow theory. A 

typical blade model was numerically investigated and the results were compared to the measured 

data. The results indicate that the proposed model can simulate the nonlinear aeroelastic response 

of blades. It can to some extent capture the atypical vibration characteristics of flexible blades. 

However, there is still a significant error between the current results and the measured data. On  

one hand, there may be a lack of consideration for stall characteristics in aerodynamic modeling, 

and on the other hand, it is necessary to integrate more measurement data for evaluation, such as 

vibration acceleration signals. 
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