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Abstract: Hypersonic vehicle has become a research hotspot these years. Hypersonic vehicles' 
characteristics and working conditions led to special and significant aeroelastic flutter problems. 
Meanwhile, traditional flutter analysis methods are no longer suitable for super/hypersonic 
conditions. The local piston theory (LPT) is introduced and modified for the three-dimensional (3D) 
objects to express the unsteady aerodynamic force explicitly, and a tightly coupled state-space 
aeroelastic equation is derived. Then a hypersonic flutter analysis method is developed. A 
supersonic fin model with wind tunnel test results is used to verify the accuracy of this method. By 
comparing with wind tunnel test data, the effectiveness of the method is proved. This method can 
analyze 3D complex objects with both high accuracy and high efficiency, while suitable for high 
angle of attack (AOA) and wide Mach number range conditions.  

1 INTRODUCTION 

Hypersonic vehicle has great strategic significance and has become a research hotspot these years. 
Aeroelasticity represented by the flutter problem, due to its significant effect on flight safety, has 
become an essential aspect of aircraft design. As a fluid-structure interaction problem, 
aeroelasticity involves the interactions among aerodynamic, structural elastic, and inertial forces 
[1], for which the coupling mechanism is complex and difficult to analyze. Hypersonic vehicles 
often use a propulsion-airframe integrated design and often have a slender body layout with a thin-
walled structure and lightweight materials [2], which leads to low structural stiffness and a 
propulsion-aeroelastic coupling problem. So, the effect of aeroelasticity on hypersonic vehicles is 
even more significant.  

Traditional flutter analysis has formed a set of mature engineering methods, which can analyze the 
aeroelastic stability at zero and low angles of attack (AOAs) with high efficiency. However, 
super/hypersonic flutter analysis requires calculating the super/hypersonic unsteady aerodynamic 
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forces. Meanwhile, considering the operating condition of super/hypersonic vehicles, vehicle parts 
like fins and control surfaces may operate at high AOAs, which leads to the need for flutter analysis 
at high AOAs. For the reasons given above, traditional methods are no longer suitable, it is 
necessary to develop a new set of flutter analysis methods suitable for hypersonic conditions. 

The basis of hypersonic flutter analysis is the calculation of supersonic unsteady aerodynamic 
forces. At present, commonly used calculation methods are mainly divided into computational fluid 
dynamics (CFD) methods and engineering methods. Computational fluid dynamics (CFD) is a 
numerical method directly solving either Euler equations or Navier-Stokes (N-S) equations, which 
can relatively truly reflect the physical nature of the flow [3], and allows for considering nonlinear 
effects such as viscous effect and shock wave interference. However, the CFD method has a 
significant computational complexity and low efficiency, making it almost impossible to use in 
practical aeroelastic engineering analysis [4]. Based on approximate unsteady aerodynamic models, 
engineering methods have high computational efficiency, but each method has a limited scope of 
application. At present, the widely used models including Newtonian impact theory [5], piston 
theory [6], shock–expansion theory [7], and lifting surface/panel approaches [8], are based on linear 
potential flow theory and the quasi-steady flow assumption, which generally suitable for low angles 
of attack (AOAs) conditions [9]. 

Piston theory has been widely used because of its simple form, high computational efficiency, and 
high accuracy in the applicable range [10]. Lighthill [6] first used piston theory to calculate the 
supersonic unsteady aerodynamic force. Ashley and Zartarian [11] discussed the application range 
of piston theory and proposed that piston theory can be used as a tool for aeroelasticity analysis. 
Doman, Oppenheimer, et al. [12,13] used first-order piston theory to establish an integrated 
dynamic model of air-breathing hypersonic vehicles. 

To solve the problem of strict application preconditions of CPT, local piston theory (LPT) was 
developed. LPT ensures high computational precision，high efficiency, and a wider range of 
applications. In the 1950s, Morgan [14] first proposed the concept of LPT. In the 1990s, Chen et 
al. [15] used shock–expansion theory to calculate the local steady flow data and verified that LPT 
could still give a result with good accuracy under the condition of a thin airfoil with sharp leading 
edge and high AOA which the CPT already failed. Zhang et al. [16] used Euler-CFD-based LPT 
to analyze aeroelastic problems and extended the application range of LPT to the Mach number 
range 1.2-10. Meijer and Dala [10] presented a review of piston theory, including its theoretical 
foundation and subsequent developments.  

At present, the related researches on the hypersonic flutter problem mainly focus on the analysis 
of two-dimensional (2D) airfoils and panels under low AOA conditions. Engineering methods and 
CFD methods are both widely used. Most researches using CFD methods are based on the full-
order CFD-computational solid dynamics (CSD) coupling model. For researches using engineering 
methods, piston theory is mainly used. Chawla [17] used piston theory to study the flutter 
characteristics of an airfoil. Yates and Bennett [18] used shock–expansion–based LPT to carry out 
flutter analysis on the two-degree-of-freedom diamond airfoil. They also compared the results with 
the results carried out by Newtonian impact theory and strip theory. Ericsson et al. [19] analyzed 
the aerodynamic characteristics of an airfoil using the first-order LPT and compared results with 
wind tunnel test data. Yang [20] et al. used shock–expansion–based LPT to derive the aerodynamic 



IFASD-2024-92 

 3 

expression of a wing under high AOA conditions and analyzed the flutter characteristics of the 
wing.  

It can be seen that the main limitation of hypersonic flutter analysis at present is the lack of efficient 
and high-precision analysis methods for special conditions such as three-dimensional (3D) objects 
and large AOAs. Based on the characteristic that the accuracy of LPT can be improved by 
combining with CFD or other high-precision steady aerodynamic force calculation methods, while 
still maintaining high efficiency, as well as being able to express the unsteady aerodynamic force 
in explicit form, this study carries out a 3D discretization form of LPT and establishes a state-space 
aerodynamic-structure tightly coupled model. Then a new hypersonic flutter analysis method based 
on three-dimensional local piston theory (3D-LPT) is developed, which is suitable for 3D complex 
objects under conditions with high AOA or wide Mach number range.  

This paper is organized as follows: The establishment of flutter analysis framework, including CPT, 
LPT, 3D discretization form of LPT, aerodynamic-structure interface interpolation theory, and 
establishment of state-space flutter equation, is illustrated in Section 2. In Section 3, a supersonic 
fin model with wind tunnel test results is used to verify the accuracy of the method developed in 
this paper. The paper concludes in Section 4. 

2 THEORY 

Based on 3D discretized LPT and surface spline interpolation, the aerodynamic-structure tightly 
coupled state-space equation of the aeroelastic dynamic system is derived. Then based on 
Lyapunov's first method, the eigenvalues of the system characteristic matrix are used for system 
flutter stability analysis. 

2.1 Classical and Local Piston Theories 

Classical piston theory holds that the disturbance of one point on the aircraft body has little effect 
on other locations in the supersonic flow, so local pressure generated by the body's motion is related 
to the local normal component of fluid velocity in the same way that these quantities are related at 
the face of a piston moving in a one-dimensional channel [11], as shown in Figure 1. Then the wall 
pressure can be determined according to the isentropic assumption by the parameter of incoming 
freestream and the downwash velocity w . 
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Equation (1) is the full-order formula of CPT, where p  is the pressure on the aerodynamic surface, 
p∞  is the pressure of the freestream, α∞  is the sound speed of the freestream, γ  is the ratio of 
specific heat, and w  is the down-wash speed. 
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Figure 1: Illustration of CPT. 

By excluding the higher order terms in the binomial expansion of the full order formula, the CPT 
formula with different precision can be obtained. First, second, and third-order formulas are 
commonly used. The first-order CPT formula is as follows: 

 p p a wρ∞ ∞ ∞= +  (2) 

where ρ∞  denotes the density of the freestream. 

The application preconditions of CPT are strict. Lighthill's original theory [6] states that 2 1M∞   
needs to be satisfied, while the wall's motion speed needs to be less than the sound speed of the 
freestream. Therefore, CPT is only suitable for 2D thin airfoils with low AOA. CPT has a high 
calculation accuracy in the range of Mach number 2-5. 

To solve the problem of strict application preconditions of CPT, LPT was developed. In LPT, 
freestream quantities (with subscript ∞) are replaced by the local flow quantities along the airfoil 
(with subscript L), and the down-wash speed w  normal to the airfoil chord is replaced by the wash 
speed nw  normal to the wall created by wall's motion. The first-order LPT formula is as follows: 

 L L L np p a wρ= +  (3) 

 
Figure 2: Illustration of LPT. 

The essence of LPT is the dynamic linearization of the flow about a mean-steady-state [10].  
Therefore, LPT can be combined with the high-precision CFD method, the steady flow field is 
calculated by CFD, while the unsteady part of aerodynamic force is calculated by piston theory, 
which realizes a better accuracy and a wider application range compared to CPT and other 
engineering methods, while the calculation efficiency is much higher than full CFD method. The 
application precondition of LPT is  1mM τ∞  , where mτ  denotes the dimensionless wall 
deflection caused by the wall's motion, which is generally easy to satisfy. So LPT breaks through 
the limitation of CPT that CPT is only suitable for thin wings with a small AOA, and extends the 
applicable range of piston theory. 
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2.2 3D Discretized Local Piston Theory 

Although LPT has a wider applicable range than CPT, it is still only suitable for 2D objects, 3D 
effects in the flow field of complex objects cannot be considered. To consider the 3D effect, a 3D 
discretization form of LPT (3D-LPT) is carried out.  

A local coordinate system is established to derive the normal wash speed of the wall in Equation 
(3) of an arbitrary point on the 3D aerodynamic surface. As shown in Figure 3, the origin of the 
coordinate o is the arbitrary point on the wall surface, the Lz  axis is along the direction of the outer 
normal vector of the surface on that point, the Lx  axis is along the direction of the local flow 
velocity LV  and the Ly  axis is determined using the right-hand rule.  

 
Figure 3: Local coordinate system on the wall surface. 

In the body axis system Oxyz, the normal displacement of the arbitrary point caused by wall motion 
is defined as L ( , , )u x y t , then the normal wash speed of the wall consists of the time-dependent 
local velocity caused by wall motion, as well as the convective rate of displacement due to the 
surface gradient in the local flow direction, which is formulated as follows: 

 L L L
L

nV u V u
t x
∂ ∂

= +
∂ ∂

 (4) 

where t is the time variable.  

The displacement of the arbitrary point is defined as ( , , , )P x y z tw  in the body axis system, then the 
normal displacement can be expressed as: 

 T
L P Pu = =n w n w  (5) 

where n  is the outer unit normal vector of the surface on the arbitrary point. 

By substituting Equation (5) into Equation (4), normal wash speed can be expressed as: 

 T
L L L

L L L
n

x y zV V V V
t x x x y x z

 ∂ ∂ ∂ ∂ ∂ ∂ ∂
= + + + ∂ ∂ ∂ ∂ ∂ ∂ ∂ 

w w w wn  (6) 
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It's worth noting that, the local flow component LV  and the Lx  axis are in the same direction, and 

thus 
L

LV
x
x∂

⋅
∂

 is the projection of LV  in the x directions of body axis system [21]. In the same way, 

L
L

yV
x
∂

⋅
∂

 and L
L

zV
x
∂

⋅
∂

 are the projections of LV  in the y and z directions, respectively. 

Substituting the above transformation into equation (6), The wall element pressure formula of LPT 
applicable to arbitrary 3D aerodynamic surfaces is developed as follows: 

 T
L L L L L Lx y zp p a V V V

t x y z
ρ

 ∂ ∂ ∂ ∂
= + + + + ∂ ∂ ∂ ∂ 

w w w wn  (7) 

where the local flow quantities (with subscript L) are calculated by the Euler-based steady CFD 
analysis. LxV , LyV , and LzV  are the projections of LV  in the x, y, and z directions, respectively. 

By modeling the body-fitted mesh for LPT based on the 3D geometry of the object, the discrete 
unsteady aerodynamic forces of the object can be expressed explicitly by using CFD and CSD 
analysis results. 

 
Figure 4: Body-fitted piston mesh for LPT of a fin model. 

Mesh grid elements are taken as the calculation elements of 3D-LPT, and the physical quantities 
of the whole aerodynamic surface are assembled into matrix form based on the grid. The discretized 
pressure formula of 3D-LPT is derived as follows: 

 T
1 2 3 4

p p p p
L L L L Lt x y z

∂ ∂ ∂ ∂ 
= + ⊗ + + + ∂ ∂ ∂ ∂ 

p p A A A A
w w w w

n  (8) 

where ⊗  refers to Hadamard product, p  is the grid pressure vector, Lp  is the grid local steady 
pressure vector, and is the grid normal vector matrix. 1LA , 2LA , 3LA  and 4LA  are local flow field 
parameter matrices from steady CFD analysis. 

Once the pressure vector p  is determined, the 3D-LPT aerodynamic force expression is obtained 
by integrating with the area of elements: 

 P = ⊗F Spn  (9) 
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where PF  is the aerodynamic force vector, S  is the grid area matrix.  

2.3 High-dimensional Surface Spline Interpolation 

Aeroelasticity is a typical fluid-structure interaction problem. For the 3D-LPT method in this study, 
it is necessary to transfer the flow field information obtained by CFD calculation and the modal 
information obtained by CSD calculation to the piston mesh. As shown in Figure 5, in most 
situations, the mesh of CFD and the mesh of CSD are mismatched on interfaces. High-dimensional 
Surface Spline Interpolation is exploited to exchange mechanical information such as deformations 
and loads between mismatched meshes. 

 
Figure 5: Mismatched interface of the fluid domain and the solid domain. 

The interpolation method widely used in aeroelastic analysis is the infinite plate spline (IPS) based 
on the analytical solution of elastic thin plates [22]. However, the traditional 2D interpolation 
method is not suitable for 3D objects with complex geometry.  A high-dimensional surface spline 
interpolation method is introduced in this study [23]. 

Assume there are N-dimensional space vectors iX  with the number of n and the corresponding M-
dimensional function values iW , as follows: 

 
1 2

1 2
1, 2, ,

TN
i i

TM
i i

x x x
i n

w w w

  =   =
  =  

X

W







 (10) 

According to the IPS method, the following interpolation function can be established for each 
component pw  in iW : 

 2 2
0

1 1
( ) ln( )

N n
p p p d p

d N i i i
d i

w c c x c r r ε+
= =

= + + +∑ ∑X  (11) 

where 2 2

1
( )

N
d d

i i
d

r x x
=

= −∑ , 0 1, , ,p p p
N nc c c +  are the undetermined interpolation coefficients, ε  is the 

given interpolation parameter, d
ix is the D-th dimension coordinate of the i-th space vector. 
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To make the interpolation function satisfy the equation (10), the undetermined coefficients in 
equation (11) are determined by the following equations: 

 

1

1

2 2
0

1 1,

0

0 ( 1, 2, , )
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d j N i ji ji j N j j
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c
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
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 (12) 

where 2 2

1
( )

N
d d

ji j i
d

r x x
=

= −∑ , jh  is the weighting coefficient of the j-th space vector. 

The coefficient matrix can be obtained by solving the equation (12), then the interpolation function 
(11) can be uniquely determined so that the function value of the arbitrary N-dimensional vector 
X  can be solved by the interpolation function. 

The first partial derivative of the interpolation function is as follows: 

 
2

2
2

1
2 ln( ) ( ) ( 1, 2, , )

p n
p p d di
d N i i id

i i

rw c c r x x d N
x r

ε
ε+

=

 ∂
= + + + − = ∂ + 

∑   (13) 

Based on the high-dimensional surface spline interpolation method, interpolation matrices G can 
be calculated from the parameters of CSD mesh, piston mesh, and CFD wall mesh. Then the 
displacement interpolation relationship between CSD wall mesh nodes and piston mesh element 
centroids and the flow field parameter interpolation relationship between CFD wall mesh nodes 
and piston mesh element centroids are established: 

 

P S S

p A A

p A A

p A A

=
 =
 =
 =

w G w
ρ G ρ
a G a
V G V

 (14) 

where w , ρ , a  and V  are the displacement, local density, local sound speed, and local flow 
velocity matrix corresponding to each mesh. Subscript P represents the piston mesh element 
centroid, and subscripts S and A represent CSD mesh and CFD mesh nodes, respectively. SG  is 
the interpolation matrix between CSD wall mesh nodes and piston mesh element centroids, while 

AG  is the interpolation matrix between CFD wall mesh nodes and piston mesh element centroids.  

For load interpolation between CSD wall mesh and piston mesh, it is necessary to satisfy the 
principle of virtual work, that is, there is equality between the virtual works of forces acting on the 
CSD and piston meshes.  
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According to the arbitrariness of virtual displacement, the load interpolation relation between the 
piston mesh and the CSD wall mesh can be deduced as follows: 

 T
S s P=F G F  (15) 

The surface gradient of piston mesh p∂

∂

w
Q

 can also be obtained: 

 S
p s∂ ∂
=

∂ ∂

w
wG

Q Q
 (16) 

where [ ]Tx y z=Q  is the coordinate dimension matrix in the body axis system. 

2.4 State-space aeroelastic vibration equation 

Based on the structural dynamic model and the 3D-LPT aerodynamic model, the aeroelastic 
vibration equation of the system can be established. But first, it is necessary to derive the 
displacement of the wall surface Sw  according to the structural dynamic model. 

Employing the mode superposition method, the structural vibration displacement is discretized and 
described as a finite modal series: 

 s =Φqw  (17) 

where Φ  and q  are the free-vibration mode shapes and the generalized coordinates, respectively. 

Then based on Lagrange’s equations, the aeroelastic vibration equation can be established as 
follows: 

 ( ),A+ + =Mq Cq Kq F q q    (18) 

where M , C  and K  are the generalized mass matrix, generalized damp matrix, and generalized 
stiffness matrix, respectively, and ( ),AF q q  denotes the generalized aerodynamic forces: 

 ( ) 0 1,A L= + +F q q F A q A q   (19) 

where LF  is the local generalized aerodynamic force generated by the local steady pressure Lp , 

0A  and 1A  are the generalized aerodynamic influence coefficient (AIC) matrices derived by 3D-
LPT. 

Then, combined with equation (18) and equation (19), the aerodynamic-structure tightly coupled 
vibration equation of the aeroelastic dynamic system is derived in state-space form as follows: 

 = +X AX B  (20) 
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where  
=  
 

q
X

q


, ( ) ( )1 1
0 1

− − − −
=  
 

M A C M A K
A

I 0
, 

1
L

− 
=  
 

M F
B

0
, I  and 0  are the identity 

matrix and the zero matrix, respectively. 

2.5 Flutter analysis based on linear system stability theory 

The aeroelastic stability of the system is discussed based on the aeroelastic equation (20). In 
engineering applications, the stability analysis of dynamic systems is usually to analyze the 
exponential stability of the dynamic solution after the equilibrium solution of the system is 
disturbed. Based on Lyapunov's first method, the eigenvalue of the system characteristic matrix is 
used to judge the stability of the system，which is a widely used method to analyze the dynamic 
stability of linear systems. 

For the dynamic system described by equation (20), the sufficient and necessary condition for its 
equilibrium solution to be exponentially stable is that all eigenvalues of the characteristic matrix 
A  have negative real parts, otherwise, the system is unstable and flutter may occur. 

The damping coefficient (the real part of the eigenvalue divided by the imaginary part of the 
eigenvalue) and the oscillation frequency (the imaginary part of the eigenvalue divided by 2π) can 
be calculated from the eigenvalue of the characteristic matrix A . Then the curves of damping 
coefficient and vibration frequency with velocity can be drawn, that is, the V-g and V-f curves, and 
the flutter velocity is determined by finding the crossing point of the V-g curve.  

In summary, the flow of the flutter analysis method proposed in this study is shown in Figure 6. 

Start

Structure 
finite element model

Flight
working condition

Euler-based CFD

Mean steady flow field

3D-LPT

CSD analysis

Modal information

AICs

State-space aeroelastic 
vibration equation

Characteristic matrix A 

Re(λ)＜0? Increase flight speedYes

Finish

Flutter speed

No

Eigenvalue λ

 
Figure 6: Scheme of the state-space flutter analysis using 3D-LPT. 
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Because only one steady CFD calculation is needed for the same flow velocity condition, CFD 
iteration is avoided and the calculation amount is greatly reduced. 

3 EXPERIMENTAL VERIFICATION 

A supersonic fin model with wind tunnel test results is used to verify the accuracy of the flutter 
analysis method proposed in this study. 

3.1 Test model 

As shown in Figure 7, the test fin model consists of a trapezoidal fin body and a shaft. The 
trapezoidal body has a small thickness in the top and considerable thickness in the root, and the fin 
shaft is a rectangular section beam. The main structure of the fin model is made of aluminum alloy, 
while the material of the fin shaft is steel. The root of the shaft is fixed onto a rigid support. 

 
Figure 7: Test fin: (a) Configuration; (b) Geometric dimension. 

3.2 Structural dynamic analysis 

The commercial software MSC.NASTRAN was used for CSD modal analysis of the fin’s finite 
element model. The modal shape of each order and the corresponding generalized mass and 
stiffness data were obtained through CSD analysis. To ensure the accuracy of the analysis results, 
the CSD analysis results of the first order (first torsion) and the third order (first bending) are 
compared with the hammering method modal test results of the real model as shown in Figure 8, 
and the finite element model is modified according to the test results. The comparisons between 
the modified CSD results and the test results of first-order and third-order modes are shown in 
Table 1, and the corresponding modal shapes are shown in Figure 9. The comparison results show 
that the modified finite element model is valid in simulating the dynamic characteristics of the real 
model and is capable of the following aeroelastic analysis. 

 
Figure 8: Real model vibration test. 
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Table 1: Comparisons between the modified CSD results and the test results. 

Order Frequency (Hz) Error Test CSD 
1(First torsion) 48.8 48.855 0.11% 

3(First bending） 67.8 67.767 -0.05% 

 
 (a) First-order mode                                                      (b) Third-order mode 

Figure 9: Modal shapes of first-order and third-order modes. 

3.3 Wind tunnel flutter test 

An intermittent transonic and supersonic wind tunnel with a section size of 0.6m×0.6m was used 
for the flutter test. Wind tunnel tests were conducted at four AOA conditions of 4°, 6°, 8°, 10°. 
Under each working condition, the Mach number of the incoming flow was fixed at 2.5, and the 
dynamic pressure of the incoming flow increased continuously from low to high until the flutter 
occurred. The wind tunnel test scene is shown in Figure 10. 

 
Figure 10: Wind tunnel test scene. 

The flutter dynamic pressures and flutter frequencies at different AOAs were obtained by wind 
tunnel tests, and the corresponding equivalent flutter velocities were converted from flutter 
dynamic pressures using the air density at sea level. The wind tunnel test results are listed in Table 
2. 

Table 2: Flutter results of the wind tunnel tests. 

AOA 
(deg) 

Flutter Frequency 
(Hz) 

Flutter Dynamic 
Pressure (kPa) 

Equivalent Flutter 
Speed (m/s) 

4 58.5 
58.9 
60 
60 

76.8 
71.7 
69.2 
67.2 

354.10 
342.14 
336.12 
331.23 

6 
8 
10 
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It can be seen from the test results that with the increase of AOA, the flutter speed decreases while 
the flutter frequency is basically unchanged. 

3.4 3D-LPT flutter analysis 

3.4.1 Euler-CFD calculation 
Commercial software ANSYS-Fluent was used for CFD calculation. The density-based solver with 
an implicit formulation was used and the air in the flow field was modeled as the ideal gas. The 
boundary conditions were similar to the wind tunnel test. The CFD mesh and flow field are shown 
in Figure 11. 

 
(a) CFD flow field                          (b) CFD mesh around the fin 
Figure 11: Computational domain and mesh of the CFD model. 

The CFD calculation conditions were consistent with the wind tunnel test. Under all calculation 
conditions, continuity, velocity, and energy residuals can be reduced to below 10-7, which proved 
that CFD calculation achieved a good convergence. 

As there are many calculation conditions, only one steady CFD result is shown here. The absolute 
pressure cloud diagram of the condition with 6° AOA and 70kPa incoming flow dynamic pressure 
is shown in Figure 12. 

 
Figure 12: Absolute pressure cloud diagram (6°, 70kPa). 
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3.4.2 Euler-CFD calculation 
Based on the steady Euler-CFD results of each working condition, the flutter analysis process 
described in Section 2.5 was adopted to calculate the eigenvalues, corresponding damping 
coefficients, and oscillation frequencies under a series of dynamic pressure values for the working 
conditions of 4°, 6°, 8°, and 10° AOA, respectively. Finally, the root locus, flutter dynamic pressure, 
and V-g and V-f curves under different AOA conditions were obtained. According to the results, 
the crossing mode is the third-order mode, and the coupled modes are the first-order and third-
order modes for every AOA condition. 

As there are many calculation conditions, only the results of the 6° AOA condition are shown here. 
As shown in Figure 13, with an increasing dynamic pressure, the eigenvalue of the third-order 
mode (first bending) gradually moves towards the positive real-axis direction in the root locus and 
crosses the zero real axis when the dynamic pressure increases to 72.28kpa, wherein the critical 
crossing point indicates the flutter boundary. When the eigenvalue crosses the zero real axis, it can 
be seen in the V-g curve that the damping coefficient of the third-order mode changed from 
negative to positive, while the corresponding flutter frequency in the V-f curve was 59.34Hz. 

 
(a) Root locus diagram                                   (b) V-G diagram                                   (c) V-f diagram 

Figure 13: Flutter diagrams of 6° AOA condition. 

The flutter results for 3D-LPT at all AOAs and the comparison with the test results are listed in 
Table 3. In comparison to the wind tunnel test results, the 3D-LPT method has a high analysis 
accuracy for flutter velocity and flutter frequency, with errors less than 4% and 1.5%, respectively. 

Table 3: Flutter results and comparison. 

AOA 
(deg) 

Flutter 
Frequency (Hz) Error 

Flutter Dynamic 
Pressure (kPa) Error 

Equivalent Flutter 
Speed(m/s) Error 

3D-LPT Test 3D-LPT Test 3D-LPT Test 
4 59.36 58.5 1.47% 72.63 76.8 -5.43% 344.35 354.10 -2.75% 
6 59.34 58.9 0.75% 72.28 71.7 0.81% 343.52 342.14 0.40% 
8 59.38 60 -1.03% 72.27 69.2 4.44% 343.50 336.12 2.19% 
10 59.44 60 -0.93% 72.19 67.2 7.43% 343.31 331.23 3.65% 

3.5 3D-LPT flutter analysis 

Comparisons of the flutter speeds and frequencies using different methods are shown in Figure 14. 
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(a) Flutter speed                                                     (b) Flutter frequency 
Figure 14: Flutter results comparisons. 

The flutter results of 3D-LPT are in good agreement with the wind tunnel test results under multiple 
AOA conditions ranging from 4° to 10°, which preliminarily proves the effectiveness of this 
method and its applicability for supersonic flutter analysis under high AOA conditions. 

With increasing AOA, the variations in flutter frequencies and the relative errors in the flutter 
frequencies between 3D-LPT results and test results are negligible. 

There is an obvious decreasing trend in the test flutter speed with increasing AOA. However, the 
reduction in 3D-LPT flutter speed is limited. Therefore, the flutter velocity error of 3D-LPT 
decreases first and then increases as AOA increases. Because the non-viscous model based on the 
Euler equation is used in steady CFD calculation, the viscous nonlinear effect caused by the 
increase of AOA cannot be considered, which can be one of the possible causes for this error since 
the precision of the LPT significantly depends on the accuracy of the steady flow results 

4 CONCLUSIONS 

In this research, a hypersonic flutter analysis method based on three-dimensional local piston 
theory(3D-LPT) is developed. A supersonic fin model with wind tunnel test results is used to verify 
the accuracy of this method. Our primary achievements and conclusions are as follows: 

1) Euler-based CFD is used to calculate the steady flow field of LPT. And the LPT is extended by 
3D discretization. Then a super/hypersonic unsteady aerodynamic calculation method based on 
3D-LPT is established. This method significantly improved the accuracy of piston theory and 
expanded its application range while still maintaining a high efficiency, and being able to 
express the unsteady aerodynamic force in explicit form. The 3D-LPT method is suitable for 
3D complex objects under conditions with high AOA or wide Mach number range.  

2) Based on the unsteady aerodynamic force expression in explicit form carried out by 3D-LPT 
and the high-dimensional surface spline interpolation method, a state-space aerodynamic-
structure tightly coupled model is established. A flutter analysis method based on eigenvalues 
of the system characteristic matrix is also established according to the linear system stability 
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theory. Since 3D-LPT is able to express the unsteady aerodynamic force in a small disturbance 
range explicitly just with the steady CFD calculation data, a tightly coupled state-space 
equation can be established, which can be directly solved. Compared with the full-order CFD-
CSD coupled analysis method, CFD iteration is avoided and the calculation amount is greatly 
reduced. 

3) By analyzing a supersonic fin model with the 3D-LPT method, and comparing the results with 
the wind tunnel data, the effectiveness of this method is proved. Under the condition of Mach 
number 2.5, the flutter equivalent velocities and flutter frequencies of the fin model with 4°, 6°, 
8°, and 10° AOAs were calculated. In comparison to the wind tunnel test results, the errors 
were less than 4% and 1.5%, respectively. The comparison results show that the 3D-LPT results 
are in good agreement with the wind tunnel test results, which can prove the effectiveness of 
this method, and its applicability for supersonic flutter analysis under high AOA conditions. 

4) According to the wind tunnel test results, there is an obvious decreasing trend in the test flutter 
speed with increasing AOA, while the flutter frequency is basically unchanged. However, the 
decreasing trend of flutter velocities obtained by 3D-LPT is not obvious. A possible cause for 
this error may be the viscous nonlinear effect caused by the increase of AOA, which cannot be 
considered in Euler-based CFD. Since the precision of the LPT significantly depends on the 
accuracy of the steady flow results, how to consider the nonlinear effects such as viscosity is 
the key and further research direction to improve the analytical accuracy of this 3D-LPT-based 
flutter analysis method. 
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