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Abstract: Increasing the aspect ratio of wings may have beneficial effects in terms of aerody-
namics, such as a higher lift on drag ratio. However, High-Aspect-Ratio Wings (HARW) also
have a natural flexibility that can make them prone to aeroelastic instabilities for specific flight
conditions. Unfortunately, computing the flutter-free domains of these HARW  is tricky due to
the onset of nonlinear phenomena present for high amplitudes of wing deflections.

In that context, this paper presents the study of a taut-strip flexible wing model, particularly
designed to experience flutter in a wind tunnel at low-to-moderate Reynolds numbers. The ob-
jective was to keep the structural complexity as low as possible, while exhibiting fluid-structure
interactions typically observed for these types of wings. The choice of structural design was
based on the numerical prediction coming from a low-order aeroelastic model combining beam
theory and simplified aerodynamics.

The choice of structural design was based on the numerical prediction coming from a linear
low-order aeroelastic model combining beam theory and simplified aerodynamics. Thanks to
dynamical tests in laboratory, structural parameters (inertia, stiffness, damping coefficients)
were used to update the numerical model. Using this linear model, a flutter involving a coupling
between the 2nd bending mode and the 1st torsion mode was expected in the velocity range
of the wind tunnel. Wind tunnel tests however show an earlier flutter bifurcation involving
flapwise, chordwise and torsion motions, for which the route to flutter and post-critical limit-
cycle oscillations have been measured by non-contact techniques.

1 INTRODUCTION

High aspect-ratio wings are receiving particular interest in recent years, because they may have
less drag in flight, which leads to increasingly widespread use for aircraft and UAVs. How-
ever, their natural low flexibility can also induce aeroelastic effects that are difficult to predict.
Indeed, structural deformations under loading are quickly high, both statically and possibly dy-
namically, which makes the computations of fluid-structure interactions much more complex

[L].
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To fully understand the possible fluid-structure interactions that can appear and endanger air-
craft structures, it is useful to rely on simple wing models, representative of the phenomena
that could appear in flight [2, [3]. Here the idea was to design and to test a model of a flexible
wing with a high aspect-ratio, in order to study its aeroelastic instabilities in a wind tunnel, and
to analyze its behaviour using a relatively simple mathematical model. More specifically, the
objectives were to observe and to analyze the route to instabilities, and during the post-critical
regime to measure the evolution of limit-cycle oscillations (LCOs), with particular emphasis on
the evolution of the aeroelastic modal shapes.

This paper presents the mathematical model and the design of a high aspect-ratio wing model.
The experimental results coming from a wind-tunnel campaign show the evolution of its main
modes with respect to wind speed, based on cameras measurement, revealing the onset of aeroe-
lastic instabilities.

2 MATHEMATICAL MODEL

2.1 Beam equations of motion

Figure 1: Schematic representation of the wing
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Figure 2: Degrees of freedom
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The mathematical model presented in Fig. [I] and [2] was chosen to simulate the motions of the
wing along three degrees of freedom : the deflection normal to the chord w, the deflection in-
plane to the chord v and the torsion deflection ¢. The deflection of the wing along its span axis
y is assumed to be very small and is neglected.

The structural model is derived from the one reported in Hodges and Dowell ([4]) for a uniform,
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untwisted elastic wing. Neglecting cross-sectional warping, the rotary inertia effects in both
bending due to the tip mass, and eccentricity in the tip mass relative to the elastic axis, the
equations of motion are

.. ) N\ dF,
(m + Mé,) v + Cy0 + (Elzv > = O (1)
. . . . dF,
(m + Mé,) W+ Cpuw + (E[xw ) — Sst = d_y )
; y N\ . dM.
(I¢ +It,¢5y)¢+c¢¢ — (GJ¢> — Sp = d—yd)

with 6, = 6 (y — Ly,) [2].

E, is the flap bending rigidity, E'1, the chordwise bending rigidity, G.J the torsional rigidity,
m the mass per unit length, /, the moment of inertia. M, and I, I,,, I; 4, are respectively the
additional mass and the inertial terms at the wing tip. Sy = me is a coupling coefficient with e is
the distance between the line of mass center () and the wing elastic axis center. ¢ is the pitch
angle (angle of attack) at the root of the wing model. C,, C,, et C;; are the structural damping
coefficients. Finally, dF, /dy, dF},/dy and dM,/dx are the forces and moment distributed over
the entire wing surface.

2.2 Solving the system using a Galerkin type approach

Equations are numerically solved using a Galerkin type approach [5} 2]. Deflections v, w and ¢
are expressed in series form as follows

v (y7 t) = ZU fv,i (y) QU,i (t)
Wint) = D i ) s 0 3)

O (y.t) = qus,i(y)%@ (t)

where {f,, (), fu, (v), fs, (y)} are respectively the n, + n, + ns mode shape functions of
chordwise, bending and torsion deflections.

Taking into account mass and inertia at the wing tip may be done in two ways. The first one,
introduced by Dowell [6, 2]], consists of using the standard cantilever beam normal mode shape
functions. During this step, the terms proportional to d (y — L,,) will add coefficients in the
mass and stiffness matrices, representative of the intertial contribution of the wing tip. Another
way consists of computing normal modes (frequencies, modal masses and shape functions)
that are inherently dependent on these additional terms [7]. Even if these two techniques are
equivalent when one considers mass and stiffness coefficients, the second approach was selected
here since it enables to introduce a structural damping coefficient which has a more physical
meaning; indeed, damping coefficents obtained by modal tests can be directly inserted into
equations. After having projected the equations on the selected modes (details in Appendix),
the following system is obtained in matrix form

M+ Ci+Kq=F, )

. T
with ¢ = [%,1 e QoG - - - Qg - - .q¢,n¢} .

3
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2.3 Quasi-static aerodynamic model

Aerodynamic forces and moment about the elastic axis are expressed as

dF, dD dL .

a = d_y cos (0p + @) — d_y sin (6y + @) ~ cqp [ca (60) — ¢ (Bo) [Bo + 9]

dF, dL dD . de

K = W cos (By + ¢) + T sin (6y + @) =~ cqp d_oi [0 + &] + ca (00) [60 + &]| (5)
dM¢ . 2 dCM

dy = C4p don 6o + @]

where gp = 1/2pU? is the dynamic pressure, U the wind speed. The section aerodynamic
coefficents ¢;, ¢y and ¢, may be obtained by approximate models ([2]]).

3 DESIGN OF THE WING

=

The wing was designed following a taut-strip type architecture, in order to separate the structural
and aerodynamic parameters as best as possible (Fig. [3). The internal structure of the wing is
based on a trio of beams that ensure the stiffness in normal bending, in-plane bending and
torsion.

——

<

Figure 3: Drawing of the wing

Figure 4: End of a section with beams glued Figure 5: End of a section free of beams

These 3 beams are made by a combination of one main beam of circular section, at the wing
elastic center, and two external beams of rectangular section, symetrically placed at a distance
§ of the elastic center (Fig. [f)). The quadratic moment of area of these 3 beams with respect to
the x-axis is

d}  beh?
Ip=—r+=>= 6
YR (6)
Moreover, the quadratic moment of area with respect to the z-axis is given by
wd} heb?
I =—t+2(8hb + —¢ 7
64 " ( T ) ™

Finally, as a first approximation, the global torsion stiffness .Jr can be limited to the main
contribution of the internal beam, which has a circular section :
nd}

Jr =45 ®)
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The two external beams are in carbon and the internal beam in aluminium.

Symbol  Value

N . d,  24mm
\\o Y e K 0 6 mm
be he 1 mm

be 5 mm

Figure 6: Cross-section view of the 3 beams

12 sections around these beams form the aerodynamics surface of the wing. Each section is
glued to the 3 beams on one of its ends (Fig. ) and free on the other end (Fig. [5). The overall
motion of this structure is assumed to be equivalent to that of a virtual global beam, created
by the kinematic connection of the beams together via the different sections. Each section of
NACAO0012 airfoil was made by a 3D printer in resin (Fig. [7). At the wing tip, an ovoid-shaped
body comprising two small masses of adjustable position makes it possible to adjust the tip
inertia (Fig. [§).

The mass per unit length m is simply computed by the ratio between the total mass (beams and
sections) and the overal span of the wing L,,. Inertia terms at wing tip were estimated by a
numerical model in SolidWorks (computer-aided design software).

Although seemingly simplistic, the mathematical model of beams provided relevant information
in order to select the parameters listed in Table (]

In addition, it also made it possible to predict the behavior of the wing subjected to wind forces,
while keeping in mind the limitations induced by the assumptions of the model, in particular
on the aerodynamic part. Fig. [9] shows the evolution of the first five modes frequencies with
respect to wind speed in the 0-40 Hz frequency range, by applying the mathematical model
with the aeroelastic parameters of the wing. Based on these results, the first two bending modes
(1B and 2B) should increase in frequency, while the first torsion mode (1T) should decrease, to

Figure 8: Tip body with additionnal masses

Figure 7: One 3D printed section
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Table 1: Wing model data

Description Symbol Value
Span L, 600 mm (without tank)
Chord c 54 mm
Distance between the leading edge and the elastic axis Tee 18 mm
Distance between the elastic axis and the line of center of gravity e 4.7 mm
Mass per unit length m 0.227 kg/m
Moment of inertia about the elastic axis per unit length Iy kgm
Flapwise bending stiffness El, 0.45 Nm?
Chordwise bending stiffness El, 29.91 Nm?
Torsional stiffness GJ 0.257 Nm?
Tip mass M, 4.6 %1072 kg
Tip moment of inertia about the elastic axis Ly 4.2 %107% kgm?

Flutter diagram
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Figure 9: Evolution of the first five aeroelastic eigenfrequencies, numerical prediction using the linear model

the point that modes 2B and 1T merge, thus triggering a flutter aeroelastic instability around 23
m/s. The first in-plane mode (1C, C for chordwise), initially placed between modes 2B and 1T,
is expected to be constant because negligible aerodynamic forces are generated on it. The third
bending mode (3B) should also get stiffer like other bending modes, but to such a small degree
that it should not be visible at these wind speeds.

4 EXPERIMENTAL RESULTS
4.1 Setup

All the tests were performed in the low speed ONERA S2L facility. The wind tunnel is an open-
circuit tunnel with a hexagonal section of 0.95 m width. The maximum air speed attainable is
45 m/s. Inside the tunnel, the wing can be seen from a view from below in Fig. [I0]

In order to perform the Model Deformation Measurement (MDM), two lines of three markers

6
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Figure 10: Wing model in the wind tunnel

were glued to monitor the displacements on the leading edge, on the line of elastic center and on
the trailing edge along the wing span. The measurement system is based on two EoSens 4CXP
cameras that can record 4 MP images up to 560 fps, although most of the tests were performed
at 128 fps. It could be noticed that a speckle was also glued on sections, but for the moment
DIC (Digital Correlation Image) was not processed.

The main components of the experimental setup at wing root are presented in Fig. [TT} Thanks
to a remote control servohydraulic system, the pitch angle at wing root ¢, can be precisely
controlled, both statically and dynamically. In addition, the actual 6, is also measured by a
RVDT (Rotary Variable Differential Transformer) sensor. Forces and moments are measured
by a 6DOF balance. All the parts are linked to the wind tunnel structure with a heavy support.

4.2 Modal tests without wind

Firstly, modal tests are done to get a database of the first modes, without considering fluid-
structure interaction. The structure was excited by a random rotation at its base thanks to the
hydraulic system, in the 0.5-45 Hz frequency range. The first 5 modes were identified by using
output-only modal analysis applied on the displacements obtained by the cameras system (Fig.

).
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Figure 11: View of the experimental setup at the wing root

Table 2: Experimental modal parameters

Mode name Description feeps HZ  froum, HZ  Eerp, %0
1B First normal bending 2 2.05 29
2B Second normal bending  11.74 12.95 1.1
1C First inplane bending 14.89 15.79 3
IT First torsion 26.19 28.8 5.4
3B Third normal bending 32.33 36.37 2

4.3 Static tests under wind loading

In a second step, static tests were performed at different wing speeds to highlight the steady
response of the wing to different pitch angles at wing root. The evolution of bending moment
with respect to the static pitch angle at wing root shows a good agreement between the balance
and the model predictions (Fig. [13).

4.4 Dynamic tests under wind loading

Finally, a series of tests were conducted at different wind speed values in order to study the
evolution of modes when the structure is subjected to aerodynamic forces and the onset of
flutter. The evolution of the frequencies of the first 5 modes clearly shows that modes follow
different trends from 0 to 13 m/s (Fig. [I4).

As expected, the bending modes frequencies slightly increase with respect to wind speed. Mode
1B goes from 2 up to 2.11 Hz, mode 2B from 11.74 to 12.1 Hz. On the other hand, mode 3B
does not show a clear trend, and is not particularly studied because its identification was difficult
and does not add necessary information later.

Mode IT frequency decreases more abruptly, from 26.19 down to 24.37 Hz. It was also ex-

8
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Figure 12: Experimental mode shapes (3B not depicted)

Comparison of bending moment values : experiment versus model, U = 10.2 m/s
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Figure 13: Bending moment at different root angles, at 10.2 m/s
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Figure 14: Evolution of the first modes and LCOs frequencies

pected since aeroelastic forces tend to bring closer bending and torsion modes, according to
their respective distribution in the frequency range.

The behaviour of mode 1C is less understandable. Initially at 14.89 Hz, it would be expected
not to evolve because its inplane motion should be sensitive to aerodynamic forces. Anyway,
its frequency clearly decreases down to 13.48 Hz, making frequencies of 1C and 2B closer.
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Figure 15: Onset of instability at U = 13 m/s (from a marker monitored by the cameras)

The onset of aeroelastic instability is detected at a wind speed of 13 m/s (Fig. [I3)). This new

10
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regime is characterized by the emergence of LCOs of high amplitudes, thus replacing the modal
behaviour that prevailed at lower speeds. The frequency of LCOs evolves gradually (Fig. [I4),
from 12.1 Hz at the onset up to 12.6 Hz at 16.1 m/s.
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Figure 16: Wing responses at different wind speeds

The frequency content of responses also evolves strongly with respect to wind speed. Fig.
[16] shows different kinds of response according to the wind speed, for a marker at 90 mm
from the root, when wind speed is reduced. In this descending part, the response is almost
monoharmonic at its highest level at U = 16.1 m/s, then becomes multiharmonic from 15 to 13
m/s, and becomes again monoharmonic at U = 11.8 m/s.

A detailed explanation of the physics involved in this instability is on-going. Anyway, it shall be
noticed that this branch of LCOs started well below the wind speed predicted by the numerical
model (23 m/s) based on a linear aeroelastic model (Fig. E[)

S CONCLUSION

In this paper, an aeroelastic benchmarch of a flexible wing model was presented on analytical,
numerical and experimental aspects. The mathematical model based on beam equations showed
that it is capable of managing relatively complex physical behaviours for a low computational
cost, as long as the architecture of the underlying structure remains simple. Aeroelastic insta-
bilities were observed experimentally in this low speed wind-tunnel, thus demonstrating the
presence of a branch of LCOs well below the flutter speed predicted by the numerical model.
Deformations were measured by a set of cameras, then providing after operational analysis the
full evolution of the first five modes (frequencies and mode shapes), and of the LCOs.

This earlier flutter bifurcation was not predicted by the linear model. From these first results,
it seems that it would be a coupling between the 2nd bending mode and the 1st chordwise
bending mode, with possibly also the influence of the 1st torsion mode, even if this remains to be
proven. However, it is difficult to conclude without a more detailed analysis of the mechanisms
highlighted. Future work will be necessary to fully understand LCOs that appear at a much

11
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lower flutter speed than numerically predicted. Based on the full non-linear aeroelastic model
from Hodges and Dowell, the non-linear interactions between the degrees of freedom will be
better taken into account, and it will surely be possible to explain the appearance of this branch
of LCOs and to compare the numerical predictions with experimental data.

6 APPENDIX

The equations of motion are projected on the elementary beam mode shapes

Ny L Ny Luw Ny L
Z (/ mfv,ifv,jdy) éjv,i + Ov Z (/ fv,ifv,jdy) QU,i + E]z Z (/ fv7if’l),jdy) in
0 i=1 0 i=1 0

i=1

Lw qF,
= — foidy, j=1...m,
/0 dy "’
L Lw T Lw Lw "
Z (/ mfw,ifw7jdy) q'w,i T Ow Z ( fw,ifw,jdy> qui + EI$ (/ fw,ifw7jdy) Qu,i
i=1 0 =1 0 0
Ng I L
v N v dF, ,
- Z (/ S¢f¢,ifw,jdy) dpi = / d—fw,jdy, 7 =1...n4
i=1 0 0 Y
Mg Ly ) L ng L
> (/ f¢f¢,z‘f¢,jdy) i+ Cp Yy (/ fqb,z‘qu,jdy) Goi — GJ Y (/ T ,iqu,jd?/) 4y,
0 i=1 0 i—1 0

=1
Nw L I
b . v dM, )
- Z (/ S¢fw,z‘f¢,jdy> Qi = / d—¢f¢7jdy7 J=1...n4
i=1 WO 0 Y
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