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Abstract: In the present paper, aeroelastic phenomena of a smart wing in supersonic and 

hypersonic flows are investigated to represent the flutter alleviation due to piezoelectric effect. 

Using nonlinear aerodynamic model, a smart wing with pitch and plunge DOFs is simulated. The 

equations of motion can be obtained by using the Lagrange’s equations and the Kirchhoff’s law. 

To calculate aerodynamic forces acting on the smart wing in supersonic flow, piston theory can be 

implemented to model airflow by a quasi-steady compressible method. The complete nonlinear 

aeroelastic smart wing system can be obtained and divergence and flutter speeds are calculated 

accordingly. 

2 INTRODUCTION 

Aeroelastic analysis of a modern wing in supersonic and hypersonic regimes is crucial. The ability 

to control the aeroelastic instability due to flexibility is very important to reach the desired high 

aerodynamic performance in a wing design [1, 2]. Obviously, one important aeroelastic analysis 

is flutter resulting from merging of two or more vibration modes during flight. The flutter 

phenomenon can reduce the flight envelope or even make a redesign of the wing necessary. 

Appearing flutter can compromise not only the long-term durability of the wing structure, but also 

the flight performance, operational safety, and energy efficiency of the aircraft. Hence, postponing 

flutter is crucial for the modern airplane [3-7]. 

Using smart materials in wing structures has been performed for many years. Although there are 

different smart materials, piezoelectric materials have received the most attention. Considering the 

direct and inverse piezoelectric effects of piezoelectric materials, they can perform as sensors 

and/or actuators on a wing, respectively. In fact, they can be used as actuators and dampers to 

manage the aeroelastic behaviour of the wing. One effective way to avoid redesign the wing is to 

use piezoelectric materials to significantly delay the flutter [8]. Adding a shunt circuit to a 

piezoelectric material can create a piezopatch to modify effectively the wing aeroelastic behaviour. 

Previously, there were practical limits in the low frequency range like the one typically existing in 

aeroelastic phenomena due to the large required inductance in passive aeroelastic control. 

However, nowadays, it is possible to have a small inductor integrated into a piezopatch dedicated 

to aeroelastic control [9-12]. Since standard inductors usually have too large internal resistance for 

resonant shunt application, they are not a practical component to integrate into a piezopatch. 

Implementing closed magnetic circuits with high permeability materials allows the design of large 

inductance inductors with high quality factors. 
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The use of shunted piezopatch permits to have damping augmentation in wing structure without 

causing any instability yet. In addition, they need little to no power and are simple to apply. Their 

necessary hardware is the piezoelectrics and a simple electric circuit including a capacitor, 

inductor, and resistor. The shunted piezopatch can control aeroelastic vibration of wing by 

consuming the energy created from wing vibrations. In fact, it can reduce the vibrations of specific 

modes and frequencies. 

In this paper, the effect of piezoelectric material on increasing the flutter speed in supersonic and 

hypersonic flow is investigated in detail by considering a simple aeroelastic system. The system is 

a 2D double wedged wing with piezoelectric patch which has plunge and pitch degrees of freedom 

(DOF) as well as with high-speed nonlinear aerodynamic forces. The objective of this work is to 

represent the role of piezoelectric patches that can influence substantially a simple aeropizoelastic 

system. Section 2 explains high speed smart wing model by driving the governing equation of 

motion of the wing. In section 3, high speed nonlinear aerodynamic model is presented to obtain 

applied aerodynamic load on the wing. Section 4 includes high speed nonlinear aeroelastic model 

to obtain aeroelastic system equations. Solving procedure is represented in section 5 by 

implementing amplitude-based iteration scheme on the nonlinear aeroelastic system of equations. 

Finally, results are given in section 6. 

3 HIGH SPEED SMART WING MODEL 

A smart wing including plunge and pitch degrees of freedom is shown in Fig. 1. The model 

contains a double wedge airfoil with two piezoelectric patches one in the plunge DOF and the 

other one in the pitch DOF. The system has the plunge and pitch degrees of freedom (DOF) 

indicated by ℎ, 𝛼, 𝑞ℎ and 𝑞𝛼, respectively. The equations of motion can be obtained by using the 

Lagrange’s equations and the Kirchhoff’s law as 

 
Fig. 1 A high-speed smart wing with pitch and plunge DOF 

 

𝛽𝛼 𝐶𝑝𝛼 

𝑅𝛼 

𝐿𝛼 

𝐾𝛼 𝛼 

𝑥𝑓 

𝑥𝑝 
𝐶𝛼 

𝛽ℎ 𝐶𝑝ℎ 

𝑅ℎ 

𝐿ℎ 

𝐾ℎ 

𝐶ℎ 



IFASD-2024-XXX 

 3 

{
  
 

  
 
𝑚ℎ̈ + 𝑆𝛼ℎ�̈� + 𝐶ℎℎ̇ + 𝐾ℎℎ − 𝛽ℎ𝑞ℎ = −𝐿                    

𝑆𝛼ℎℎ̈ + 𝐼𝛼�̈� + 𝐶𝛼�̇� + 𝐾𝛼𝛼 − 𝛽𝛼𝑞𝛼 = 𝑀𝑥𝑓                  

𝐿ℎ�̈�ℎ + 𝑅ℎ�̇�ℎ +
1

𝐶𝑝ℎ
𝑞ℎ − 𝛽ℎℎ = 0                               

𝐿𝛼�̈�𝛼 + 𝑅𝛼�̇�𝛼 +
1

𝐶𝑝𝛼
𝑞𝛼 − 𝛽𝛼(𝑥𝑓 − 𝑥𝑝)𝛼 = 0           

                                                               (1) 

where 

𝑚 mass 

ℎ̈ plunge acceleration 

𝑆𝛼ℎ static mass moment of the wing around the pitch axis 𝑥𝑓 

�̈� pitching acceleration 

𝐶ℎ plunge structural damping 

ℎ̇ plunge velocity 

𝐾ℎ plunge structural stiffness 

𝛽ℎ plunge electromechanical coupling 

𝑞ℎ plunge electric charge 

𝐿 lift 

𝐼𝛼 mass moment of inertia 

𝐶𝛼 pitching structural damping 

�̇� pitching velocity 

𝐾𝛼 pitching structural stiffness 

𝛼 pitching angle 

𝛽𝛼 pitch electromechanical coupling 

𝑞𝛼 pitch electric charge 

𝑀𝑥𝑓 pitching moment of the wing around the pitch axis 𝑥𝑓 

𝐿ℎ plunge inductance of piezoelectric material 

�̈�ℎ rate of the plunge electrical current 

𝑅ℎ plunge resistance of piezoelectric material 

�̇�ℎ plunge electrical current 

𝐶𝑝ℎ plunge capacitance of piezoelectric material 

ℎ plunge displacement 

𝐿𝛼 pitch inductance of piezoelectric material 



IFASD-2024-XXX 

 4 

�̈�𝛼 rate of the pitch electrical current 

𝑅𝛼 pitch resistance of piezoelectric material 

�̇�𝛼 pitch electrical current 

𝐶𝑝𝛼 pitch capacitance of piezoelectric material 

𝑥𝑓 pitch axis 

𝑥𝑝 piezoelectric axis 

The plunge electromechanical coupling, 𝛽ℎ, depends on the plunge coupling coefficient, 𝑒ℎ, and 

the plunge capacitance, 𝐶𝑝ℎ, and it can be calculated by 𝛽ℎ = 𝑒ℎ 𝐶𝑝ℎ⁄ . In addition, the pitch 

electromechanical coupling, 𝛽𝛼, depends on the pitch coupling coefficient, 𝑒𝛼, and the pitch 

capacitance, 𝐶𝑝𝛼, and it can be calculated by 𝛽𝛼 = 𝑒𝛼 𝐶𝑝𝛼⁄ . 

Considering nonlinear piston theory, the lift and moments in Eq. (1) can be obtained in the 

following section. 

3 HIGH SPEED NONLINEAR AERODYNAMIC MODEL 

To calculate aerodynamic forces acting on the smart wing from low supersonic to hypersonic 

speeds up to the limit of Newton flow, piston theory can be implemented to model airflow by a 

quasi-steady compressible method [13, 14]. Consider a supersonic airflow with density 𝜌∞, 

pressure 𝑝∞, and airspeed 𝑈∞. The airflow has the sound speed 𝑎∞ = √𝛾𝑝∞ 𝜌∞⁄ , compressibility 

ratio 𝛾 = 1.4, and Mach number 𝑀∞ = 𝑈∞ 𝑎∞⁄ . The upper or lower surface pressure distribution 

of the wing can be defined by piston theory as follows 

𝑝𝑢,𝑙(𝑥, 𝑡) = 𝑝∞ (1 +
𝛾 − 1

2

𝑤𝑢,𝑙
𝑎∞

)
2𝛾 (𝛾−1)⁄

                                (2) 

where 𝑤𝑢,𝑙 denotes the downwash velocity and subscripts 𝑢 and 𝑙 represent the upper and lower 

surface, respectively. The application of piston theory is for airflow with high Mach numbers, 

small disturbances, and quasi-steady conditions. It is possible to satisfy these three conditions if at 

all times [15] 

𝑀∞

𝑤𝑢,𝑙
𝑈∞

< 1   and   𝑘𝑀∞

𝑤𝑢,𝑙
𝑈∞

< 1                                         (3) 

where 𝑘 = 𝜔𝑐 𝑈∞⁄  is the reduced frequency. Usually, the lower Mach number limit is 𝑀∞ ≥ 1.3. 

Using the instantaneous wing shape, the downwash velocity, 𝑣𝑢,𝑙(𝑥, 𝑡), can be calculated as 

𝑤𝑢 = −(�̇�𝑢 + 𝑈∞
𝜕𝑣𝑢
𝜕𝑥
)                                                    (4𝑎) 

𝑤𝑙 = (�̇�𝑙 + 𝑈∞
𝜕𝑣𝑙
𝜕𝑥
)                                                         (4𝑏) 

The wing geometric shape and its displacements in two DOF, plunge ℎ and pitch 𝛼, have 

contributions to the instantaneous wing shape. The wing instantaneous shape can be presented by 

[16, 17] 
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𝑣𝑢 = ℎ + (𝑥 − 𝑥𝑓)𝛼 − 𝑦𝑢(𝑥)                                                        (5𝑎) 

𝑣𝑙 = ℎ + (𝑥 − 𝑥𝑓)𝛼 − 𝑦𝑙(𝑥)                                                        (5𝑏) 

where 𝑦𝑢,𝑙(𝑥) is the upper and lower surface geometric shape of the wing. 

Using ∆𝑝(𝑥, 𝑡) = 𝑝𝑙(𝑥, 𝑡) − 𝑝𝑢(𝑥, 𝑡), one can calculate the pressure difference across the wing. 

Then the time dependent lift and moment around the wing pitch axis are obtained by 

𝑙(𝑡) = ∫ ∆𝑝(𝑥, 𝑡)𝑑𝑡
𝑐

0

                                                                  (6𝑎) 

𝑚𝑥𝑓
(𝑡) = −∫ ∆𝑝(𝑥, 𝑡)(𝑥 − 𝑥𝑓)𝑑𝑡

𝑐

0

                                            (6𝑏) 

respectively. Due to existing the irrational exponent 2𝛾 (𝛾 − 1)⁄  in Eq. (2), there is no analytical 

solution for ∆𝑝. To overcome this problem, a binomial expansion can be applied to the bracket 

term in Eq. (2) which leads to 

𝑝𝑢,𝑙(𝑥, 𝑡) = 𝑝∞ (1 + 𝛾
𝑤𝑢,𝑙
𝑎∞

+
𝛾(𝛾 + 1)

4
(
𝑤𝑢,𝑙
𝑎∞

)
2

+
𝛾(𝛾 + 1)

4
(
𝑤𝑢,𝑙
𝑎∞

)
3

+⋯)         (7) 

Implementing a correction factor 𝜆 = 𝑀∞ √𝑀∞
2 − 1⁄  to 𝑤𝑢,𝑙 𝑎∞⁄  in Eq. (2) and (7), piston theory 

can be applicable throughout the low subsonic to hypersonic flow. Then Eq. (7) becomes 

𝑝𝑢,𝑙(𝑥, 𝑡) = 𝑝∞ (1 + 𝛾
𝑤𝑢,𝑙𝜆

𝑎∞
+
𝛾(𝛾 + 1)

4
(
𝑤𝑢,𝑙𝜆

𝑎∞
)
2

+
𝛾(𝛾 + 1)

4
(
𝑤𝑢,𝑙𝜆

𝑎∞
)
3

)           (8) 

where only terms up to third order are considered in the modified equation. If the airfoil is 

symmetric or its thickness is negligible, 𝑤𝑢 = −𝑤𝑙 in Eq. (4) and (5). Then the pressure difference 

is reduced to 

∆𝑝(𝑥, 𝑡) =
4𝜆𝑞∞
𝑀∞

(
𝑤𝑙
𝑈∞

+
𝛾 + 1

12
𝜆2𝑀∞

2 (
𝑤𝑙
𝑈∞
)
3

)                                   (9) 

where 𝑞∞ = 1 2⁄ 𝜌∞𝑈∞
2  is the dynamic pressure of free stream. If the airfoil thickness is negligible, 

𝑤𝑙 𝑈∞⁄  can be written as 

𝑤𝑙
𝑈∞

=
ℎ̇

𝑈∞
+ (𝑥 − 𝑥𝑓)

�̇�

𝑈∞
+ 𝛼                                                (10) 

Substituting Eq. (9) into Eqs. (6), the lift and moment include 10 nonlinear terms and are calculated 

𝑙(𝑡) =
4𝜆𝑞∞
𝑀∞

(
ℎ̇

𝑈∞
+ 𝑆′

�̇�

𝑈∞
+ 𝛼) +

(𝛾 + 1)𝜆3𝑀∞𝑞∞𝑐

3
((

ℎ̇

𝑈∞
)

3

+ 𝐽𝛼
′ (

�̇�

𝑈∞
)
3

 

+𝛼3 + 3𝑆′ (
ℎ̇

𝑈∞
)

2
�̇�

𝑈∞
+ 3(

ℎ̇

𝑈∞
)

2

𝛼 + 3𝐼𝛼
′ (

�̇�

𝑈∞
)
2 ℎ̇

𝑈∞
+ 3𝐼𝛼

′ (
�̇�

𝑈∞
)
2

𝛼            

+3𝛼2
ℎ̇

𝑈∞
+ 3𝑆′𝛼2

�̇�

𝑈∞
+ 6𝑆′

ℎ̇

𝑈∞

�̇�

𝑈∞
𝛼)                                                        (11) 
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where 

𝐽𝛼
′ =

1

4𝑐
((𝑐 − 𝑥𝑓)

4
− 𝑥𝑓

4)                                               (12) 

𝑚𝑥𝑓
(𝑡) = −

4𝜆𝑞∞𝑐

𝑀∞
(𝑆′

ℎ̇

𝑈∞
+ 𝐼𝛼

′
�̇�

𝑈∞
+ 𝑆′𝛼) −

(𝛾 + 1)𝜆3𝑀∞𝑞∞𝑐

3
(𝑆′ (

ℎ̇

𝑈∞
)

3

 

+𝐾𝛼
′ (

�̇�

𝑈∞
)
3

+ 𝑆′𝛼3 + 3𝐼𝛼
′ (

ℎ̇

𝑈∞
)

2
�̇�

𝑈∞
+ 3𝑆′ (

ℎ̇

𝑈∞
)

2

𝛼                                  

+3𝐽𝛼
′ (

�̇�

𝑈∞
)
2 ℎ̇

𝑈∞
+ 3𝐽𝛼

′ (
�̇�

𝑈∞
)
2

𝛼 + 3𝑆′𝛼2
ℎ̇

𝑈∞
+ 3𝐼𝛼

′ 𝛼2
�̇�

𝑈∞
                           

+6𝐼𝛼
′
ℎ̇

𝑈∞

�̇�

𝑈∞
𝛼)                                                                                           (13) 

where 

𝑆′ = 𝑐 2⁄ − 𝑥𝑓                                                                      (14) 

𝐼𝛼
′ =

1

3
(𝑐2 − 3𝑐𝑥𝑓 + 3𝑥𝑓

3)                                                (15) 

𝐾𝛼
′ =

1

5𝑐
((𝑐 − 𝑥𝑓)

5
− 𝑥𝑓

5)                                               (16) 

4 HIGH SPEED NONLINEAR AEROELASTIC MODEL 

The complete nonlinear aeroelastic smart wing system can be obtained by substituting Eqs. (11) 

and (13) into the equations of motion, Eq. (1) as follows 

𝑨�̈� + (𝑪 +
2𝜆𝜌∞𝑈∞𝑐

𝑀∞
𝑫) �̇� + (𝑬 +

2𝜆𝜌∞𝑈∞
2 𝑐

𝑀∞
𝑭)𝒚 

+
(𝛾 + 1)𝜆3𝑀∞𝑞∞𝑐

3
𝑮𝐠(ℎ̇, �̇�, 𝛼) = 𝟎                                  (17) 

where 𝑨 is the structural mass matrix, 𝑪 is the structural damping matrix, 𝑫 is the aerodynamic 

damping matrix, 𝑬 is the structural stiffness matrix, 𝑭 the aerodynamic stiffness matrix. Those 

matrices are defined as 

𝑨 = (

𝑚 𝑆𝛼ℎ 0 0
𝑆𝛼ℎ 𝐼𝛼 0 0
0 0 𝐿ℎ 0
0 0 0 𝐿𝛼

)                                                 (18) 

𝑪 = (

𝑐ℎ 0 0 0
0 𝑐𝛼 0 0
0 0 𝑅ℎ 0
0 0 0 𝑅𝛼

)                                                    (19) 
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𝑫 = (

1 𝑆′ 0 0
𝑆′ 𝐼𝛼

′ 0 0
0 0 0 0
0 0 0 0

)                                                         (20) 

𝑬 =

(

 
 
 
 

𝑘ℎ 0 −𝛽ℎ 0
0 𝑘𝛼 0 −𝛽𝛼

−𝛽ℎ 0
1

𝐶𝑝ℎ
0

0 −𝛽𝛼(𝑥𝑓 − 𝑥𝑝) 0
1

𝐶𝑝𝛼 )

 
 
 
 

                                    (21) 

𝑭 = (

0 1 0 0
0 𝑆′ 0 0
0 0 0 0
0 0 0 0

)                                                         (22) 

𝑮 = (
1 𝐽𝛼

′ 1 3𝑆′ 3 3𝐼𝛼
′ 3𝐼𝛼

′ 3 3𝑆′ 6𝑆′

𝑆′ 𝐾𝛼
′ 𝑆′ 3𝐼𝛼

′ 3𝑆′ 3𝐽𝛼
′ 3𝐽𝛼

′ 3𝑆′ 3𝐼𝛼
′ 6𝐼𝛼

′ )                 (23) 

𝐠(ℎ̇, �̇�, 𝛼) = (
ℎ̇3

𝑈∞
3

�̇�3

𝑈∞
3

𝛼3
ℎ̇2�̇�

𝑈∞
3

ℎ̇2𝛼

𝑈∞2
�̇�2ℎ̇

𝑈∞
3

�̇�2𝛼

𝑈∞2
𝛼2ℎ̇

𝑈∞

𝛼2�̇�

𝑈∞

ℎ̇�̇�𝛼

𝑈∞2
)

𝑇

      (24) 

There are many nonlinear terms in these equations with weak nonlinearity. The order of the linear 

and nonlinear aerodynamic coefficient terms are the same magnitude and ℎ̇ 𝑈∞⁄ , �̇� 𝑈∞⁄  and 𝛼 are 

small. Moreover, if 𝑥𝑓 < 𝑐 2⁄ , all of the 𝑮 matrix elements are positive therefore, plunge hardening 

stiffness and plunge and pitch hardening damping can be created by the aerodynamic nonlinearity. 

To calculate static divergence, one needs to consider �̈� = �̇� = 𝟎 in Eqs. (17) then 

(𝑬 +
2𝜆𝜌∞𝑈∞

2 𝑐

𝑀∞
𝑭)𝒚 +

(𝛾 + 1)𝜆3𝑀∞𝑞∞𝑐

3
(
1
𝑆′
)𝛼3 = 𝟎                            (25) 

which in expanded form become 

{
 
 
 
 

 
 
 
 𝐾ℎℎ +

2𝜆𝜌∞𝑈∞
2 𝑐

𝑀∞
𝛼 +

(𝛾 + 1)𝜆3𝑀∞𝑞∞𝑐

3
𝛼3 − 𝛽ℎ𝑞ℎ = 0                    

𝐾𝛼𝛼 +
2𝜆𝜌∞𝑈∞

2 𝑐

𝑀∞
𝑆′𝛼 +

(𝛾 + 1)𝜆3𝑀∞𝑞∞𝑐

3
𝑆′𝛼3 − 𝛽𝛼𝑞𝛼 = 0           

1

𝐶𝑝ℎ
𝑞ℎ − 𝛽ℎℎ = 0                                                                                         

1

𝐶𝑝𝛼
𝑞𝛼 − 𝛽𝛼(𝑥𝑓 − 𝑥𝑝)𝛼 = 0                                                                      

                                 (26) 

Considering the second and fourth equations, one can derive the static divergence as 

𝐾𝛼 + 𝑆
′ (
2𝜆𝜌∞𝑈∞

2 𝑐

𝑀∞
+
(𝛾 + 1)𝜆3𝑀∞𝑞∞𝑐

3
𝛼2) − 𝐶𝑝𝛼𝛽𝛼

2(𝑥𝑓 − 𝑥𝑝) = 0           (27) 



IFASD-2024-XXX 

 8 

which by solving the nonlinear Eq. (27), the divergence velocity can be found 𝑈∞(𝛼) = 𝑈𝐷(𝛼), 
the static divergence velocity at different pitch displacements 𝛼. If 𝑥𝑓 − 𝑥𝑝 < 0, since the entire 

term in the first bracket is positive, the static divergence can only happen when 𝑆′ < 0 or 𝑥𝑓 >

𝑐 2⁄ . By considering the piston theory, the aerodynamic center lies on the half-chord then 𝑆′ is the 

distance between the half-chord and the pitch axis. In other words, static divergence or pitchfork 

bifurcation cannot happen if the pitch axis lies forward of the half-chord. 

To estimate the smart wing limit cycles, equivalent linearisation needs to be applied to Eqs. (17). 

Due to having multiple nonlinearity, it needs to modify the methodology. To do so, the complete 

nonlinear aeroelastic system limit cycles are approximated by the following sinusoidal responses 

ℎ = 𝐻 sin𝜔𝑡     

ℎ̇ = 𝜔𝐻 cos𝜔𝑡 

𝛼 = 𝐴 sin𝜔𝑡     

�̇� = 𝜔𝐴 cos𝜔𝑡                                                              (28) 

where 𝐻 and 𝐴 are the plunge and pitch amplitudes, respectively, and 𝜔 is the limit cycle 

frequency. Now all the nonlinear terms in 𝐠(ℎ̇, �̇�, 𝛼, 𝑈∞) needs to be written as a first order Fourier 

series 

𝐠(ℎ̇, �̇�, 𝛼) = 𝐚0 + 𝐚1 cos𝜔𝑡 + 𝐛1 sin𝜔𝑡                                   (29) 

The Fourier coefficients can be presented as 

𝑎0𝑖 =
𝜔

2𝜋
∫ g𝑖(𝜔𝐻 cos𝜔𝑡 , 𝜔𝐴 cos𝜔𝑡 , 𝐴 sin𝜔𝑡)
𝜋 𝜔⁄

−𝜋 𝜔⁄

𝑑𝑡               

𝑎1𝑖 =
𝜔

2𝜋
∫ g𝑖(𝜔𝐻 cos𝜔𝑡 , 𝜔𝐴 cos𝜔𝑡 , 𝐴 sin𝜔𝑡) cos𝜔𝑡
𝜋 𝜔⁄

−𝜋 𝜔⁄

𝑑𝑡 

𝑏1𝑖 =
𝜔

2𝜋
∫ g𝑖(𝜔𝐻 cos𝜔𝑡 , 𝜔𝐴 cos𝜔𝑡 , 𝐴 sin𝜔𝑡) sin𝜔𝑡
𝜋 𝜔⁄

−𝜋 𝜔⁄

𝑑𝑡                    (30) 

where the notation 𝑎1𝑖, g𝑖 and so on, represents the vector 𝐚1, 𝐠 and so on ith element, for 𝑖 =

1,⋯ , 10. Since all the terms are polynomial, they are easy to integrate which leads to 𝐚0 = 0, 
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𝐚1 =

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

3𝐻3𝜔3

4𝑈∞
3

3𝐴3𝜔3

4𝑈∞
3

0
3𝐴𝐻2𝜔3

4𝑈∞
3

0
3𝐴2𝐻𝜔3

4𝑈∞
3

0
𝐴2𝐻𝜔

4𝑈∞
𝐴3𝜔

4𝑈∞
0 )

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

,     𝐛1 =

(

 
 
 
 
 
 
 
 
 
 
 
 

0
0
3𝐴3

4
0

𝐴𝐻2𝜔2

4𝑈∞2

0
𝐴3𝜔2

4𝑈∞2

0
0

𝐴2𝐻𝜔2

4𝑈∞2 )

 
 
 
 
 
 
 
 
 
 
 
 

                                   (31) 

In the nonlinear terms, six terms contribute to nonlinear damping since only involving the 𝐚1 

coefficient, while the other four terms contribute to nonlinear stiffness. The complete nonlinear 

term 𝑮𝐠(ℎ̇, �̇�, 𝛼) in Eqs. (17) can be given as follows 

𝑮𝐠(ℎ̇, �̇�, 𝛼) = 𝑮(𝐚0 + 𝐚1 cos𝜔𝑡 + 𝐛1 sin𝜔𝑡)                       (32) 

For instance, the resulting vector first element which is the lift equation nonlinear term will be 

3𝐻3𝜔3

4𝑈∞
3
cos𝜔𝑡 + 𝐽𝛼

′
3𝐴3𝜔3

4𝑈∞
3
cos𝜔𝑡 +

3𝐴3

4
sin𝜔𝑡 + 3𝑆′

3𝐴𝐻2𝜔3

4𝑈∞
3

cos𝜔𝑡 

+3
𝐴𝐻2𝜔2

4𝑈∞2
sin𝜔𝑡 + 3𝐼𝛼

′
3𝐴2𝐻𝜔3

4𝑈∞
3

cos𝜔𝑡 + 3𝐼𝛼
′
𝐴3𝜔2

4𝑈∞2
sin𝜔𝑡 + 3

𝐴2𝐻𝜔

4𝑈∞
cos𝜔𝑡 

+3𝑆′
𝐴3𝜔

4𝑈∞
cos𝜔𝑡 + 6𝑆′

𝐴2𝐻𝜔2

4𝑈∞2
sin𝜔𝑡                                                               (33) 

Stiffness and damping terms include the sine and cosine terms, respectively. Moreover, grouping 

them also leads to plunge stiffness and damping and pitch stiffness and damping terms. To do so, 

if the 𝐻 order in a term is higher than that of 𝐴, one can consider it as a plunge term. The lift 

equation nonlinear term can be presented as follows 

(
3𝐻2𝜔2

4𝑈∞
3
+ 3𝑆′

3𝐴𝐻𝜔2

4𝑈∞
3
)𝜔𝐻 cos𝜔𝑡 

+(𝐽𝛼
′
3𝐴2𝜔2

4𝑈∞
3
+ 3𝐼𝛼

′
3𝐴𝐻𝜔2

4𝑈∞
3

+ 3
𝐴𝐻

4𝑈∞
+ 3𝑆′

𝐴2

4𝑈∞
)𝜔𝐴 cos𝜔𝑡 

+3
𝐴𝐻𝜔2

4𝑈∞2
𝐻 sin𝜔𝑡 + (

3𝐴2

4
+ 3𝐼𝛼

′
𝐴2𝜔2

4𝑈∞2
+ 6𝑆′

𝐴𝐻𝜔2

4𝑈∞2
)𝐴 sin𝜔𝑡               (34) 
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The same way can be implemented to the moment equation nonlinear term. Then the complete 

nonlinear term can be represented as the sum of equivalent linear damping and stiffness by 

substituting from Eqs. (28) 

𝑮𝐠(ℎ̇, �̇�, 𝛼) = 𝑪𝑒𝑞�̇� + 𝑲𝑒𝑞𝒚                                                     (35) 

where 

𝑪𝑒𝑞 =
3

4

(

 
 

𝐻2𝜔2

𝑈∞
3
+
3𝑆′𝐴𝐻𝜔2

𝑈∞
3

𝐽𝛼
′ 𝐴2𝜔2

𝑈∞
3

+
3𝐼𝛼
′ 𝐴𝐻𝜔2

𝑈∞
3

+
𝐴𝐻

𝑈∞
+
𝑆′𝐴2

𝑈∞
𝑆′𝐻2𝜔2

𝑈∞
3

+
3𝐼𝛼
′ 𝐴𝐻𝜔2

𝑈∞
3

𝐾𝛼
′𝐴2𝜔2

𝑈∞
3

+
3𝐽𝛼
′ 𝐴𝐻𝜔2

𝑈∞
3

+
𝑆′𝐴𝐻

𝑈∞
+
𝐼𝛼
′𝐴2

𝑈∞ )

 
 
         (36) 

𝑲𝑒𝑞 =
3

4

(

 
 

𝐴𝐻𝜔2

𝑈∞2
𝐴2 +

𝐼𝛼
′𝐴2𝜔2

𝑈∞2
+
2𝑆′𝐴𝐻𝜔2

𝑈∞2

𝑆′𝐴𝐻𝜔2

𝑈∞2
𝑆′𝐴2 +

𝐽𝛼
′ 𝐴2𝜔2

𝑈∞2
+
2𝐼𝛼
′𝐴𝐻𝜔2

𝑈∞2 )

 
 
                      (37) 

and 𝑪𝑒𝑞 and 𝑲𝑒𝑞 are the matrices of the equivalent linear damping and stiffness, respectively. To 

obtain the complete equivalent linear aeroelastic system, it needs to substitute Eq. (35) into Eqs. 

(17) 

𝑨�̈� + (𝑪 +
2𝜆𝜌∞𝑈∞𝑐

𝑀∞
𝑫+

(𝛾 + 1)𝜆3𝑀∞𝑞∞𝑐

3
𝑪𝑒𝑞) �̇�          

+(𝑬 +
2𝜆𝜌∞𝑈∞

2 𝑐

𝑀∞
𝑭 +

(𝛾 + 1)𝜆3𝑀∞𝑞∞𝑐

3
𝑲𝑒𝑞)𝒚 = 𝟎                        (38) 

In the present work, there are several nonlinearity of stiffness and damping including both of the 

DOF of system. Totally there are four unknowns as the two amplitudes 𝐻 and 𝐴, the flutter speed 

of the equivalent linear system 𝑈𝐹 and the flutter frequency of the equivalent linear system 𝜔𝐹. 

One of the ways to solve the problem is to use the amplitude-based iteration scheme explaining in 

the next section [18, 19]. 

5 AMPLITUDE-BASED ITERATION SCHEME 

In the amplitude-based iteration scheme, one of the amplitudes, 𝐻 or 𝐴, can be chose as the master 

amplitude; here 𝐴 is selected as the master amplitude. All values of 𝐴 from 0 to 𝐴𝑚𝑎𝑥 are 

considered and for each value, it needs to guess a value of 𝐻 and 𝜔. To obtain the equivalent linear 

system flutter speed and frequency, the guessed values of 𝐻 and 𝜔 are substituted into Eqs. (38). 

Also, the response amplitude of ℎ at flutter, 𝐻𝐹, is calculated. Obviously, the flutter values 𝐻𝐹 and 

𝜔𝐹 are not equal to the guessed values 𝐻 and 𝜔. This iteration is continued until reaching 𝐉𝑇𝐉 = 0, 

where 

𝐉 = (
𝐻 − 𝐻𝐹
𝜔 − 𝜔𝐹

)                                                                        (39) 

The complete step of the procedure is represented as 
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1. Where 𝐴0 = 0 and 𝐴𝑛𝐴 = 𝐴𝑚𝑎𝑥, the maximum pitch amplitude of interest, choose pitch 

amplitude values 𝐴𝑖 for 𝑖 = 0,⋯ , 𝑛𝐴. 

2. The solution for 𝐴0 = 0 is known as a limit cycle vibration with zero amplitude which 

occur at the Hopf point, i.e. the linear flutter speed. 

3. Guess 𝐻 = 𝐻𝑖−1, 𝜔𝑖 = 𝜔𝑖−1 for the ith amplitude 𝐴𝑖. 

4. Using the equivalent linearized system of Eqs. (38), calculate the flutter speed 𝑈𝐹, flutter 

frequency 𝜔𝐹 and plunge amplitude 𝐻𝐹. 

5. From Eq. (39), calculate 𝐉. 

6. If 𝐉𝑇𝐉 < 𝜀 and 𝜀 ≪ 1, increment i and go back to step 3. 

7. If 𝐉𝑇𝐉 < 𝜀, set 𝐻 = 𝐻𝐹, 𝜔 = 𝜔𝐹 and continue from step 4. 

6 NUMERICAL EXAMPLE 

For the high-speed smart wing shown in Fig. 1, considering the following parameters and using 

equivalent linearisation, estimate the bifurcation behaviour. 

𝑚 = 13.5 Kg 𝑆𝛼ℎ = 0.3375 Kgm 𝑐ℎ = 0.25 Ns m⁄  

𝐼𝛼 = 0.0787 Kgm2 𝐿ℎ = 1 H 𝑒ℎ = 0.145 C m⁄  

𝑅ℎ = 1 Ω 𝐶𝑝ℎ = 268 μF 𝐿𝛼 = 300 H 

𝑒𝛼 = 55.2 C m⁄  𝑅𝛼 = 1 Ω 𝐶𝑝𝛼 = 36.8 μF 

𝜌 = 1.225 Kg m3⁄  𝑆′ = 0.025 m 𝐼𝛼
′ = 0.0058 m2 

𝐽𝛼
′ = 1.0156 × 10−4 m3 𝐾𝛼

′ = 1.3187 × 10−5 m4 𝑏 = 0.125 m 

𝑥𝑓 = 0.4𝑐 𝑥𝑝 = 0.1𝑐 𝑐 = 0.25 m 

By setting 𝜔ℎ = 80 Hz and 𝜔𝛼 = 30 Hz, therefore, 𝐾ℎ = 3.41 × 106  N m⁄  and 𝐾𝛼 =
2.80 × 103  N m⁄ . It assumes the structural damping matrix as 𝑪 = 𝑬 1000⁄ , the speed of sound 

is constant at 𝑎∞ = 341 m s⁄ , and 𝑀∞ = 𝑈∞ 𝑎∞⁄ . Because of locating the pitch axis in front of 

the half-chord at 𝑥𝑓 = 0.4𝑐, there is no static divergence in the system. In the next step, the flutter 

speed of the underlying linear system is calculated. To calculate the flutter speed, the Hof test 

function needs to be detected as [13, 20] 

𝜏𝐻(𝑈) =∏(𝜆𝑐,𝑗(𝑈) + 𝜆𝑐,𝑗(𝑈)
∗)

𝑛𝑐 2⁄

𝑗=1

                                      (40) 

where 𝜆𝑐,𝑗 and 𝜆𝑐,𝑗
∗  are the jth complex conjugate eigenvalues pair and 𝑛𝑐 is the complex 

eigenvalues total number. Hence, the Hopf test function, 𝜏𝐻, represents the product of the real parts 

of the complex eigenvalues. A Hopf bifurcation, subcritical or supercritical, can occur when one 

of bracket term in Eq. (40) is equal to zero. Moreover, the Hopf test function becomes negative 

when the fixed point is unstable and vice-versa. Figure 2 demonstrates the smart wing underlying 

linear system is stable at low speeds and becomes unstabilised at the first flutter point at 

355.6 m s⁄ . However, the regular wing underlying linear system is unstable at low speeds and 

becomes stabilised at the first flutter point at 370.2 m s⁄ . The smart wing has a second flutter point 
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at 999.7 m s⁄ , after which the system becomes stable. However, the regular wing possesses a 

second flutter point at 749.7 m s⁄ , after which the system becomes unstable. 

 

Fig. 2 Underlying linear system flutter test function 

Since the first flutter points for both smart and regular wings are below the piston theory validity 

limit, 𝑀∞ = 1.3, are not acceptable solutions. Hence, the second flutter points for both smart and 

regular wings become acceptable solutions. Implementing a piezoelectric patch on a wing can 

increase its flutter speed to 𝑈𝐹 = 999.7 m s⁄ , which shows 25% increase from the regular wing 

value and the corresponding frequency 𝜔𝐹 = 66.7 Hz, indicating 23% increase from the regular 

wing value. 

The amplitude-based iteration scheme is implemented at flutter point 𝑈𝐹 = 999.7 m s⁄  as 

explained previously. The pitch amplitude 𝐴𝑚𝑎𝑥 = 0.778 rad is considered as the master 

amplitude and between 0 and 𝐴𝑚𝑎𝑥 200 nonlinear spaced values of 𝐴 is selected and 𝜀 = 10−8 is 

chosen as the convergence tolerance. The resulting limit cycle pitch and plunge amplitudes and 

frequency are depicted in Fig. 3. 

 

   (a) Pitch     (b) Plunge 
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(c) Frequency 

Fig. 3 Pitch and plunge amplitude and frequency of limit cycle with nonlinear aerodynamics 

The vertical lines show the piston theory validity limit, 𝑀∞ = 1.3. To indicate the instability of 

the limit cycles, all curves are plotted in dashed lines. Both the amplitudes of the pitch and plunge 

are zero at the linear flutter speed, only to increase with decreasing speed. The maximum amplitude 

of pitch 𝐴𝑚𝑎𝑥 for both the smart and regular wings occurs at 45˚ which is much higher than the 

usual maximum angle values investigated with piston theory; usually the validity of the pitch limit 

for piston theory is equal or less than 30˚ [14]. It is noticed that the smart wing maximum pitch 

amplitude is 𝐴𝑚𝑎𝑥 = 0.78 rad happing at 𝑈𝐴𝑚𝑎𝑥 = 659.2 m s⁄  however, the regular wing 

maximum pitch amplitude is 𝐴𝑚𝑎𝑥 = 0.78 rad occurring at 𝑈𝐴𝑚𝑎𝑥 = 473.4 m s⁄ , as shown in Fig. 

3a. Furthermore, the rate of reduction of the pitch amplitude in the smart wing is lower than the 

one in the regular wing. Figure 3b depicts the smart wing maximum plunge amplitude is 𝐻𝑚𝑎𝑥 =
0.13 m which happens at 𝑈𝐻𝑚𝑎𝑥 = 656.5 m s⁄  however, the regular wing maximum plunge 

amplitude is 𝐻𝑚𝑎𝑥 = 0.055 m which occurs at 𝑈𝐻𝑚𝑎𝑥 = 473.4 m s⁄ , as depicted in Fig. 3b. The 

rate of reduction of the plunge amplitude in the smart wing is higher than the one in the regular 

wing. 

The piston theory nonlinear terms do not cause instability in the smart wing by creating a 

subcritical Hopf bifurcation occurring at the linear flutter speed in the equivalent linearization. 

However, using the equivalent linearization can create instability in the regular wing at the linear 

flutter speed. Near the Hopf point, the resulting limit cycle oscillations are most dangerous because 

their amplitude is small then they can be easily increased. 

As depicted in Fig. 3, the analysis of equivalent linearization is performed for pitch amplitudes up 

to 𝐴𝑚𝑎𝑥 = 0.778. However, the amplitude-based algorithm cannot converge if 𝐴𝑚𝑎𝑥 = 0.8. In 

other words, the smart wing pitch amplitude of limit cycle reaches a maximum value of 0.778 at 

656.5 m s⁄  but when airspeed decreases pitch amplitude decreases; similarly, the regular wing 

pitch amplitude of limit cycle reaches a maximum value of 0.778 at 473.4 m s⁄  however, after 

decreasing airspeed pitch amplitude decrease. 

To manage that problem, airspeed-based iteration scheme is considered as an alternative solution 

algorithm. 

 



IFASD-2024-XXX 

 14 

7 CONCLUSIONS 

In this paper, it has been investigated aeroelastic phenomena of a smart wing in supersonic and 

hypersonic flows to represent the flutter alleviation due to piezoelectric effect. A smart wing with 

pitch and plunge DOFs is simulated by using nonlinear aerodynamic model. The equations of 

motion can be obtained by using the Lagrange’s equations and the Kirchhoff’s law. To calculate 

aerodynamic forces acting on the smart wing in supersonic flow, piston theory can be implemented 

to model airflow by a quasi-steady compressible method. The complete nonlinear aeroelastic smart 

wing system can be obtained and divergence and flutter speeds are calculated accordingly. The 

results indicate a considerable achievement in dynamic aeroelastic behavior of a wing. 
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