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Abstract: This paper presents an efficient nonlinear non-intrusive model order reduction (MOR) 

framework for the gust load analysis. The proposed method is based on artificial neural network 

(ANN), specifically a least-square hierarchical variational autoencoder (LSH-VAE). This 

approach will enable construction of nonlinear reduced-order model and allow accurate 

interpolation with regard to the parameters. The proposed method will be validated by applying 

for a high-altitude long-endurance (HALE) unmanned aerial vehicle (UAV). The accuracy and 

computational efficiency of the method will be compared against those by a full order model 

(FOM). It is found that the proposed method will construct accurate interpolated field with regard 

to the relevant parameters. 

1 INTRODUCTION 

During the past few decades, research on unmanned fixed-wing aircraft capable of effectively 

performing various missions, such as surveillance and weather observation, has been pursued. 

Those UAV employ lightweight and flexible composite material-based high aspect-ratio wing, 

which offers improved aerodynamic efficiency and lift-to-drag ratio. However, those advantages 

are accompanied by reduction in structural integrity. In particular, when subjected to external 

forces such as gusts, the loads may vary instantaneously, resulting in severe structural deflection 

or vibration. 

Within mission characteristics of UAV, high endurance performance will be a requirement. It is 

sufficiently likely that UAV will operate in environments with severe gust. Thus, it is of paramount 
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importance to involve pertinent analysis into the design process. Federal Aviation Regulations 

(FAR) [1] and European Aviation Safety Agency (EASA) [2] have established 1-cosine (one 

minus cosine) gust profile as a significant criterion for determining the gust load. The discrete gust 

profile comprises a number of the parameters, including gust strength and alleviation factor. To 

ensure aircraft safety during the design process, it will be necessary to consider possible values of 

those parameters in an iterative process. 

The most preferred methodology for gust analysis comprises of the following two principal steps. 

The first step is to perform the aerodynamic analysis may be by the doublet lattice method (DLM). 

The second step is to conduct structural analysis by using the finite element method (FEM). Fluid-

structure interaction analysis will require substantial computational time. Furthermore, in order to 

achieve an optimal design, it will be required to perform multi-query analysis across a range of the 

parameters. It will again lead to a significant amount of computational time and resource. As a 

substitute, MOR will be proposed to reduce the computational burden along with sufficient 

accuracy. 

The non-intrusive MOR (NIMOR) involves the construction of a reduced model based on a set of 

input-output pair, allowing the aircraft properties to be included. Such approach will offer 

advantage of robustness and efficiency over an intrusive MOR. The robustness will be achieved 

by the separation of the stages into FOM scheme within the method and recovery of the reduced-

basis solution [3]. NIMOR will become efficient because the reduced coefficients are obtained via 

evaluating the interpolation approach [4]. 

NIMOR is closely related to machine learning (ML), as it is dependent on the specific result. ML 

has been successfully applied for aerospace engineering field [5-7]. A multitude of ML-based 

NIMOR techniques have relied on proper orthogonal decomposition (POD) [8], owing to its 

robustness and orthogonality. In contrast to it, this paper will employ ANN only for the purpose 

of order reduction and field reconstruction. Since nonlinear MOR such as variational autoencoder 

(VAE) and β -VAE [9-11] exhibits superior generative capability when compared against 

linearized MOR [12], LSH-VAE [13], a variant of VAE will be used. LSH-VAE is characterized 

by a deep hierarchical architecture integrating a modified loss function. The deep hierarchical 

structure such as the ladder VAE (LVAE) [14] and Nouveau VAE (NVAE) [15] consist of the 

multiple layers for a stable network and significant expressiveness. In order to mitigate posterior 

collapse and enhance the orthogonality of the latent space, the adapted loss function will integrate 

hybrid weighted least squares and Kullback–Leibler divergence (KLD) [16, 17].  

An objective of this paper is to propose a parametric MOR technique for the gust load analysis 

with the aim of reducing the design period of HALE UAV. Since a HALE UAV operates in 

straight-and-level flight condition, gust load analysis will be attempted for such flight condition 

with an objective of enhancing the efficiency and reliability of the design process. 
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2 THEORETICAL BACKGROUND 

Prior to a detailed consideration of the formulations of LSH-VAE, it will be better to provide a 

brief overview of the fundamental characteristics underlying existing ML method. The principal 

distinctions between the present framework and existing techniques are also presented. 

2.1 Variational autoencoder (VAE) 

VAE is one of the most widely utilized unsupervised generative models, which aims to learn the 

most salient features of a given dataset without the need for supervision. The VAE is comprised 

of two networks: an encoder and a decoder as shown in Fig. 1. The decoder is employed to 

approximate the conditional distribution 𝑝(𝑥|𝑧)  for reconstructing the data 𝑥  from the prior 

distribution of the latent space 𝑝(𝑧) . During training, the encoder estimates the variational 

posterior 𝑞(𝑧|𝑥), which approximates the latent distribution 𝑝(𝑧). This distribution is utilized to 

map the data 𝑥, which is located in a high-dimensional data space, to a low-dimensional feature 

space also known as latent space. 

The learning process can be described as the optimization of a loss function composed of two 

components: a reconstruction loss function and the KLD loss term. In Eq. (1), the joint log-

likelihood such as the cross-entropy function is adopted for the first term. The second term 

corresponds that forces the posterior distribution 𝑞(𝑧|𝑥) with latent distribution 𝑝(𝑧). 

 𝐿 = 𝔼𝑞(𝑧|𝑥)[log 𝑝(𝑥|𝑧)] − 𝐷𝐾𝐿(𝑞(𝑧|𝑥) ∥ 𝑝(𝑧)) (1) 

The reparameterization trick is typically employed in the context of latent space modeling. The 

latent variables 𝑧, which store reduced high-level features, are formulated as in Eq. (2), using the 

mean 𝜇, the variance 𝜎 and a predefined Gaussian distributed noise 𝜀 [9]. Since the latent variables 

𝑧 have continuity, learning is conducted through backpropagation.  

 

 𝑧 = 𝜇 + 𝜎𝜀, 𝜀~𝑁(0,1) (2) 

Figure 1: Architecture of VAE. 
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2.2 Least-square hierarchical variational autoencoder (LSH-VAE) 

Despite those improvements, vanilla VAE will be prone to vanishing gradients and the loss of 

long-range correlation due to the limitation of shallow network. It may impede their capacity to 

represent complex system with numerous number of degrees of freedom. To remedy such 

limitation, a hierarchically structured deep VAE will be developed as solution to improve 

performance by preserving long-range correlation and stabilizing the training process. Such 

structure employs a bidirectional inference network, whereby a bottom-up pass generates feature 

and the latent variable are processed from top to bottom, with the features shared. In a bidirectional 

inference network, generation of latent variables will be shared between the two network 

component. Consequently, KLD loss term will be divided into groups in the loss function of deep 

hierarchical VAE. 

In contrast to the conventional binary cross-entropy KLD, LSH-VAE will employ a hybrid 

weighted loss function that integrates the mean-squared error (MSE) and KLD. The loss function 

was empirically demonstrated to yield superior outcomes for continuous result [7]. The loss 

function of LSH-VAE is shown in Eq. (3).  

 

 𝐿 = 𝛼𝑀𝑆𝐸(𝑥,  𝑥̃)− 𝛽𝐷𝐾𝐿(𝑞(𝑧|𝑥) ∥ 𝑝(𝑧))

− 𝛽∑ 𝔼𝑞(𝑧<𝑖|𝑥)[𝐷𝐾𝐿(𝑞(𝑧𝑖|𝑧<𝑖, 𝑥) ∥ 𝑝(𝑧𝑖|𝑧>𝑖))]
𝐿−1

𝑖=1
 

(3) 

In Eq. (3), the 𝛼 and 𝛽 represent the weights for MSE and KLD losses, respectively and the weight 

ratio is set to approximately 𝛼: 𝛽 ≈ 106: 1. KL annealing is employed to prevent posterior collapse. 

In KL annealing, the value of 𝛽 varies with epochs during training, as illustrated in Eq. (4). 

 

 

𝛽 = {

1 × 10−4𝛽𝑡𝑎𝑟𝑔𝑒𝑡 (𝑖𝑓 𝑒𝑝𝑜𝑐ℎ < 0.3𝑛𝑒𝑝𝑜𝑐ℎ𝑠)

𝛽𝑡𝑎𝑟𝑔𝑒𝑡
𝑒𝑝𝑜𝑐ℎ

𝑛𝑒𝑝𝑜𝑐ℎ𝑠
 (𝑖𝑓 𝑒𝑝𝑜𝑐ℎ > 0.3𝑛𝑒𝑝𝑜𝑐ℎ𝑠)

 

(4) 

3 LSH-VAE OVERVIEW 

3.1 Architecture of LSH-VAE 

As shown in Fig. 2, the encoder and decoder of LSH-VAE comprise of a series of layers, including 

batch normalization (BN), Swish, spectral normalization (SN), one-dimensional (1D) convolution, 

exponential linear unit (ELU) and dense. The encoder block output is divided into three paths, one 

leading to the next block and the other forming 𝜇 and 𝜎. As illustrated in Fig. 2, additional layers 

are incorporated into the decoder network to enhance its generative capabilities. The decoder 

network processes top-down information from preceding decoder block and shared information 

from latent variable. Then, latent variables and inputs for the subsequent block are generated by 

the decoder. In order to facilitate bidirectional information sharing, the i-th shared latent variable 

𝑧𝑖  is constructed by combining the i-th encoder latent variable and the (i-1)-th decoder latent 

variable. 
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3.2 Framework of LSH-VAE 

Prior to training, the Pre-acquired FOM result is normalized to the range of -0.7 to 0.7 for each 

degree of freedom. The normalized result is augmented by resampling with frequency extension. 

Then, the original and augmented variables will be concatenated to form the training dataset. In 

order to enhance the generalization and performance of neural network, the amplitude is adjusted 

and random noise is added within a range of ±30% at each epoch. 

Subsequently, the encoder network of LSH-VAE compresses the augmented FOM dataset into a 

latent variable. This will directly facilitate MOR because latent dimension is less than the FOM 

dimension. Within the training stage, LSH-VAE learns a compressed data representation via 

gradient-based methods. The Adamax optimizer is adopted for learning parameters of proposed 

networks. Generative neural networks typically necessitate latent vector exploration due to their 

probabilistic formulation. However, empirical evidence has demonstrated that with sufficient 

epochs and a limited number of parameters, such requirement may be eliminated [13]. Instead, the 

latent vector is computed directly using the mean value of the encoder network. 

Subsequently, spherical linear interpolation (slerp) is employed rather than linear linterpolation 

(lerp) in the latect space. The lerp assumes a straight line between points, which ignores the 

underlying structure of data distribution. In contrast to it, the slerp will follow the shortest arc on 

a high-dimensional hypersphere. Since the latent spaces are embedded in high dimensional space, 

slerp is more appropriate than lerp. The interpolated latent vector is fed to the decoder to 

reconstruct the target paramter field. 

Figure 2: Architecture of the encoder and decoder blocks of LSH-VAE. 
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The proposed framework can be divided into two stages: the offline stage and the online stage, as 

depicted in Fig. 3. Following the construction of FOM dataset for the parametric variations, the 

offline stage is computed only once and comprises preprocessing and training. Thereafter, the 

online stage, which contains interpolation and reconstruction, is implemented iteratively for each 

parametric estimation. 

 

4 NUMERICAL RESULTS  

This section presents the performance of the proposed scheme for HALE UAV subject to gust 

excitations. A comparison between FOM and current method on target parameter is made, focusing 

on deformations. The computational time is also compared in terms of speed-up factor. 

4.1 Gust loads analysis 

The gust loads analysis is conducted, which largely follows the gust regulation set forth by FAA 

[1] and EASA [2]. Twenty parametric samples are extracted based on Latin hypercube sampling, 

considering altitude, flight speed, gust length, and flight profile alleviation factor. These samples 

were selected to represent the gust disturbance as 1-cos excitation, and their ranges are summarized 

in Table 1. DLM, the industry standard for the unsteady aerodynamics, is utilized to compute 

aerodynamic loads. The generalized mass and stiffness of the HALE UAV, along with the structure 

eigenvalues and eigenvectors, were obtained from MSC.NASTRAN mode analysis and utilized 

for the gust simulation. The first four elastic modes are presented in Fig. 4 in the order of the modal 

frequency. ZAERO is employed to perform gust loads analysis using those parameters and method, 

thereby ensuring comprehensive and accurate simulation result. 

Table 1: Range and unit of the parameter space 

Parameter component Range Units 

Altitude – aircraft height above sea level [0, 11,000] m 

Figure 3: Schematic of LSH-VAE. 
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Flight speed – straight and level flight speed for the aircraft [70, 80] m/s 

Gust length – the distance for the gust to reach its peak velocity [9.144, 106.68] m 

Flight profile alleviation factor – scale maximum design gust velocity [0.6, 1.0] - 

4.2 Structural analysis 

As illustrated in Fig. 5, a three-dimensional finite element (FE) descretization of the present HALE 

UAV is comprised of hybrid elements, including beams, shells and solid elements. The 

concentrated mass elements are utilized to tune the dynamic behavior of the structural model. The 

FE model is clamped in the center of gravity region to perform a series of transient simulations. 

FOM computation is performed by MSC.NASTRAN 2019, by twenty parametric samples. In the 

context of this paper, the structural analysis is based on the assumption of linear elasticity, 

including isotropic and orthotropic material. FOM dataset, including the displacement variables 

dx, dy and dz is constructed by collecting a 5 second sample of the response at an interval of 0.01 

seconds. 

Figure 4: First four elastic modes of the present HALE UAV. 

Figure 5: HALE UAV FE discretization. 
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4.3 Parametric MOR using LSH-VAE 

FOM dataset is provided to LSH-VAE for training and interpolation. The training of LSH-VAE 

depends on several hyperparameters, which is summarized in Table 2. 

Table 2: Hyperparameters for LSH-VAE 

Criterion Value Criterion Value 

Epochs 𝑛𝑒𝑝𝑜𝑐ℎ𝑠 4,000 Latent dimension [32, 8] 

Loss function 

coefficient α 
1 × 106 Number of filters [64, 32, 16, 8, 4, 2, 1] 

Loss function 

coefficient 𝛽𝑡𝑎𝑟𝑔𝑒𝑡 
1 

Number of resampling 

augmentations 
5 

Learning rate 1 × 10−4   

 

In the present computation, the unknown parameters are selected values at the midpoint in 

parametric space. Figure 6 illustrates the original and the interpolated deformation field, 

respectively. To facilitate comparison of the aforementioned field, the coefficient of determination, 

denoted by 𝑅2, will be employed. 𝑅2 ranges from zero to one, with higher values indicating more 

accurate predictions and smaller discrepancies. The formula for 𝑅2 is as follows: 

 
𝑅2 = 1 −

∑(𝑦 − 𝑦̂)2

∑(𝑦 − 𝑦̅)2
 

(5) 

where 𝑦 represents the real values, 𝑦̂ the predicted values by LSH-VAE and 𝑦̅ the mean of 𝑦. The 

𝑅2 value is calculated for each time step, thereby indicating the degree of correlation between the 

predicted and actual values. Table 3 presents the time-averaged 𝑅2 values for the displacement 

field. A comparison of the FOM and LSH-VAE results yielded the lowest 𝑅2 value of 0.9713, 

which may be considered an acceptable outcome. 

 

Figure 6: Resultant deflection for the present HALE UAV. All units are in mm. 
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Table 3: Time-averaged 𝑅2 values of the interpolated displacement field 

Variable 𝑅2 value 

dx-deflection 0.9851 

dy-deflection 0.9713 

dz-deflection 0.9732 

 

The computational time consumed for LSH-VAE is also evaluated. The time required for each 

FOM computation is approximately 1.14 hours per parameter. In total, the offline stage required 

22.9 hours, while the online stage requires 0.15 hours. The current approach exhibits a speed-up 

factor of 7.87 for each unanalyzed parametric estimation. It is concluded that this approach offers 

significant benefits when the number of computations exceeds 22, as illustrated in Fig. 7. 

5 CONCLUSION 

This paper presents an efficient nonlinear parametric NIMOR framework for the gust load 

analysis. In order to relieve the computational and network training time, Latin Hypercube 

Sampling and data augmentation are used. The proposed framework is validated using a set of 20 

parametric samples on the HALE UAV. Comparison of the result reveals that the current approach 

exhibited a speed-up factor of 7.87 while achieving high 𝑅2 values of more than 0.97.  

In the future, the proposed framework will be applied to maneuver flight, including cooridinated 

turn, climb, and descent. LSH-VAE will be enhanced to accurately reflect the behavior of 

generalized aeroelastic response in response to variation in the design parameters. 

Figure 7: Computational time in terms of parametric queries. 
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