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Abstract: This paper reviews application of the periodic structure theory for pre-
dicting flutter characteristics of periodically stiffened plates and shells in hypersonic flow.
The method is particularly cost-effective when the number of spans becomes large.

1 Introduction

Recently, the topic of fluid-structure interaction in hypersonic flow has become of im-
portance, as discussed in [1], where the flutter onset of a panel subjected to hypersonic
flow has been investigated and the effects of various boundary conditions and structural
nonlinearities have been presented. The purpose of the present paper is to review a
method for calculating the flutter characteristics of periodic multi-bay panels commonly
encountered in aerospace structures, on the basis of the periodic structure theory [3], [4],
[5], [7], since the method is not widely known among the Aeroelastics community.

2 Flutter of Multi-bay Panels at High Supersonic

Speeds

The multi-bay panel system originally considered by Dowell [2] is shown in Figure 1.
The equation of motion of a panel subjected to supersonic flow can be written as
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Figure 1: Multi-bay panel system considered by Dowell in [2]

where

w = Panel deflection

D = Panel flexural rigidity

h = Panel thickness

ρs = Density of the panel material

c = Structural damping

U = Flow speed

q = Dynamic pressure =
1

2
ρU2

U = Flow velocity

β =
√
M2 − 1

M = Mach number

The above equation is based on the assumption that the pressure difference between the
top and bottom surfaces of the panel is given by the piston theory aerodynamics.

Satisfaction of the boundary conditions at the supports of an N -bay panel gives rise
to 4N homogeneous, linear equations. Setting the determinant of coefficients equal to
zero generates the characteristic equation for the eigenvalues. The functional relation can
be expressed as

FN(Z;λ) = 0 (2)

where Z = (ω/ωo)
2 − i(ω/ωo)gt, ωo is the fundamental natural frequency of the panel, λ

= Non dimensional dynamic pressure = 2qL3/MD, L is the distance between supports
and gt = gA + c = sum of aerodynamic and structural damping.

Solving for the eigenvalues Z we can compute

ω/ωo = igt/2± [(gt/2)2 + Z]1/2 (3)

Unstable solution occurs if the imaginary part of the radical has an absolute value greater
than gt/2. After a few algebraic steps, this inequality reduces to

gt < |ZI |/Z1/2
R (4)

where Z = ZR + iZI .
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At the flutter boundary, gt = |ZI |/Z1/2
R , and it can be shown that

|ωR/ωo| = Z
1/2
R (5)

The above equation gives the flutter frequency in terms of the eigenvalues of the multi-bay
panel and the inequality equation (4), gives the flutter boundary itself, in the λ, gt plane.
Based on the above formulation, the flutter boundaries for the one-bay and six-bay cases
were derived and are shown in Figures 2, 3.

Figure 2: The flutter boundary for the one-bay case, from Ref. [2]

Figure 3: The flutter boundary for the six-bay case, from Ref. [2]

It was also observed by Dowell [2] that the natural frequencies of a six-bay structure
fall into distinct groups as shown in Figure 4. It may be noticed that the frequencies
of each group are bounded by the natural frequencies of the basic panel with simply-
supported and clamped boundary conditions. He observed that the flutter boundaries
are influenced by these distribution of the natural frequencies.

For a structure with a large number of identical bays, the above method becomes
somewhat unwieldy. On the other hand, the periodic structure theory provides a cost-
effective way to predict the flutter boundaries of a multi-bay structure with a large number
of bays.
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Figure 4: Distribution of the natural frequencies and mode shapes of a six-bay case, from Ref.
[2]

3 Fundamentals of the Periodic Structure Theory

Distribution of the natural frequencies of multi-bay periodic structures in the absence of
any fluid flow was studied by SenGupta [3] in terms of propagation of natural flexural
waves along an infinitely long a periodically supported (or stiffened) panel.

Figure 5: An infinite beam over periodic supports

In this approach, as a flexural wave travels from one bay to the next, the moments
and slopes at the two ends of a periodic bay are related through a propagation constant
as follows

M2 = M1e
−µ

θ2 = θ1e
−µ

where µ is the propagation constant of the wave. In general, µ(= δ + iγ) is complex,
with the real part δ represents the decay of the flexural wave as it passes from one bay to
the next, and the imaginary part γ represents the corresponding phase change over the
peiodic length.

Figure 6 shows the variation of the decay parameter δ and the phase parameter γ
with frequency.
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Figure 6: Stop and pass bands in a periodically supported beam

In [3] it was shown that the natural frequencies fall into free propagation zoes or pass
bands, in which the flexural waves propagate freely without attenuation since δ = 0. In
these frequency bands, the imaginary part of the propagation constant is allowed to have
certain discrete values and the eigenvalues or the natural frequencies are related to those
discrete values.

In a finite N -bay periodic beam, any dynamic disturbance will give rise to flexural
waves in both positive and negative directions which will be reflected back and forth
between the boundaries. At any instant we should, therefore, expect both positive- and
negative-going waves to be present simultaneously and the total bending moment at the
rth support can be expressed as

Mr = Mr+ +Mr−

= M+e
i(ωt−γr) +M−e

i(ωt+γr)

= (M+e
−iγr +M−e

+iγr)eiωt (6)

where γ is the imaginary part of the propagation constant µ in the pass band, where the
real part δ of the propagation constant is zero.

From now on, we shall omit the term eiωt, since it denotes only the time dependence,
but its actual existence in appropriate places should be kept in mind. Thus,

Mr = M+e
−iγr +M−e

+iγr (7)
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3.1 Natural frequencies of an N-bay beam simply supported at
both ends

In this case, the boundary conditions are

M0 = 0

MN = 0 (8)

Evaluating M0 and MN from equation ( 7) and substituting in equation ( 8), we have

M+ = −M− (9)

and
M+ sin γN = 0; (10)

Since M+ 6= 0, therefore
sin γN = 0 (11)

and
γ = m

π

N
(12)

where m = 0, 1, 2.... It can therefore be concluded that for the N -bay beam simply
supported at both ends, γ can have only certain discrete values given by equation (above)
and the natural frequencies of the N -bay beam will be the frequencies at which γ satisfies
the above equation. Before proceeding any further, we need to take a closer look at the
above equation. This equation is satisfied by any integral value of m and, therefore there
seems to be no reason why the total number of natural frequencies in any propagation
zone should be equal to the number of spans.

However, this paradox is entirely removed once we remember that in each propagation
zone γ has the maximum and minimum numerical values of π and 0, respectively. If we
re-write the above equation,

m =
γN

π
, (13)

the maximum integer values of m will be governed by the maximum value of γ, which is
π. (As pointed out earlier, γ can be either positive or negative, therefore we shall from
now on consider only the absolute value of γ.) Therefore,

(m)max =
|γ|maxN

π
, (14)

and, thus, the permissible solutions of equation (above) are given by

γ = m
π

N
(15)

where m = 0, 1, 2, ..., N . The above equation still permits N + 1 solutions. However,
m = 0 corresponds to γ = 0 which is associated with the clamped-clamped frequency
of the individual bays in the first propagation zone. Since the extreme ends are simply
supported, this cannot be a possible natural frequency of the N -bay beam. Thus, in the
first propagation zone, m should have values from 1 to N giving N discrete values of γ and
correspondingly N discrete natural frequencies in the first group. m = N corresponds to
γ = π, which predicts that the simply supported frequency of the individual bays should
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be a valid solution for the N -bay beam. This is acceptable, since extreme ends are simply
supported.

In [3], it was shown that the natural frequencies of a periodic beam clamped at both
ends or clamped at one end and simply supported at the other end can also be obtained
in a similar manner. Application to the clamped case can be seen in figures 7 and 8.

Figure 7: A periodically supported beam clamped at both ends

Figure 8: Determination of the natural frequencies of a 5-bay periodic beam clamped at both
ends

3.2 Combination of the Periodic Strucre Theory with the Finite
Element Method

The periodic structure theory has been combined with the Finite Element Method and
applied to predict vibration characteristics of an aircraft fuselage with an enclosed acous-
tic medium with a large number of bays [4], as shown in Figure 9. It was shown that the
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computational costs can be substantially reduced by taking advantage of the periodicity
of the structure, specially when the number of spans is large.

Figure 9: Modeling of an aircraft fuselage section, based on the Periodic Structure Theory

4 Application of the Periodic Structure Theory for

Prediction of Panel Flutter at Hypersonic flow

The periodic structure theory was applied to predict the flutter boundaries of periodically
supported panels exposed to high supersonic flow by Mukherjee and Parthan in [5]. Figure
10 shows the variation of the phase parameter with frequency in the absence of any flow
(λ = 0) over the panel, as predicted in Ref. [5], and figure 11 shows the effect of the flow
on the phase parameter for λ = 100(A), 200(B) and 300(C).1

Figure 10: Variation of the phase parameter with frequency in the absence of any flow (λ = 0),
from Ref. [5]

1Note that in Ref. [5] the phase parameter γ has been renamed as µi.
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Figure 11: Variation of the phase parameter with frequency for three different values of λ, from
Ref [5]

The variation of the phase parameter µi, and the dynamic pressure parameter λ with
the frequency parameter Ω is shown in Figure 12.

Figure 12: Variation of the phase parameter and the dynamic pressure with frequency, from
Ref [5]

The supersonic flutter dynamic pressure of a 5-bay periodic panel can be obtained
from the graph showing the variation of the phase parameter with the dynamic pressue
by dividing the ordinate into five equal segments and projecting the points of intersection
with the curve on to the abscissa, as shown in figure 13. Mukherjee and Parthan [5]
matched their predictions with Dowell’s results for various multi-bay panels, as shown
in Figure 14, demonstrating the applicability of the periodic structure theory to predict
hypersonic flutter characteristics of periodically supported panels. They also extended
the method for predicting flutter characteristics of periodically supported panels with
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Figure 13: Prediction of supersonic flutter dynamic pressures of a five-bay periodically sup-
ported panels simply-supported at both ends.

both ends clamped in Ref. [6].

Figure 14: Comparison with Dowell’s results, from Ref [5]

5 Flutter analysis of Periodically Supported Curved

Panels

In addition, the periodic structure theory was also applied to predict the flutter bound-
aries of periodically supported curved panels (Figure 15) by Pany and Parthan in [7].
They were able to identify the flutter line (line of instability), using two methods - an
exact method and the finite element method. They were also able to show that the crit-
ical flutter results for multi-supported curved panels can be obtained by discretizing the
phase parameter based on the number of spans, as in the case of flat periodic panels.
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Figure 15: Flutter analysis of periodically supported curved panels, from Ref [7]

6 Concluding Remarks

In this paper, the method of predicting the flutter characteristics of multi-bay panels
based on the periodic structure theory was reviewed. It was shown that application of
the periodic structure theory provides a convenient and cost-effective method of finding
the natural frequency distribution as well as flutter boundaries, specially when the number
of spans is large.

Future research should take into account the presence of flexible periodic stiffeners
[8], [9], [10] as well as structural nonlinearity associated with the in-plane stress terms,
as discussed by Freydin & Dowell [1].
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