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Abstract: Ensuring adequate flutter margins is a critical step in aircraft design. However, ge-
ometrically nonlinear configurations may develop limit cycle oscillations even before reaching
the flutter boundary. When nonlinear effects are anticipated, post-flutter analyses have to be
integrated into design for preventing undesirable subcritical limit cycles. Therefore, there is
a need for computationally fast post-flutter analysis methods suitable for design applications.
Previous work proposed an efficient method for forecasting post-flutter responses using only
a few system calculations or measurements in the pre-flutter regime. This paper applies the
method for investigating the post-flutter response of a practical geometrically nonlinear wing
for various design choices to demonstrate the method suitability for parametric studies.

1 INTRODUCTION

Ensuring adequate flutter margins is a critical step in aircraft design. This step is accomplished
through intensive flutter computations and eventually verifications in flight test campaigns [1,2].
However, flutter margins are not a complete aeroelastic qualification metric for geometrically
nonlinear configurations because limit cycle oscillations (LCOs) can arise even before reaching
the flutter boundary.

Nonlinear aeroelastic effects can lead to supercritical or subcritical post-flutter responses [3].
The two scenarios are illustrated by the bifurcation diagrams in Fig. 1, which show the variation
of the LCO amplitude with a control parameter (for instance, the speed or the dynamic pressure).
When the post-flutter response is supercritical, LCOs smoothly arise only beyond the flutter
point. This is not typically a design concern because aircraft do not operate beyond the flutter
boundary. Subcritical post-flutter responses place a much more serious challenge to design. In
fact, a bi-stability region exists where disturbances can suddenly cause large-amplitude LCOs.

While subcritical post-flutter response is clearly undesirable, preventing it during design is chal-
lenging. One major problem is the lack of efficient post-flutter analysis methods suitable for
design space exploration [4]. Due to this shortcoming, post-flutter responses have been analyzed
mostly for simple configurations such as typical aeroelastic sections or straight uniform wings.
Therefore, the impact of design choices on post-flutter responses of realistic configurations is
not well understood.
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Figure 1: Possible post-flutter behaviors of a hypothetical nonlinear aeroelastic system.

Bifurcation diagrams can be computed using techniques such as time-marching schemes [5, 6],
harmonic balance methods [7,8], nonlinear perturbation methods [9,10], or numerical continua-
tion methods [11]. Although these techniques are well capable of building bifurcation diagrams,
they require significant theoretical or computational effort and do not scale well for complex
large-dimensional models. Furthermore, some existing numerical methods may require pre-
vious knowledge of post-flutter responses to overcome convergence issues. Such limitations
make existing methods impractical or not sufficiently robust for analyzing and designing realis-
tic configurations [4].

Recently, a novel model-free method, called the bifurcation forecasting method, was proposed
to forecast bifurcation diagrams of nonlinear systems using only few system outputs collected
in the pre-bifurcation regime [12, 13]. Output signals can come from black-box simulations
or even experimental measurements while no information of the underlying system equations
is required. The method is efficient in computing bifurcation diagrams compared to alternate
traditional analysis methods, and it is readily applicable to complex large-dimensional aeroe-
lastic systems. This paper applies the bifurcation forecasting method to a practical geometri-
cally nonlinear wing [14] and leverages the method efficiency for investigating the impact of
design parameters on the wing post-flutter response. Output signals for applying the method
are obtained from a low-order nonlinear aeroelastic framework, the University of Michigan’s
Nonlinear Aeroelastic Simulation Toolbox (UM/NAST) [14], which is treated as a black box.

The paper is organized as follows. The model-free bifurcation forecasting method is summa-
rized in Sec. 2. The wing test case is described in Sec. 3. Numerical results for the wing
post-flutter response are discussed in Sec. 4. Concluding remarks are provided in Sec. 5

2 METHODOLOGY

The post-flutter analysis method used in this paper is the model-free bifurcation forecasting
method proposed in Refs. [12, 13]. The method leverages the critical slowing down (CSD)
phenomenon [15] observed in nonlinear aeroelastic systems as they approach a flutter (Hopf)
bifurcation. The closer the flutter point is, the longer it takes for the system to recover its initial
equilibrium state after a perturbation. This means that the recovery rate decreases as a control
parameter approaches its critical (flutter) value. Quantifying the CSD in the system response
to perturbations allows to predict the flutter point and the post-flutter response (bifurcation
diagram) while keeping the system in the pre-flutter regime.
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The method presents many advantages over classical post-flutter analysis methods that make it
suitable for parametric studies and design [4]. It is model free and requires only few system
outputs to predict a portion of the bifurcation diagram. This eliminates the need for compu-
tationally costly parameter sweeps or complex numerical continuation schemes. Outputs can
come from any black-box computational model or even from experimental measurements. This
makes the method readily applicable to large-dimensional systems and even to systems for
which a model is not available. Furthermore, the method characterizes the flutter type (super-
critical and subcritical) and the limit cycle amplitude beyond the flutter speed which are of a
great importance especially when the system operates close to the linear flutter boundary.

The main steps in the method are summarized below following the derivation reported in
Refs. [12, 13]. Previous applications include structural systems [12, 16], two-dimensional typi-
cal sections with spring nonlinearities [13,17–19], and an idealized high-aspect-ratio wing [20].

2.1 Single-Degree-of-Freedom System

To understand the method, it is convenient to consider a hypothetical single-DOF system

ṙ = f(r, U) , (1)

where r is the response amplitude, U is the control parameter which is the flight speed in this
study, and the overdot denotes the derivative with respect to time t.

A Taylor expansion in U about the bifurcation (flutter) point U = ŨF gives

ṙ = r
[
p(r) + α1(r)(U − ŨF ) + α2(r)(U − ŨF )2 + . . .

]
. (2)

For parameter values close to the bifurcation, the governing equation is assumed to have such
a polynomial dependence on the parameter. Note that there is no small-amplitude assumption
in Eq. (2) because the expansion is in U and not in r. Mathematically, using more terms in the
Taylor series approximation in Eq. (2) results in a more accurate approximation. However, using
higher-order terms increases the effect of noise and uncertainties in the forecasting procedure.
A first- or second-order approximation is reasonable provided that the system is close enough
to the flutter speed.

Using Eq. (2), the recovery rate λ from a perturbation is introduced as

λ :=
d

dt
ln r = p(r) + α1(r)(U − ŨF ) + α2(r)(U − ŨF )2 + ... , (3)

where p(r), α1(r), α0(r) are polynomial functions independent of U . These polynomials de-
scribe the variation of λ with r at a fixed U value and characterize the type of post-flutter
response (subcritical or supercritical).

Based on Eq. (3), the bifurcation diagram can be predicted using few system output signals
collected at pre-flutter conditions. Outputs can come from black-box simulations or experi-
mental measurements, and can be obtained by perturbing the system with disturbances of any
amplitude and type (for instance, gust loads or control-surface inputs).

The methodology is illustrated in Fig. 2. The system is perturbed at NU conditions Uk < ŨF

(k = 1, . . . , NU ) to collect Nr response amplitudes r(tj) = r̃j (j = 1, . . . , Nr). The minimum
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Figure 2: Schematic of bifurcation forecasting method (adapted from Ref. [20]).
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Figure 3: Recovery rate in the λ− U plane at r = r̃1 (adapted from Ref. [20]).
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number of required measurements depends on the order of the polynomial used in Eq. (3).
For example, if the recovery rate λ is approximated by a second-order polynomial in U , the
method requires measurements at NU ≥ 3 flow speeds U . For a fixed amplitude value, for
instance r̃1, the recovery rates λ(r̃1, Uk) = λ1k (k = 1, . . . , NU ) can be computed at the various
speeds as discussed below in Sec. 2.2. Once the values λ1k are estimated, they are fitted in the
λ − U plane using a polynomial of the selected order (e.g., second-order) as shown in Fig. 3.
The intersection between the fitting function and λ = 0 gives the value U = Ũ1 that identifies
the point (r̃1, Ũ1) on the bifurcation diagram (see Fig. 2). In fact, points on the bifurcation
diagram correspond to λ = 0, meaning that the system is at its equilibrium state. Repeating this
procedure at different amplitudes gives a portion of the bifurcation diagram up to the maximum
amplitude r̃max recorded in the output signals.

2.2 Multi-Degree-of-Freedom Oscillatory Systems

The most critical step in forecasting bifurcation diagrams is computing accurate recovery rates.
Particularly, multi-DOF systems encountering flutter (Hopf) bifurcations are challenging be-
cause: 1) the system response is oscillatory; and 2) many modes are active in the response, but
only one (the bifurcating mode) shows the CSD.

In flutter (Hopf) bifurcations, the system oscillates during its recovery from perturbations in the
pre-flutter regime. That is because the motion is essentially two-dimensional, and one cannot
use Eq. (3) for all of the points in the measured system recovery because data points adjacent to
each other have different phases. Since the inertial manifold is two-dimensional, the solution is
to choose a specific phase on the inertial manifold to construct a Poincaré section that reduces
the system to a one-dimensional nonlinear map, and the same procedure can be used as for the
non-oscillatory case to forecast the bifurcation diagram corresponding to the selected phase. To
forecast the maximum amplitude of the limit cycles in the post-bifurcation regime, one has to
choose local maxima of the measured system recoveries for forecasting.

Additionally, in large dimensional systems there can be several modes active in the measured
system recovery. In the great majority of Hopf bifurcations, including flutter, only one pair
of conjugate eigenvalues is involved in the bifurcation. Hence, the effects of the other modes
can be neglected as they do not exhibit CSD and make the approximation of the recovery rates
challenging. This idea is exploited in the proposed forecasting method to enhance the accuracy
of bifurcation prediction. The contribution of the bifurcating mode in the response is identified
and decomposed using time series analysis techniques [13, 19]. Measuring system response to
perturbations, mode shapes can be estimated from system outputs directly using modal identi-
fication techniques such as the eigensystem realization algorithm (ERA) as used in Ref. [13].
Measurements are then projected onto the aeroelastic mode shapes computed at a flow speed
closest to the flutter point (U3 in Fig. 3) which provides the best approximation to the center
manifold of the dynamics.

3 TEST CASE

The test case considered in this work is based on the blended-wing-body (BWB) aircraft de-
scribed in Ref. [14]. This configuration is chosen due to its well-know geometrically nonlinear
behavior [14] which makes it a relevant aeroelastic test case for demonstrating the forecasting
method. This paper studies the half-vehicle configuration assumed as clamped at the center-
line, that is, without including the interaction between the rigid-body motion and the nonlinear
aeroelastic response. The full vehicle in free flight is a future target of the work.
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Figure 4: Test case planform and location and discretization of the UM/NAST reference beam axis (dashed line).
Red segments identify elements where strain outputs are measured.

Table 1: Test case properties.

Property Body Wing

Reference beam axis location at root/tip (% chord) 64.38/45.60 45.60/45.60
Center of gravity location at root/tip (% chord) 64.38/45.60 45.60/45.60

Axial stiffness (N) 1.69 × 108 1.55 × 108

Torsion stiffness (Nm2) 2.25 × 106 1.10 × 104

Out-of-plane bending stiffness (Nm2) 7.50 × 105 1.17 × 104

In-plane bending stiffness (Nm2) 3.50 × 107 1.30 × 105

Mass per unit span (kg/m) 50 6.20
Out-of-plane inertia per unit span (kg m) 0.70 5.00 × 10−4

In-plane inertia per unit span (kg m) 22.00 4.62 × 10−3

Output signals for the bifurcation forecasting are obtained by simulating wing gust responses
using UM/NAST [14]. This is an integrated flight dynamic and nonlinear aeroelastic framework
for simulating very flexible aircraft using a low-order geometrically exact strain-based beam
formulation [21] coupled with the Peters’ finite-state unsteady potential-flow theory [22] (or
other aerodynamic models) and, in free-flight conditions, with the rigid-body equations. While
UM/NAST is used for generating output signals and for verifying the bifurcation diagrams
against time marching, the forecasting does not use any information from the UM/NAST model.

The test case planform and the location and discretization of the UM/NAST beam reference
axis are shown in Fig. 4. The structural properties are reported in Table 1. The structure is
subdivided into a stiffer center body and a flexible wing. Nine concentrated masses of 2 kg are
equally spaced along the wing reference beam axis. The first ten in-vacuum natural frequencies
of the test case and the classification of the corresponding mode shapes are reported in Table 2.

Unsteady aerodynamics is modeled using the Peters’ finite-state unsteady airfoil theory [22]
combined with a NACA0012 lookup table for determining the lift, drag, and pitching moment
aerodynamic coefficient slopes at each point along the beam reference axis. A tip loss factor is
applied to account for three-dimensional effects.
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Table 2: Test case root-clamped in-vacuum natural frequencies.

Mode # Mode type Frequency (Hz)

1 Out-of-plane bending 2.19
2 In-plane bending 7.36
3 Out-of-plane bending 13.74
4 Out-of-plane bending 38.32
5 In-plane bending 46.75
6 Out-of-plane bending 66.25
7 Out-of-plane bending 88.19
8 Out-of-plane bending 95.45
9 In-plane bending 134.19

10 Torsion 134.77

4 RESULTS

The forecasting method is applied using strain output signals from various locations along the
wing span. This choice is made because strains are independent variables used in UM/NAST
and also structural variables directly measured in the practice. Output signals are obtained
by simulating wing responses to a 1-cos vertical gust perturbation with maximum amplitude
wgmax = 4 m/s and duration Tg = 0.1, corresponding to a frequency fg = 10 Hz. Gust re-
sponses are simulated up to t = 30 s with a time step ∆t = 5 × 10−5 s. Strain outputs used
for the forecasting are for the 4th and 8th vehicle elements that correspond to the wing-body
intersection and the wing midspan (see the planform in Fig. 4). Strain variables are assumed to
be constant throughout each element according to the UM/NAST strain-based structural formu-
lation [14, 21].

Aeroelastic effects increase the frequency of the first aeroelastic mode such that it approaches
the frequency of the second aeroelastic mode. This does not allow the effect of the CSD to be
isolated from the output signals using a frequency-based filter, as was done in previous work
on a cantilevered uniform high-aspect-ration wing [20]. Therefore, a modal decomposition is
used in this work based on mode shapes identified via the ERA algorithm. This approach was
previously used in a forecasting study of a typical section as reported in Ref. [13].

4.1 Baseline Model

The procedure for forecasting the bifurcation diagram is detailed considering the baseline test
case at root angle of attack α = 0 deg and without including the effect of self-weight. While
this is not a practical flight condition, it is chosen for its simplicity and because the absence of
statically nonlinear deformations allows to focus on the impact of dynamic nonlinearities. Thus,
due to the vehicle symmetry with respect to the horizontal plane, no structural deformation
occurs at α = 0 deg when neglecting the weight, such that all gust perturbations are applied to
the undeformed structure independently of the flight condition.

Forecasting the flutter speed and bifurcation diagram requires wing responses to perturba-
tions at several speeds in the pre-flutter regime. Surrogate measurements are generated using
UM/NAST as input to the forecasting method. In this example, system responses to gust per-
turbations at two speeds, U = 158 m/s and 159 m/s, before flutter are chosen as input to the
forecasting algorithm. At each flow speed, a gust perturbation is applied to the wing. The wing
response is recorded by collecting strain signals at several elements along the span and in dif-
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(a) (b)

Figure 5: Wing recoveries from perturbations at (a) U = 158 m/s and (b) U = 159 m/s for the out-of-plane
bending curvature recorded at the 8th element (wing midspan, see planform in Fig. 4).

ferent directions, i.e. considering the axial extension, torsional curvature, and out-of-plane and
in-plane bending curvatures. As an example, the recorded gust response for the out-of-plane
bending curvature at the 8th element (wing midspan, see planform in Fig. 4) and at U = 158
m/s and 159 m/s are shown in Fig. 5. These data and similar measurements recorded at several
speeds in the pre-flutter regime are used as inputs to forecast the bifurcation diagram.

To build the bifurcation diagram of LCO amplitudes, local maxima and minima of the decom-
posed signals are used. Bifurcation diagrams for each recorded strain and at each element along
the span can be forecasted separately. Following the forecasting procedure, curves of recov-
ery rate of local maxima of out-of-plane bending curvature recorded at the 8th element (wing
midspan, see planform in Fig. 4) are computed and shown in Fig. 6. Figure 7 (a) shows the fore-
casted bifurcation diagram constructed using the approximated recovery rates. The diagrams
show the maximum and minimum amplitudes of the LCO as functions of speed. Forecasting
results show that the system exhibits a subcritical bifurcation, where instability is possible even
below the linear flutter speed. Reference LCO amplitudes for verification are shown in Fig. 7
using solid circles. These are obtained using time-marching to solve the nonlinear aeroelastic
equations of motion in UM/NAST. To that aim, the system is perturbed at the corresponding
speed and the equations of motion are time marched until the response converges to the stable
LCO. Simulation results confirm the subcriticality of the flutter, and the linear flutter speed is
approximated as 159.95 m/s. Results shows that the forecast diagram is in agreement with the
reference values despite the fact that no information from the model is used in the forecast-
ing. Furthermore, flutter is correctly identified to be subcritical. Using the same forecasting
procedure, bifurcation diagrams for other strain variables at any element along the span can
be obtained. As an example, bifurcation diagrams for torsional curvature recorded at the 8th
element are forecast and shown in Fig. 6 (b).

4.2 Parametric Studies

The forecasting method is repeated by varying chosen design parameters. The goal is to demon-
strate the method suitability for parametric studies and to investigate the impact of the chosen
design parameters on the flutter type (subcritical or supercritical) and on the post-flutter LCO
amplitude.
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Figure 6: Recovery rate variation with amplitude obtained using local maxima of the signals shown in Fig. 5.

(a) (b)

Figure 7: Bifurcation diagrams for (a) the out-of-plane bending curvature and (b) the torsional curvature at the 8th
element (wing midspan). Solid lines are the forecasting results corresponding to the LCO amplitudes
in the post-flutter regime. Solid circles show reference LCO amplitudes computed by direct nonlinear
time-marching solutions. Shaded area shows the identified bi-stable region in the dynamics.
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Parametric studies were conducted for α = 0 deg and without including the effect for self-
weight. In this situation, flutter occurs due to the coupling of out-of-plane bending and torsion
motions with aerodynamics. Thus, parametric studies consider variations of the out-of-plane
bending and torsion stiffness constants and of the wing sweep angle because these properties
influence the degree of coupling between out-of-plane bending and torsion deformations. Prop-
erties are varied only in the wing (see planform in Fig. 4) while properties of the center body are
not modified. For each set of new properties, bifurcation diagrams for all the elements along the
wing span are constructed using as few as two measured wing gust responses. This capability
demonstrates the advantages of the forecasting method for generating bifurcation diagrams of
complex large-dimensional systems when the effect of several sets of parameters on the system
dynamics needs to be studied.

Changes in the wing stiffness properties and sweep angle affect both the flutter point and the
post-flutter bifurcation diagram. The variation in the flutter point prevents a direct compari-
son of the bifurcation diagrams because they are in different speed ranges. Therefore, speeds
are normalized by the flutter speed of each parameter case such that bifurcation diagrams can
be plotted on top of each other. For the sake of completeness, the relative variation in the
flutter point (in terms of flutter dynamic pressure) with the out-of-plane bending and torsion
stiffness constants and the sweep angle are reported in Tables 3 and 4. The variation is com-
puted relatively to the flutter dynamic pressure of the baseline configuration equal to 9411.58
Pa. Flutter points are approximated by the forecasted bifurcation diagrams directly. As ex-
pected, increasing either the out-of-plane bending or torsion stiffness constants delays flutter,
and a more pronounced effect is observed when increasing the torsion stiffness. When reducing
the sweep angle from 30 deg (baseline configuration) to 15 deg flutter is anticipated, while it
is delayed when further reducing the sweep angle to 5 deg. This behavior is caused by the dif-
ferent exchange of energy between the aeroelastic modes that originate from the first and third
structural modes of the configuration when varying the sweep angle.

Figure 8 shows the bifurcation diagrams approximated for various uniform variations in the
wing out-of-plane bending stiffness. Results are for the out-of-plane bending and torsion cur-
vatures at the 4th and 8th elements (wing-body intersection and wing midspan, respectively,
as shown in Fig. 4). Similar results can be plotted for other elements and strain variables as
well. Bifurcation diagrams are computed for out-of-plane bending stiffnesses which are 10%
and 20% greater and smaller than the ones of the baseline model. Results show that uniform
changes in these properties throughout the wing span do not affect the flutter type, i.e. the bifur-
cation remains subcritical, while they impact the linear flutter speed as shown in Table 3. The
post-flutter LCO amplitude is also affected by these stiffness variations. The degree of change
in the LCO amplitude varies depending on the type of measured strain and the element location
along the wing span. Results in Figs. 8 (a) and (c) show that reducing the out-of-plane bend-
ing stiffness slightly reduces the bi-stability region and the amplitude of post-flutter LCOs for
the torsion curvature. However, this benefit comes at the cost of a lower linear flutter speed as
shown in Table 3 and of a larger-amplitude LCO for the out-of-plane bending curvature shown
in Figs. 8 (b) and (d). On the contrary, increasing the out-of-plane bending stiffness improves
the linear flutter speed and reduces the amplitude of the out-of-plane bending curvature LCO,
while it increases the LCO amplitude for the torsion curvature.

Figure 9 shows the approximated bifurcation diagrams for various uniform variations in the
wing torsion stiffness. Trends are in line with the case of out-of-plane bending stiffness varia-
tions. Reducing the torsion stiffness anticipates flutter and increases the amplitude of LCOs for
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Table 3: Variation in the flutter point with the out-of-plane bending and torsion wing stiffness constants.

Flutter point variation

Stiffness constant variation -20% -10% 10% 20%

Out-of-plane bending -8.20% -3.84% 3.28% 6.22%
Torsion -13.04% -6.27% 5.70% 11.04%

Table 4: Variation in the flutter point with the wing sweep angle.

Sweep angle Flutter point variation

15 -7.70%
5 5.54%

(a) (b)

(c) (d)

Figure 8: Variation in the bifurcation diagram with the wing out-of-plane bending stiffness for (a)-(b) the 4th
element (wing-body intersection) and (c)-(d) 8th beam (wing midspan).
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(a) (b)

(c) (d)

Figure 9: Variation in the bifurcation diagram with the wing torsion stiffness for (a)-(b) the 4th element (wing-body
intersection) and (c)-(d) the 8th element (wing midspan).

the torsion curvature, while the amplitude of LCOs decreases for the out-of-plane bending cur-
vature. These results suggest that when two deformations, i.e. out-of-plane bending and torsion,
are coupled in the bifurcating mode, increasing the stiffness associated to one delays flutter but
it increases the post-flutter LCO amplitude of the other. Contrasts between flutter point, flutter
type, and post-flutter LCO amplitude were also observed in previous work on a subcritical, uni-
form cantilevered wing [23]. While such contrasts are not pronounced for the present test case
and in the examined flight conditions, their possible occurrence is of great concern for design
due to the need of ensure that flutter characteristics meet certification requirements.

Finally, Fig. 10 shows the bifurcation diagrams for variations in the wing sweep angle. The
cases of sweep angles of 15 deg and 5 deg are considered as shown in Table 4, where the base-
line wing has a sweep angle of 30 deg (see Fig. 4). Results show that modifying the wing sweep
angle affects both the bi-stable region and the LCO amplitude in the post-flutter regime. Par-
ticularly, decreasing the sweep angle to 5 deg delays flutter but it increases the risk of jumping
to a large-amplitude LCO before reaching the linear flutter speed due to the higher amplitude
of the bi-stability region. This undesirable situation and the contrasts between flutter point and
post-flutter LCO amplitude observed in the previous results highlight the need of developing
efficient post-flutter analysis techniques for fast design space exploration of geometrically non-
linear configurations.
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(a) (b)

(c) (d)

Figure 10: Variation in the bifurcation diagram with the wing sweep angle for (a)-(b) the 4th element (wing-body
intersection) and (c)-(d) the 8th element (wing midspan).
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5 CONCLUDING REMARKS

This paper demonstrates the suitability of a recently proposed model-free bifurcation forecast-
ing method for investigating the post-flutter response of practical geometrically nonlinear aeroe-
lastic systems. The method leverages the CSD phenomenon observed in nonlinear aeroelastic
systems as they approach a flutter (Hopf) bifurcation to forecast the flutter point, flutter type
(subcritical or supercritical), and the post-flutter bifurcation diagram. The method requires only
few systems outputs collected in the pre-flutter regime with no need for computationally costly
parameter sweeps or complex numerical continuation schemes, and it does not use information
from a model of the system. These characteristics make it an effective approach for design
space exploration of practical large-scale nonlinear aeroelastic systems such as geometrically
nonlinear wings.

The method was applied to a half-vehicle BWB configuration assumed as clamped at the cen-
terline. Output signals for the forecasting method were obtained by simulating gust responses
using the UM/NAST framework, but no information from the UM/NAST model of the vehicle
was used in the forecasting procedure. The test case was found to experience a subcritical flutter
bifurcation with a narrow bi-stability region. The method accuracy was assessed by verifying
the stable branch of the forecasted bifurcation diagrams against fully nonlinear time-marching
simulations. Particularly, the method proved accurate in locating the folding point in the bifur-
cation diagram, that is, the lower limit of the bi-stability region. The knowledge of this point
is of paramount importance for system experiencing subcritical bifurcations where limit cycle
oscillations can arise even before reaching the flutter boundary.

Next, parametric variations in the wing out-of-plane bending and torsion stiffness constants and
in the sweep angle were considered to investigate their impact on flutter and post-flutter charac-
teristics and demonstrating the method suitability for design space exploration. Results pointed
out contrasts between flutter point and amplitude of post-flutter response when uniformly vary-
ing the out-of-plane bending and torsion stiffness constants throughout the wing span. Further-
more, reducing the wing sweep angle was found to increase the amplitude of the bi-stability
region. While the impact was small for the considered test case and flight conditions, the possi-
ble occurrence of undesirable subcritical LCOs before reaching the flutter boundary motivates
the development of efficient post-flutter analysis methods for design space exploration of geo-
metrically nonlinear aeroelastic systems.
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