
International Forum on Aeroelasticity and Structural Dynamics
IFASD 2019

9-13 June 2019, Savannah, Georgia, USA

A MULTI-OBJECTIVE OPTIMIZATION FRAMEWORK FOR
HYPERSONIC AEROTHERMOELASTIC SCALING LAWS AND ITS

APPLICATION TO SKIN PANELS

Daning Huang1 and Peretz P. Friedmann1

1Department of Aerospace Engineering
The University of Michigan, Ann Arbor, MI, 48109

Keywords: hypersonic aerothermoelasticity, numerical scaling laws, multi-objective Bayesian
optimization

Abstract: This study describes the development of an optimization framework for generating
hypersonic aerothermoelastic scaling laws using a novel two-pronged approach. The approach
combines classical scaling based on dimensional analysis with augmentation from numerical
simulations of the specific problem. Combined comparison and adjustment of the full-scale
prototype and the scaled model yields the refinement of the scaling laws. The search for an
aerothermoelastically scaled model is formulated as an multi-objective optimization problem,
which is solved using a multi-objective Bayesian optimization algorithm. The effectiveness
of the two-pronged approach is demonstrated by its application to the development of refined
hypersonic aerothermoelastic scaling laws for a composite skin panel configuration.

List of Symbols

Latin Symbols

A, Axx Extensional stiffness matrix for composite shell and its first element
B, Bxx Extension-bending stiffness matrix for composite shell and its first ele-

ment
Bi Biot number
B̄ Nose bluntness similarity parameter
C Acquisition function
cE, cI Equality and inequality constraints
cp Specific heat capacities at constant pressure
cu, cT Weights for structural and thermal objectives
D, Dxx Bending stiffness matrix for composite shell and its first element
D Data set
d Design variables
d Radius of the blunt nose of a slender body
E Statistical expectation
E Young’s modulus
F Pareto front
F Pareto set, i.e. a set of Pareto optimal solutions
Fo Fourier number
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H Hypervolume of Pareto front
H Altitude
h, hi Thicknesses of lamina of a composite shell, and the ith laminae
h Shell thickness
I Improvement function
I1, I2, I3 Moments of inertia of the composite shell
IH Hypervolume indicator of Pareto front
J Vector of objectives
Ju, JT , Js Errors in the nondimensional aerothermoelastic response
k, k Thermal conductivity
L Characteristic length
Lle Length of rigid wall upstream of the panel
MT ,MTx Thermal internal in-plane moments and the first element
M Mach number
NT , NTx Thermal internal in-plane forces and the first element
N Gaussian distribution
Nt Number of time steps
n Normal vector
P Probability
Pr Prandtl number
p Pressure
Q Stiffness matrix in lamina constitutive relation
q̇ Heat flux
Ri Curvature in i direction
Re Reynolds number
S, Sxx Transverse shear stiffness matrix for composite shell and its first ele-

ment
S,Sg Function for combining multiple objectives
T, T Temperature
Tw Wall temperature
Tini Initial temperature
Trad Radiation temperature
Tcr Temperature associated with the first buckling mode
∆T Temperature increase
t Time
∆t Time step size
u, u Structural displacements
uw Thickness distribution of a slender body
V, V Flow velocity
x = [x, y, z] Cartesian coordinates

Greek Symbols

α, α Thermal expansion coefficients
γ Heat capacity ratio
ε Surface emissivity
θ Inclination angle
λ̄F Nondimensional dynamic pressure
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µ Mean of Gaussian distribution
µ Viscosity
ν Poisson’s ratio
Ξ̄ Boundary layer similarity parameter
ξ Geometric scale
ρ Density
Σ,σ Covariance matrix of Gaussian distribution, and the vector of standard

deviations
σ Standard deviation in Gaussian distribution
υ Coefficient for exploitation-exploration balance
Φ Cummulative density functions
Ψu,ΨT Projection matrices whose columns are structural and thermal modes,

respectively

Subscripts and superscripts

□bc Quantities related to boundary conditions
□ext Quantities related to external loading
□F Quantities related to the fluid solution
□ref Quantities for reference
□S Quantities related to the structural solution
□T Quantities related to the thermal solution
□∞ Quantities related to freestream
□0 Quantities related to stagnation state
□f Properties of the fluid
□m Quantities related to the scaled model
□p Quantities related to the prototype
□s Properties of the solid
□sur Quantities related to surrogate
□̂ Reference quantity for non-dimensionalization
□ Nondimensional quantity
||f || = (

∑
i f

2
i )

1/2 The l2 norm

Acronyms

ADflow Automatic Differentiation flow solver
ASL Aerothermoelastic Scaling Laws
BHCJ Boeing Hypersonic Commercial Jet
BO Bayesian Optimization
CFD Computational Fluid Dynamics
EI Expected Improvement
HTF Hypersonic Tunnel Facility
HV HyperVolume
HYPATE HYPersonic AeroThermoElasticity simulation environment
LCB Lower Confidence Bound
LSA Linearized Stability Analysis
MO Multi-objective Optimization

3



IFASD-2019-143

MOBO Multi-Objective Bayesian Optimization
NS Navier-Stokes
OLH Optimial Latin Hypercube
POD Proper Orthogonal Decomposition
PoI Probability of Improvement
ROM Reduced Order Model
SO Single-objective Optimization
SBO Surrogate-Based Optimization
WM Weighted Metric

1 INTRODUCTION, BACKGROUND AND OBJECTIVES

Airbreathing hypersonic vehicles have the potential to revolutionize global transportation by
vastly reducing the traveling time between distant locations. The past decade has witnessed
strong, revived interest in reusable airbreathing hypersonic launch vehicles for low-cost space
exploration as well as rapid response to global military threats [1–4]. Airbreathing hypersonic
vehicles are exposed to extreme aerothermodynamic environments that involve high aerody-
namic loading and heating, leading to degradation of material properties. The thermal stress
introduced by the temperature gradients and geometrical constraints can affect structural in-
tegrity and cause structural instabilities, such as buckling, panel flutter, and control surface flut-
ter. Therefore, the determination of aerothermoelastic characteristics is critical for the design of
hypersonic vehicles.

One approach for determining the aerothermoelastic characteristics is aerothermoelastic testing.
Aerothermoelastic testing refers to the construction of a scaled version of the prototype vehicle
and its direct insertion into a high-stagnation-temperature wind tunnel where the aerothermoe-
lastic model can be exposed to aerodynamic heating and loading simultaneously. Once such
wind tunnel tests were available, the test data obtained on scaled models could be extrapolated
to full-size vehicles, resulting in a dramatic reduction in the cost of hypersonic aerothermoelas-
tic flight testing, as well as a shortened design cycle of hypersonic vehicles.

Work conducted on hypersonic vehicles in early 1960’s has resulted in landmark papers [5–7] on
scaling laws that can be used for constructing aerothermoelastically scaled models and mapping
of the experimental results back to the full-scale prototype. The aerothermoelastic scaling laws
(ASL) enable wind tunnel tests up to M∞ ≤ 3.5 and T0 ≤ 1000◦F ≈ 811K. However, modern
hypersonic vehicles are expected to operate at much higher Mach numbers and in wider range
of temperatures, as illustrated in Fig. 1. Experimental vehicles such as the X-43 [8] and the X-
51 [9] have flown over Mach 4.5-6 at altitudes from 15 km to 33.5 km. The SR-72 is expected
to cruise at Mach 6 at an altitude of 24.3 km [10]. The Boeing Hypersonic Commercial Jet
(BHCJ) is expected to cruise at Mach 5 at an altitude of 27 km [11]. As a result, the range
of aerothermoelastic testing has to be extended from the high supersonic flow regime to the
hypersonic flow regime M∞ ≤ 10 and T0 ≤ 3000K. However, Ref. [7] has concluded that
complete hypersonic aerothermoelastic similarity is impossible to achieve for scale ratios that
differ from unity.

Lack of hypersonic ASL has resulted in the use of “restricted purpose” testing approaches and
“incomplete” aerothermoelastic testing [6, 7]. Restricted purpose testing implies a study of
the aerothermoelastic problem assuming that the coupling between the aerodynamic pressure,
aerodynamic heating, heat conduction and stress-deflection phenomena is weak. However, the
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fluid-thermal-structural interactions cannot be decoupled in modern hypersonic vehicles since
they are based on an integrated airframe-propulsion concept, which enhances the interactions
between the various components [12]. Incomplete aerothermoelastic testing refers to the use
of additional means, other than aerodynamics, to provide loading or heating. This requires a
priori knowledge of the loading and heating on the full-scale vehicle, as well as the ability to
accurately apply these loads at the appropriate locations as a function of time, which is difficult
to achieve in practice. The barriers associated with hypersonic aerothermoelastic testing have
been one of the factors contributing to problems encountered during the development of air-
breathing hypersonic vehicles in the past, such as failures in flight as well as high temperature
structural testing.

Figure 1: Flight envelopes of typical supersonic and hypersonic vehicles.

In addition to the lack of ASL, another issue associated with hypersonic aerothermoelastic test-
ing is the scarcity of appropriate wind tunnel facilities for the tests beyond the high supersonic
flow regime. An ideal wind tunnel has to meet three basic requirements: (1) high stagnation
pressure (p0 ≥ 0.5MPa), (2) high stagnation temperature (T0 ≥ 800K), and (3) sufficiently
long operating time period (at least on the order of minutes). The first two requirements ensure
the simultaneous reproduction of the hypersonic aerodynamic loading and heating conditions
and the third requirement ensures sufficient time for the development of the thermal responses
in the scaled model that is critical to aerothermoelastic testing. Figure 2 illustrates the typi-
cal operational time period and stagnation temperature of different types wind tunnels [13, 14].
Only some of the blow-down and continuous wind tunnels can potentially satisfy the basic re-
quirements of hypersonic aerothermoelastic testing. Furthermore, two additional requirements
are desirable: (1) the test section should be sufficiently large to accomodate the scaled model;
(2) the working fluid should be inert gas, e.g. dry air or Nitrogen-Oxygen mixture, to avoid re-
active products [14]. When accounting for these requirements, there are only a limited number
of wind tunnels that can be potentially used for hypersonic aerothermoelastic testing [14–17],
as illustrated in Fig. 3.

Recently, there is renewed interest in developing models for aerothermoelastic testing in high
supersonic and hypersonic wind tunnels [14, 18]. In these studies, scaled skin panel models
are designed with the aid of numerical simulation tools so as to obtain the desired aerother-
moelastic response in the wind tunnel. However, the primary goal of these studies is not to
achieve aerothermoelastic scaling. Instead, the goal is to develop skin panel models that are
quite flexible, such that the interaction between the high-speed flow and the panel deformation
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becomes observable in the wind tunnel. The response observed on such wind tunnel models is
not representative of the realistic aerothermoelastic response of the skin panels on a hypersonic
vehicle.

To summarize, success in the development of scaling laws for hypersonic aerothermoelasticity
has not been achieved yet. Therefore hypersonic aerothermoelastic testing is non-existent. This
situation limits substantially our understanding of the aerothermoelastic behavior of hypersonic
structures.

Figure 2: Capabilities of various types of wind tunnels.
Figure 3: Envelope of testing conditions of several

wind tunnels.

In the previous studies [19–21], a novel methodology was proposed in order to overcome the
difficulties associated with the hypersonic aerothermoelastic testing by developing “numerical”
ASL. The methodology is based on the two-pronged approach [22] that combines the classical
approach with modern simulation based on computational aerothermoelasticity, as illustrated in
Fig. 4. On the left-hand branch, basic scaling requirements are established using dimensional
analysis, in a manner that resembles the classical procedure in Ref. [7]. On the right-hand
branch, complete aerothermoelastic solutions for the prototype (i.e. full scale) as well as the
scaled model are obtained using numerical aerothermoelastic simulation. From the compari-
son and adjustment of these two models, the “numerical similarity solutions” are generated to
replace the analytical similarity solutions for refined scaling laws. The process of model ad-
justment is formulated as an optimization problem, where the design variables are selected to
correspond to the most important parameters needed for the refined simulation that differ from
those employed when generating the model based on classical similarity. Eventually, the nu-
merical scaling laws for the specialized cases can be obtained without recourse to the ad hoc
assumptions used in the classical approach, which overcomes the difficulties associated with
hypersonic aerothermoelastic testing. In Refs. [19–21], the effectiveness of the two-pronged
approach for deriving numerical ASL was demonstrated by the scaling of a skin panel in hyper-
sonic flow. The similarity in the aerothermoelastic stability boundary between the prototype and
the model was successfully obtained by adjusting a single variable consisting of the upstream
plate length.
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The current study is a sequel to our previous studies [19–21], aiming to generalize the optimiza-
tion framework for the development of numerical scaling laws of aerothermoelastic responses.
The specific objectives of the paper are:

1. To present a systematic dimensional analysis of the aerothermoelastic response of a mod-
ern composite hypersonic structure.

2. To develop a multi-objective optimization framework using the two-pronged approach
that enables the generation of refined hypersonic ASL.

3. To apply the optimization framework to generate aerothermoelastically scaled models of
a composite skin panel in hypersonic flow that are suitable for testing under realistic wind
tunnel conditions.

Figure 4: Schematic illustration of the two-pronged approach.

2 ANALYTICAL AEROTHERMOELASTIC SCALING LAWS REVISITED

In the literature, only partial successes were achieved in the development of hypersonic ASL
[5–7]. The aerothermoelastic similarity parameters that need to be satisfied are derived from the
dimensional analysis of the general equations for stress, displacement and temperature distribu-
tion of an isotropic slender body immersed in a hot, flowing gas. In this section, following the
analytical approach in Refs. [5–7], the derivation of similarity parameters is extended for the
aerothermoelastic response of a modern composite hypersonic structure. The major similarity
parameters are identified as required for the left-hand branch of the two-pronged approach. Fi-
nally, the conflicts in analytical aerothermoelastic scaling are identified and possible solutions
to these conflicts are proposed.

2.1 The Thermal Problem

The governing equation of heat transfer in an anisotropic solid body is [23],

ρs(x, T )csp(x, T )Ṫ −∇ · (ks(x, T ) ·∇T ) = 0 (1)

and the boundary and initial conditions are as follows,

On body surface : − n ·ks(x, T ) ·∇T = q̇bc(x, T, t) = q̇F (x, T, t) + q̇ext(x, T, t) (2a)
At t = 0 : T (x) = Tini(x) (2b)

where the density, thermal capacity and conductivity are inhomogenous and temperature de-
pendent. The surface heat flux q̇bc is due to aerodynamic heating q̇F and other heat sources q̇ext,
such as radiation.
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The non-dimensionalization of Eqs. (1)-(2) results in the following similarity parameters,

Fo =
k̂st̂

ρ̂sĉspL̂
2
3

, Bi =
ˆ̇qL̂3

k̂sT̂T

,
L̂3

L̂1

,
L̂3

L̂2

(3a)

ρ̄sc̄sp, k̄s, T̄ini, ¯̇qbc (3b)

where the quantities with a hat (□̂) are reference values and the quantities with a bar (□) are
nondimensional.

In Eq. (3a), the first quantity is the Fourier number, a dimensionless time representing the ratio
between the rate of heat conduction to the rate of energy stored by capacitance [24, 25]. It
defines the time scale of the thermal problem. The second quantity is the Biot number that
characterizes the heat transfer resistance of the body. The quantities L̂3

L̂1
and L̂3

L̂2
require the

similarity in geometrical configuration. In Eq. (3b), the first two quantities require the similarity
in the material properties as functions of temperature and spatial coordinates. Note that k̄s is
a 3 × 3 symmetric matrix, and contains 6 independent similarity parameters. The last two
quantities define the distribution of initial temperature field and the heat flux, respectively.

For heat transfer in a composite shell structure, one can choose L̂1 = L̂2 = L̂ as the length scale
of the shell and L̂3 = ĥ as the thickness of the shell, simplifying the similarity parameters in
Eq. (3),

Fo =
k̂st̂

ρ̂sĉspĥ
2
, Bi =

ˆ̇qĥ

k̂sT̂T

,
ĥ

L̂
(4a)

ρ̄sc̄sp, k̄s, T̄ini, ¯̇qbc (4b)

For a composite shell, the reference values for ρscsp and ks are defined as,

ρ̂sĉsp =

∫
ĥ

ρs(x, T̂T )c
s
p(x, T̂T )dz (5a)

k̂s =

(∫
ĥ

dz

ks
11(x, T̂T )

)−1

ĥ (5b)

where ks
11 is the first element of ks, and the reference thermal temperature T̂T is determined by

the dimensional analysis of the aerothermoelastic problem.

2.2 The Structural Problem

The governing equations for the shell structure representing the skin on the surface of a hyper-
sonic vehicle are based on the composite shallow shell theory with first-order shear deformation
theory and geometrical nonlinearity [26]. The panel is subjected to a transverse distributed load-
ing p = pF + pext, which consists of aerodynamic pressure and other sources of loading. In the
non-dimensionalization, the loading p is treated as a single variable.

The non-dimensionalization of the structural problem results in the following similarity param-
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eters,

ÎL̂4

D̂xxt̂2
, R̄x, R̄y (6a)

Ī1,
ĥĪ2

L̂
,

ĥ2Ī3

L̂2
(6b)

A, B, D, S, NT , MT (6c)

ÂxxL̂
2

D̂xx

,
B̂xxL̂

D̂xx

,
ŜxxL̂

2

D̂xx

,
N̂TxL̂

3

D̂xxû
,

M̂TxL̂
2

D̂xxû
(6d)

p̂L̂4

D̂xxû
, p̄,

û

L̂
(6e)

In Eq. (6a), the first quantity defines the time scale of the structural problem, and the next
two quantities represent the similarity in the geometrical configuration. The quantities in Eqs.
(6b) and (6c) require similarity in material properties as functions of temperature and spatial
coordinates. Note that A, B and D are 3 × 3 symmetric matrices, S is a 2 × 2 symmetric
matrix, and NT and MT are 3× 1 vectors. Therefore, A, B and D each contain 6 independent
similarity parameters, while S, NT and MT each contain 3 independent similarity parameters.
The quantities in Eq. (6d) requires the similarity in the ratios of various elastic properties.
Finally, in Eq. (6e), the first two quantities require the similarity in the distribution and the
magnitude of the external loading. The quantity û

L̂
requires the similarity in the magnitude of

the nonlinear deformation. The reference structural temperature T̂S , which is contained in the
definitions of Âxx, B̂xx, D̂xx, Ŝxx, N̂Tx, M̂Tx and Î , is determined from the consideration of the
aerothermoelastic problem.

In the case of thin, isotropic, and homogeneous plate, the 41 similarity parameters in Eq. (6)
reduce to 13 parameters,

ÎL̂4

D̂xxt̂2
(7a)

Ī1 (7b)

Axx, Dxx, NTx, MTx, ν (7c)

ÂxxL̂
2

D̂xx

,
N̂TxL̂

3

D̂xxû
,

M̂TxL̂
2

D̂xxû
(7d)

p̂L̂4

D̂xxû
, p̄,

û

L̂
(7e)

The set of similarity parameters in Eq. (7) is equivalent to the classical results in Ref. [7] if the
reference value for the elastic portion of the in-plane force is defined as,

N̂ = Âxx
û

L̂
(8)

2.3 The Fluid Problem

The fluid domain is governed by the complete unsteady Navier-Stokes (NS) equations for a
compressible, viscous, heat-conducting, perfect gas [6, 7]. For hypersonic flow, the following
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nondimensional quantities are introduced to non-dimensionalize the NS equations.

x̄i =
xi

L̂
, t̄ =

t

t̂
, T̄ =

T

T̂F

, V =
V

V̂
, ρ̄f =

ρf

ρ̂f
, p̄ =

p

p̂
(9a)

µ̄ =
µ

µ̂
, c̄fp =

cfp

ĉfp
, k̄f =

kf

k̂f
(9b)

As suggested in Ref. [6], in hypersonic flow, it is more convenient to non-dimensionalize the
NS equations using the stagnation conditions, instead of the free-stream conditions, because the
following high-M∞ approximations are available at the stagnation point,

T0 ≈
V 2
∞

2cfp0fT
, fT =

∫ 1

0

c̄fpd

(
T

T0

)
(10a)

p0 ≈
γ + 3

2(γ + 1)
ρ∞V 2

∞ (10b)

The following quantities are chosen as the reference values,

V̂ = V∞, ρ̂f = ρ∞, p̂ = p0 (11a)

µ̂ = µ0, ĉfp = cfp0, k̂f = kf
0 (11b)

The similarity parameters for the NS equations are [6],

V∞t̂

L̂
,
T̂F

T0

(12a)

Re0 =
ρ∞V∞L̂

µ̂
,Pr0 =

ĉfp µ̂

k̂f
, γ (12b)

µ̄, c̄fp , k̄
f (12c)

ūw =
uw

û
(12d)

In Eq. (12a), the first quantity defines the time scale of the fluid problem, and the second
quantity defines the reference temperature. The quantities in Eq. (12b) require similarity in the
flow properties. Note that the freestream Mach number M∞ does not appear and this is a result
of the Mach number independence principle in the hypersonic flow (pp. 107–111 of Ref. [27]).
Equation (12c) requires the similarity in the gas properties as functions of temperature. Finally,
the geometric similarity between the model and prototype is required.

The similarity parameters in Eq. (12) are rewritten for a slender body [28, 29], where concept
of boundary layer can be used. The slender body is characterized by a small thickness ratio
û

L̂
≪ 1, which is typical of a skin panel. Note that the thickness distribution uw accounts for

both the geometry and the deformation. With a few simplifying assumptions for hypersonic
flow and boundary layer, the similarity parameters for the surface pressure and the heat flux on
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a slender body are [6],

V̂ t̂

L̂
,

T̂F

T0

, T̄w =
Tw

T̂F

, ūw (13a)

p̂L̂

γp∞M∞û
, Re0Pr0

k̂f V̂ 2

ˆ̇qĉfpL̂
(13b)

Ξ̄ =
L̂2

û2
√

Re0
, B̄ = kBM

3
∞
d̂

L̂
(13c)

Pr0, γ (13d)

Four new similarity parameters are introduced in Eqs. (13a)-(13d). The two quantities in Eq.
(13b) define the reference magnitudes of the pressure and the heat flux, respectively. In Eq.
(13c), Ξ̄ requires similarity in the boundary layer thickness. The parameter Ξ̄ is important when
the viscous interaction is strong, i.e. when the pressure distribution is significantly modified
by the boundary layer. The parameter B̄ is introduced to characterize the nose bluntness of
the slender body, i.e. the sharpness of the leading edge, because the pressure distribution on
the slender body is sensitive to the geometry of the nose, or the cross-section of the leading
edge [7, 29]. In the parameter B̄, d̂ is the characteristic radius of the nose, and kB is a constant
that depends on the nose geometry.

Finally, note that a few simplifying assumptions, such as laminar flow and perfect gas law,
have been used when deriving the similarity parameters in Eq. (13) [6, 7]. Therefore, when
more complex effects are present in the fluid problem, e.g. turbulent boundary layer and real
gas effect, the similarity parameters in Eqs. (12) and (13) may not represent the correct scal-
ing requirements for constructing a scaled model that satisfies hypersonic aerothermodynamic
similarity.

2.4 The Aerothermoelastic Problem

The aerothermoelastic response of a hypersonic skin panel consists of the aeroelastic and aerother-
mal responses. The aeroelastic response is represented by the structural deformation and aero-
dynamic pressure distribution, while the aerothermal response is represented by the structural
temperature and the aerodynamic heat flux distribution. This study focuses on the behavior of
a typical structural component in hypersonic flow. Therefore, in the rest of this paper, the sim-
ilarity in aerothermoelastic response refers to the similarity in the time history of the structural
deformation and temperature.

From Eqs. (4), (6) and (13), the similarity parameters for the aerothermoelastic response of a
skin panel are,
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Geometry :
ĥ

L̂
, h̄,

d̂

L̂
(14a)

Time : Fo,
ÎL̂4

D̂xxt̂2
,

V̂ t̂

L̂
(14b)

Coupling :

 λ̄F , BiF ,
ûw

L̂
,

Tw

T̂S

,
T̂T

T̂S

,
T0

T̂S

,
T̂F

T̂S

p̄F , ¯̇qF , ūw, T̄w, T̄

(14c)

Thermal :

 Biext =
ˆ̇qextĥ

k̂sT̂T

, ¯̇qext

ρ̄sc̄sp, k̄
s

(14d)

Structural :


ÂxxL̂

2

D̂xx

,
B̂xxL̂

D̂xx

,
ŜxxL̂

2

D̂xx

,
N̂TxL̂

2

D̂xx

,
M̂TxL̂

D̂xx

, λ̄ext =
p̂extL̂

3

D̂xx

, p̄ext

A, B, D, S, NT , MT , Ī1, Ī2, Ī3

(14e)

Fluid :

 M∞
ĥ

L̂
, Re0

Pr0, γ
(14f)

where,

λ̄F =
γp∞M∞L̂3

D̂xx

(15a)

BiF =
k̂f

k̂s
Re0Pr0

V̂ 2

ĉfp T̂T

(15b)

Equation (14a) requires the geometric similarity between the model and the prototype, which is
easy to satisfy. In Eq. (14b), the three quantities provide conflicting requirements for the time
scale, which can be reconciled depending on the type of problem. For example, to simulate
long-term quasi-steady aerothermoelastic response, the first parameter representing the thermal
characteristic time should be used to define the time scale, and the other two can be ignored.

Equation (14c) provides a group of similarity parameters related to the aerothermoelastic cou-
pling. In the first row, the first parameter λ̄F is the nondimensional dynamic pressure, repre-
senting the ratio of aerodynamic pressure and the bending stiffness. The second parameter BiF
is the Biot number associated with the aerodynamic heat flux. The third parameter defines the
magnitude of surface deformation, which is important when the panel undergoes moderate de-
formations. The last four parameters provide the requirements for the reference temperatures in
the thermal, structural and fluid problems. The second row represents the requirements for the
similarity in the distributions of the aerodynamic pressure and heat flux, surface deformation,
wall temperature and body temperature. These requirements are automatically satisfied if all
other similarity requirements are satisfied.

The parameters in Eqs. (14d)-(14f) are the similarity requirements for the individual disciplines.
In each group, the second row represents the similarity requirements for material properties as a
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function of temperature. These requirements are approximately satisfied if the functions repre-
senting the temperature dependency of the material properties have a similar form. One example
is the case where the material properties of the model and the prototype are proportional to the
power of temperature T η over the temperature range of interest, where the exponent η is curve-
fitted from the material data [7]. The similarity requirements for the temperature-dependent
material properties are approximately satisfied, if the difference between the values of η associ-
ated with the model and the prototype are sufficiently small.

In Eq. (14d), the first parameter, which requires the similarity in the initial temperature dis-
tribution, is easy to satisfy. The next two parameters represent the magnitude and distribution
of the heat flux due to external heat source, which will be discussed later in this study. In Eq.
(14e), first five parameters provide the similarity requirements in various stiffness constants.
The parameters associated with B̂xx, Ŝxx and M̂Tx may be ignored if the panel is orthotropic
and sufficiently thin. The last two parameters, which define the magnitude and distribution of
the externally-applied loading, will be discussed later. In Eq. (14f), the first parameter may be
disregarded due to Mach number independence principle. The second parameter, the Reynolds
number, governs the growth of the boundary layer and thus the distribution of pressure and heat
flux.

Based on the preceeding discussion, for long-term quasi-steady aerothermoelastic response of
skin panel, the similarity parameters in Eq. (14) are reduced and replaced by a simplified set
given by Eqs. (16a)-(16d),

Fo (16a)

ĥ

L̂
, h̄, λ̄F , BiF , Re0,

ÂxxL̂
2

D̂xx

,
N̂TxL̂

2

D̂xx

(16b)

Tw

T̂S

,
T̂T

T̂S

,
T0

T̂S

,
T̂F

T̂S

(16c)

Biext, ¯̇qext, λ̄ext, p̄ext (16d)

2.5 Limitations of Complete Aerothermoelastic Scaling

The complete aerothermoelastic scaling requires that (1) all the similarity parameters in Eqs.
(16b) and (16c) should be satisfied, and (2) the external loading and heating in Eq. (16d)
is zero. Complete aerothermoelastic scaling cannot be achieved due to the conflict between
the similarity requirements for the aeroelastic and the aerothermal responses, or specifically,
structural stiffness and aerodynamic heating.

First, the quantities Âxx, N̂Tx, and D̂xx are functions of the reference structural temperature
T̂S . Therefore, from the similarity parameters ÂxxL̂2

D̂xx
and N̂TxL̂

2

D̂xx
, T̂S is determined. Next, the

quantities λ̄F , Re0, and BiF are functions of the flow conditions p∞, M∞ and T∞. Therefore,
the flow conditions that satisfies aeroelastic similarity is determined from the combination of
T̂S and parameters λ̄F , Re0 and T0

T̂S
. However, a different set of flow conditions p∞, M∞ and T∞

that satisfies aerothermal similarity is determined from the combination of T̂S and parameters
λ̄F , BiF and T̂T

T̂S
. In general, the two sets of flow conditions are not the same and thus complete

aerothermoelastic scaling fails.
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2.6 Strategies for Refined Aerothermoelastic Scaling

The previous discussion has shown that it is impossible to develop a scaled model that satisfies
all the aerothermoelastic similarity parameters in Eq. (14) or Eq. (16). However, various
ad hoc assumptions can be introduced to facilitate the analytical derivation of the similarity
parameters. Some complex but important factors in the aerothermoelastic problem have been
ignored, including the turbulence and real gas effect in the fluid problem, geometric nonlinearity
in the structural problem and the material nonlinearity in the structural and thermal problems.
Therefore, while the similarity parameters derived using the classical approach provide useful
information about aerothermoelastic scaling, they fail to accurately represent the requirements
for constructing aerothermoelastically scaled models.

A refined aerothermoelastic scaling approach is developed in this study to reconcile the conflict
that arises in conventional aerothermoelastic scaling, thus overcoming the limitations of the
classical scaling approach. Instead of satisfying the aerothermoelastic similarity parameters,
the scaled model is constructed by satisfying the similarity in the aerothermoelastic response,
i.e. minimize the differences between the nondimensional aerothermoelastic responses of the
prototype and the model. The aerothermoelastic responses generated using numerical simula-
tion take account of all the complex factors that are ignored in the classical approach. As noted
earlier in this section, in this study, the aerothermoelastic responses refer to the time history of
the structural deformation and the body temperature in the structure.

Two strategies can be employed in refined aerothermoelastic scaling:

1. Parameter relaxation: the scaled model is constructed so as to achieve approximate sim-
ilarity in the aerothermoelastic responses, while matching a partial set of the aerother-
moelastic similarity parameters between the prototype and the model, so as to produce
the best fit agreement for all the aerothermoelastic similarity parameters.

2. Incomplete testing: represents a situation where external loading and heating is intro-
duced in the wind tunnel test to compensate for the differences in the similarity parame-
ters λ̄F ,BiF associated with the prototype and the model.

Both strategies are difficult to apply to the construction of the scaled model if the classical
approach is used alone. However, the two strategies can be combined with the two-pronged ap-
proach to enable systematic model adjustment with the objective of achieving aerothermoelastic
similarity. The process of model adjustment can be formulated as an optimization problem. The
design variables are selected to correspond to the most important parameters needed for the re-
fined simulation, and these design variables differ from those employed when generating the
model based on classical similarity. Eventually, the numerical scaling law for the specialized
cases can be obtained without recourse to the ad hoc assumptions used in the classical approach.
Thus, the difficulties associated with hypersonic aerothermoelastic testing are resolved.

The selection of the design variables is problem-dependent. Typically, the design variables
should include the freestream flow conditions in the wind tunnel, which cannot be determined
using the classical approach due to the conflict between the aeroelastic and aerothermal simi-
larity requirements. For a skin panel configuration, the design variables should also include the
geometrical parameters of the scaled model, such as the panel thickness and the side length.
The classical approach requires all the geometrical parameters to scale uniformly using the
same scaling factor. However, it could be advantageous to scale the geometrical parameters
using different scaling factors so as to achieve a better agreement between the nondimentional
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aerothermoelastic response of the prototype and the model [19].

3 OVERVIEW OF THE COMPUTATIONAL FRAMEWORK

The computational tools required for the right-hand branch of the two-pronged approach are de-
rived from the computational framework denoted HYPATE, HYPersonic AeroThermoElasticity
simulation environment, developed in our previous studies [21, 30, 31]. The code structure of
the HYPATE framework is illustrated in Fig. 5. The framework employs a partitioned approach
using a loosely-coupled or a tightly-coupled scheme. The fluid, thermal and structural responses
are computed by separate solvers and the coupling is achieved by exchanging boundary data at
the interfaces of the physical domains. Moreover, a solver based on linearized stability analysis
(LSA) is developed as an extension of the p-method in aeroelasticity [19, 32]. The LSA is em-
ployed to examine the stability of the deformed structure at every time step, so as to detect the
onset of aerothermoelastic instability.

The loosely-coupled and the tightly-coupled schemes are illustrated in Figs. 6 and 7. The
loosely-coupled scheme is efficient for obtaining the general transient aerothermoelastic re-
sponse, since the boundary data is exchanged only once between the solvers at each time step.
The tightly-coupled scheme is developed for quasi-steady aerothermoelastic response prior to
the onset of instability. The fluid and the structural domains are solved simultaneously at each
time step. This approach allows 1-2 order of magnitude larger time step size when compared to
the loosely-coupled scheme. Therefore, the tightly-coupled scheme is employed for generating
long-term quasi-steady aerothermoelastic responses.

The structural and thermal solvers are based on a parallel C++ library with Python interface
developed for general finite element analysis [31]. The structural solver is capable of modeling
the structural dynamics of anisotropic doubly curved shallow shells, with shear, geometric non-
linearity and thermal stress. The thermal solver models heat transfer in composite shells using
layer-wise thermal lamination theory. Both solvers account for temperature-dependent material
properties.

The HYPATE framework contains fluid solvers having different levels of fidelity. The low-
fidelity fluid solver is based on analytical models. The aerodynamic pressure is computed using
piston theory [33] and the heat flux is computed using Eckert’s reference method [34]. The low-
fidelity fluid solver has been used to verify the correctness of the code implementation of the
framework in the previous studies [31]. The high-fidelity fluid solver is the CFD solver, Auto-
matic Differentiation flow solver (ADflow) [35, 36]. The ADflow code is a highly-parallelized,
multiblock, finite volume solver based on Reynolds-Averaged Navier-Stokes (RANS) equa-
tions. The Arbitrary Lagrangian-Eulerian formulation is implemented in ADflow for problems
with moving boundary [31]. The Spalart-Allmaras turbulence model and perfect gas model are
employed for hypersonic aerodynamic computation.

The use of the CFD solver is limited due to its high computational cost while the low-fidelity
fluid solver fails to capture the complex flow physics associated with hypersonic flow. There-
fore, reduced-order modeling (ROM) techniques are applied to accelerate the CFD fluid solver
in the HYPATE framework [21, 30]. The ROM takes advantage of the quasi-steady nature of
the hypersonic flow, i.e. the disparity of characteristic times of different physical domains: The
fluid characteristic time is several orders of magnitude smaller than the structural characteris-
tic time, and the structural characteristic time is several orders of magnitude smaller than the
thermal characteristic time [24]. Therefore, in the ROM, the aerodynamic loading is modeled
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by combining a steady fluid solution with an unsteady contribution generated by piston theory.
The steady fluid solution is modeled using the kriging method and proper orthogonal decom-
position (POD), namely the POD-kriging method [37–39]. By using the ROM, the fluid solver
is accelerated by five orders of magnitude for skin panel applications, while maintaining the
accuracy of a CFD solver [21, 30].

A conventional ROM based on the POD-kriging method is only applicable to a fixed geometrical
configuration and cannot be used to predict the aerodynamic loading and heating of a different
configuration. In Refs. [19–21], a ROM correction and scaling technique was developed to
enable the extrapolation of one ROM to different geometrical scales and flight conditions. The
corrected and scaled ROM permits the conduction of an extensive parametric study of numerical
aerothermoelastic solutions for different scales of geometric configurations and different com-
binations of flight conditions that are required in the optimization process of the two-pronged
approach.

Figure 5: Code structure of the extended HYPATE framework.

Figure 6: Loosely-coupled scheme.

Figure 7: Tightly-coupled scheme.
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4 OPTIMIZATION FORMULATION FOR THE TWO-PRONGED APPROACH

4.1 Objectives

The two-pronged approach combines the classical dimensional analysis and the numerical sim-
ulation method to systematically adjust the wind tunel model properties so as to enable hy-
personic aerothermoelastic testing. For a generic configuration, the adjustment process is for-
mulated as a constrained optimization problem that searches for a wind tunnel setup whose
aerothermoelastic response could represent that of the full-scale prototype to the largest extent
possible. The aerothermoelastic responses of the prototype and the model are computed using
the HYPATE framework. The simulated aerothermoelastic response of the prototype is a time
history of deformation and body temperature. The similarity of the solutions is measured us-
ing two objective functions, representing the differences between the nondimensional solutions
to be minimized. For the deformation and temperature, the objective functions are defined,
respectively, as:

Ju(d; {um
i }) =

√√√√ Nt∑
i=1

∥∥∥∥ΨT
u

(
um
i

ûm
− up

i

ûp

)∥∥∥∥2 (17a)
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√√√√ Nt∑
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∥∥∥∥ΨT
T

(
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i

T̂m
− Tp

i

T̂ p
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where d is the vector of design variables. The projection matrices Ψu and ΨT converts the full
aerothermoelastic responses to the quantities of interest, such as the modal components of the
deformation and temperature.

The objectives are meaningful only when the differences between the nondimensional solutions
are computed at the same nondimensional time. The matching of the nondimensional time is
guaranteed by using the same nondimensional time step size for the prototype and the model.
In other words, the time step size of the model ∆tm should be determined from the time step
size of the prototype ∆tp by keeping one of the similarity parameters in Eq. (14b) constant.
For example, for the case of long-term quasi-steady aerothermoelastic response, given ∆tp, the
time step size ∆tm should be determined such that the Fourier numbers of the model and the
prototype are the same,

[k̂s]m∆tm

[ρ̂sĉsp]
m(ĥm)2

=
[k̂s]p∆tp

[ρ̂sĉsp]
p(ĥp)2

⇒ ∆tm =
[k̂s]p[ρ̂sĉsp]

m

[k̂s]m[ρ̂sĉsp]
p

(
ĥm

ĥp

)2

∆tp (18)

4.2 Design Variables and Constraints

For the case of skin panel, the design variables describing the full-scale prototype and the wind
tunnel test model are summarized in Table 1. Note that external loading is introduced by pext and
external heating is introduced by radiant heating specified by the radiation temperature Trad and
the surface emissivity ε [40]. Not all of the variables in the wind tunnel setup are continuous.
First, in most hypersonic wind tunnels, the freestream flow conditions are given as constant,
or can be selected from a very limited number of discrete options provided by using different
nozzle configurations. Second, due to high loads and temperatures during aerothermoelastic
testing, there are only a limited number of options for material properties, i.e. elastic constants
Q, thermal expansion coefficients α and thermal properties ks and csp. Nevertheless, some wind
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Table 1: Design variables for the optimization problem

Group Design variables Type Lower limits Upper limits

Flow conditions
M∞ Disc. N/A
p0, T0 Cont. Wind tunnel

Geometry L̂, Lle, θ Cont. Manufacture Wind tunnel

Composite layup
Q,α,ks, csp Disc. N/A

h Cont. Manufacture Wind tunnel

External loading
pext Cont. Wind tunnel
Trad Cont. Wind tunnel
ε Cont. 0 1

Temperatures
T̂T , T̂S Cont. Arbitrary
Tw Cont. Wind tunnel

tunnels do have the capability to adjust the stagnation temperature and pressure continuously
[17]. Moverover, a continous range of post-shock flow conditions can be achieved by adjusting
the geometrical inclination angle θ of the panel. Furthermore, the thickness of each lamina may
be adjusted to tune the structural and thermal properties of the model. Finally, it is assumed that
a continous range of the surface emissivity ε can be achieved by applying different coating to
the surface of the scaled model, so as to adjust the magnitude of the radiative heat flux acting
on the model.

Based on preceeding discussion, the design variables are divided into two groups,

dc = [p0, T0, L̂, Lle, θ,h, pext, Trad, ε, T̂T , T̂S, Tw] (19a)
dd = [M∞,Q,α,ks, csp] (19b)

where dc and dd are the vectors of the continuous and discrete design variables, respectively.

The design variables have to satisfy two sets of constraints, the equality and the inequality
ones. The equality constraints are due to the requirement that the similarity parameters of the
model and the prototype should be equal. When the parameter relaxation or incomplete testing
strategy is employed, not all similarity parameters in Eqs. (16b) and (16c) are used as equality
constraints. For example, the heat flux parameter BiF is excluded from the equality constraints if
external heating is provided. The inequality constraints are due to practical limits and the factors
characterizing the lower and upper limits of the inequality constraints are summarized in the last
two columns of Table 1. The lower and upper limits of the geometrical quantities are determined
by the limitations in model manufacture and the size of the wind tunnel, respectively. The
feasible ranges of external loading and temperature are determined by the capabilities of the
wind tunnel facility.

4.3 Formulation of Optimization Problem

Combining Eqs. (17) and (19), the two-pronged approach for refined scaling law is formulated
as a constrained Multi-objective Optimization (MO) problem,

Minimize J(dc,dd) = [Ju(dc,dd), JT (dc,dd)] (20a)
Subject to cE(dc,dd) = 0 (20b)

cI(dc,dd) ≤ 0 (20c)
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where Eqs. (20b) and (20c) represent the equality and inequality constraints, respectively. The
optimization problem Eq. (20) is a mixed-integer optimization problem that is difficult to solve,
due to the presence of both continuous and discrete design variables. However, since there is
only a limited number of feasible values for the discrete design variables, the full problem Eq.
(20) can be solved by an exhaustive search on all feasible values for dd. For each possible set
of dd, the optimal solution is found by solving the continuous optimization problem w.r.t. dc,

Minimize J(d) = [Ju(d), JT (d)] (21a)
Subject to cE(d) = 0 (21b)

cI(d) ≤ 0 (21c)

where the subscript c of dc is dropped for convenience.

5 SOLUTION STRATEGIES FOR THE MO PROBLEM
An MO problem typically has multiple solutions. Each solution of an MO problem is Pareto
optimal, meaning that one objective cannot be decreased without increasing the other objectives.
The set of all the Pareto optimal solutions is called the Pareto front F . A typical pareto front for
a two-objective optimization problem is illustrated in Fig. 8. The gray shaded area represents
the solution space, which is the set of all possible combinations of the objective values. At points
A and D, the objectives Ju and JT achieve the minimum possible values in the solution space,
respectively. The Pareto front is the subset of the boundary of the solution space between points
A and D, represented by solid black curves. Note that the continuity of the Pareto front is not
a requirement. In Fig. 8, Point B represents a combination of objectives in the solution space
that is better than any point on the gray curve BC. As a result, the Pareto front is disconnected
and consists of only the curves AB and CD, and not the curve BC. While multiple solutions
are possible, the ultimate goal is to identify one optimal solution from the Pareto front, referred
to as the design point in the following discussion. The design point represents a wind tunnel
configuration that minimizes the differences in the nondimensional aerothermoelastic responses
of the prototype and the model.

Figure 8: Illustration of a typical Pareto front of a two-objective problem

An additional challenge associated with the MO problem Eq. (21) is the expensive computa-
tional cost of the objectives, due to the aerothermoelastic simulation over the extended flight
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time. To solve the MO problem within a practical amount of time, the number of evaluations
of the objectives has to be limited during optimization. As a result, there are two limitations on
the optimization algorithm: (1) The design space cannot be explored by carrying out numerous
direct evaluation of the objectives; (2) The derivative of the objectives w.r.t. design variables
cannot be computed using the finite difference approach. To overcome the two limitations, the
Surrogate-Based Optimization (SBO) algorithm is employed in the current study [41]. Using
the SBO algorithm, two approaches are employed to find the design point associated with the
MO problem. The indirect approach produces a Pareto set F , i.e. a set of Pareto optimal solu-
tions, that is representative of the Pareto front F . The design point has to be selected from the
Pareto set manually by the user. The direct approach does not produce a Pareto set. Instead, it
only generates one Pareto optimal solution, identified as the design point.

In the rest of this section, the general procedure of the SBO algorithm is provided first. Next, the
direct and indirect approaches using the SBO algorithm are presented and compared. Finally,
the implementation details of the optimization algorithms are discussed.

5.1 Surrogate-Based Optimization

The SBO algorithms contain two key ingredients, a surrogate model and an acquisition function.
The surrogate model is employed to approximate the expensive objectives. Since the surrogate
is computationally efficient, it allows the fast evaluation of approximated objectives as well as
its derivative w.r.t. the design variables. The acquisition function is a criterion for selecting
the points in the design space that is potentially a solution to the optimization problem. It is
designed to take into account two ingredients, namely exploration, i.e. sampling from areas of
high uncertainty, and exploitation, i.e. sampling from areas likely to improve the objectives. A
typical SBO algorithm contains the following steps,

1. Set the number of initial samples Ns, number of iterations Ni.
2. Generate initial sample points {di}Ns

i=1 in the design space using a sampling approach,
e.g. the Optimial Latin Hypercube (OLH) method [41].

3. Generate a sample data set D = {(di,Ji, cEi, cIi)}Ns
i=1 by evaluating the objectives and

constraints Ji, cEi, cIi at the initial sample points.
4. Inner optimization for a maximum of Ni iterations:

(a) Generate surrogates Jsur(d), csurE (d), csurI (d) for the objectives and constraints us-
ing the sample data set D.

(b) Find the candidate point d∗ by solving an optimization problem that consists of the
surrogates and acquisition function.

(c) Evaluate the objective and constraint functions J∗
i , c

∗
Ei, c

∗
Ii at the candidate point d∗.

(d) Update the surrogate using the sample data set augmented with the candidate solu-
tion D∗ = D ∪ {(d∗,J∗, c∗E, c

∗
I)}.

(e) Break if convergence criteria is met, otherwise continue.

The SBO algorithms are classified in two categories: the one-shot approach and the updating
approach [42]. The one-shot approach only excutes the inner optimization step once. The
candidate solution is accepted as the final solution regardless of the differences between the
surrogate and the objectives at the candidate point. The one-shot approach might fail if the
design space is not well represented by the sample data set and the uncertainty of the surrogate
at the candidate point is high. In the updating approach, the inner optimization is executed until
convergence or when the computational budget is exceeded. While the updating approach does
not guarantee finding the global optimum point, it usually produces a better solution than the
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one-shot approach [42, 43]. In this study, the updating approach is employed.

Several surrogate models have been employed in SBO algorithms, e.g. response surfaces [44]
and the kriging method [42, 43, 45]. The kriging method, or the Gaussian process regression
model [46], is employed for SBO in this study, because it has a clear statistical interpretation
that is beneficial in the construction of acquisition functions. The prediction of the kriging
model at a candidate point d∗ follows a joint Gaussian probability distribution,

J∗ = Jsur(d∗) ∼ N (µ(d∗),Σ(d∗)) (22)

where µ is the predicted values of objectives and Σ is the covariance matrix quantifying the
uncertainty of the prediction. The objectives are assumed to be independent and thus Σ is a
diagonal matrix. The standard deviations associated with the predicted values are denoted as σ.

Note that the updating SBO algorithms using kriging method appear in the literature under mul-
tiple names, such as Efficient Global Optimization (EGO) [43, 45] and Bayesian Optimization
(BO) [47, 48]. Throughout the rest of the paper, the updating SBO algorithms is referred to as
“Bayesian optimization”, due to its statistical interpretation.

5.2 Multi-Objective Optimization Using the BO Algorithm

5.2.1 Direct Approach

In the direct approach, the MO problem is reformulated as a Single-objective Optimization (SO)
problem and the design point is found by solving the SO problem only once,

Minimize Js(d) = S(J(d)) (23a)
Subject to cE(d) = 0 (23b)

cI(d) ≤ 0 (23c)

where a function S(J) is introduced to combine the vector of objectives into a scalar objective,
typically using a Weighted Metric (WM) method. For the MO problem Eq. (21), the objectives
Ju and JT are combined as,

Sg(J) = [(cuJu)
g + (cTJT )

g]1/g (24)

where g ∈ [1,∞] and 0 ≤ cu, cT ≤ 1. The weights cu, cT are determined empirically and more
emphasis is placed on the objective with the larger weight.

Two special cases of WM method are illustrated in Figs. 9(a) and 9(b). The first special case is
the WM method with g = 1, which is equivalent to the weighted sum method [49],

S1(J) = cuJu + cTJT (25)

A Pareto optimal solution found by the weighted sum method is illustrated by the point E in
Fig. 9(a). The contours of the combined objective S1(J) are a family of straight lines of slope
− cu

cT
. The weighted sum method finds the point at which the contour of S1 is tangent to the

Pareto front and the contour does not intersect with the rest of the solution space. However,
the weighted sum method can only find points on a partial set of a non-convex Pareto front. At
point F of the Pareto front in Fig. 9(a), it is impossible to find a contour of S1 at F that does
not intersect with the solution space.
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The second special case is the WM method with g = ∞, where the objectives are combined as,

S∞(J) = max(cuJu, cTJT ) (26)

The WM method with g = ∞ is capable of finding all the Pareto points on the Pareto front and
its geometrical interpretation is provided in Fig. 9(b). The contours of the combined objective
S∞(J) are a family of rectangles whose diagonals have a slope of cT

cu
. The WM method with

g = ∞ finds the point that is the only intersection between a contour of S∞ and the solution
space. The point is either the tangent point between the contour and the Pareto front, such as
point B, or the corner point of the contour, such as point F .

(a) Weighted metric with g = 1, i.e. weighted sum
method

(b) Weighted metric with g = ∞

Figure 9: Illustration of two typical WM methods

Surveys of acquisition functions for SO problems can be found in, for example, Refs. [45] and
[50]. There are three basic acquisition functions: (1) Probability of Improvement (PoI) [51], (2)
Expected Improvement (EI) [47,52], (3) Lower Confidence Bound (LCB) [53]. The formulation
of these acquisition functions is presented next.

Probability of Improvement. The PoI acquisition function is defined as the probability of the
new design point d∗ that represents a better value of the objective J∗ when compared to the
minimum objective in the sample data set Jmin = min Ji.

CPoI(d
∗) = P (J∗ ≤ Jmin) = 1− Φ(z0) (27)

where z0 = Jmin−µ
σ

and Φ is the cummulative distribution function of a standard Gaussian
distribution.

Expected Improvement. The EI acquisition function is defined as the expectation of the im-
provement in the objective at the new design point. In the literature, EI has been generalized to
include user-specified parameters that control the exploitation-exploration trade-off. The gen-
eralized EI is written as [52],

CEI(d
∗) = E[I(d∗)] (28)

where υ ≥ 0 and g ≥ 1 are the user-specified parameters, and

I(d) = max(0, (Jmin − Jsur(d)− υσ(d))g) (29)
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A larger g or υ will put more weight on the exploration. The classical form of EI is obtained
with υ = 0 and g = 1. When υ > 0 and g = 1, the EI is equivalent to the weighted EI function
developed in Ref. [42]. When υ = 0 and g = 0, EI reduces to PoI. For a kriging model, the
closed-form expression is available for CEI . For the case g = 1,

CEI(d
∗) =

∫ ∞

0

IP (Jsur = Jmin − υσ − I)dI (30)

=

{
σ[zΦ(z) + ϕ(z)], σ > 0
0, σ = 0

(31)

where z = Jmin−υσ−µ
σ

.

Lower Confidence Bound. The LCB acquisition function is defined using the LCB concept of
a Gaussian probability distribution,

CLCB(d
∗) = µ(d∗)− υσ(d∗) (32)

where the probability of Jsur < CLCB is a constant controlled by the user-specified parameter
υ > 0. A larger υ will put more weight on the exploration.

The PoI acquisition function is purely exploitation, which is undesirable for global optimization.
The EI and LCB acquisition functions are high when J∗ approaches the optimum point, or the
uncertainty of J∗ is high. Therefore, both CEI and CLCB achieve a balance between exploitation
and exploration. The LCB function is smoother than the EI function and thus more favorable
for the inner optimization of the BO algorithm. Therefore, the LCB function is employed in the
current study.

Finally, note that the exploitation-exploration trade-off of EI and LCB functions can be further
tuned by a cooling scheme. In the cooling scheme, the optimization starts with a large user-
specified parameter υ for more exploration and gradually decreases the parameter to focus on
exploitation. However, the effect of this scheme is controversial [45, 54], and not employed in
the study.

5.2.2 Indirect Approach

In the indirect approach, the original MO problem formulation Eq. (21) is retained. The acqui-
sition functions suitable for multiple objectives are developed, so that each inner optimization
step of the BO algorithm produces one Pareto optimal solution of the MO problem. The opti-
mization algorithm generates a Pareto set and the user needs to select one of the Pareto optimal
solutions as the final design point.

The PoI, EI and LCB acquisition functions for SO problems have been extended to MO prob-
lems using the concept of hypervolume (HV), denoted by H [55–57]. Figure 10 illustrates the
hypervolume associated with a two-objective problem. Initially, the Pareto set F1 consists of
three Pareto optimal solutions labelled by the blue dots. All the points in the purple shaded re-
gion are worse than one or more solutions in F1 and better than a reference solution labelled by
a green square on the top right corner of Fig. 10. The area of the purple shaded region is defined
as the hypervolume associated with the Pareto set F1. A new Pareto set F2 is generated by aug-
menting F1 with a new solution J∗. The hypervolume associated with F2 is larger than F1 due
to the additional area introduced by J∗, as represented by the gray rectangle. The area of the
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gray rectangle is defined as the hypervolume indicator IH, which quantifies the improvement of
a Pareto set due to a new solution J∗.

Given a Pareto set F and a new solution J∗, the hypervolume indicator is written as,

IH(J
∗;F) = H(F ∪ {J∗})−H(F) (33)

When a new solution J∗ fails to improve the existing Pareto set F , the hypervolume indicator
associated with J∗ is zero,

H(F ∪ {J∗}) = H(F) ⇒ IH(J
∗;F) = 0 (34)

which means no improvement to F is introduced by the new solution.

Figure 10: Illustration of the hypervolume indicator

The MO counterparts of the PoI, EI and LCB acquisition functions are defined based on the
hypervolume indicator as presented in the following.

Hypervolume PoI. The HVPoI acquisition function is developed in Ref. [57], as the hypervol-
ume counterpart of the PoI function. It is defined as follows,

CHV PoI(d) =

∫
I(J;F)P (Jsur = J)dJ (35)

where F is the Pareto set of the current iteration, and

I(J;F) =

{
1, if IH(J;F) > 0
0, otherwise

(36)

Hypervolume EI. The HVEI acquisition function is initially proposed under the name “S-
metric expected improvement” in Refs. [58, 59] as an extension of the EI acqusition function
of SO problems. The formulation is straight-forward by replacing the improvement function in
Eq. (30) with the hypervolume indicator,

CHV EI(d) =

∫
IH(J;F)P (Jsur = J)dJ (37)
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Hypervolume LCB. The HVLCB acquisition function is initially proposed in Ref. [56] as an
extension of the LCB acqusition function of SO problems. It was shown to outperform other
popular MO algorithms, such as ParEGO [49], NSGA-II [60] and SPEA-2 [61]. This method
is easy to implement and has been widely used. Assuming the Pareto set of the current iteration
is F , the HV counterpart of the LCB function is defined as follows,

CHV LCB(d
∗) =

{
IH(J0;F), if IH(J;F) > 0
min
J∈F

∥J− J0∥ , otherwise (38)

where J0 = µ(d∗)− υσ(d∗).

Similar to the discussion in the direct approach, the HVLCB function is employed for the indi-
rect approach due to its smoothness and the exploitation-exploration trade-off property.

5.2.3 Comparison of the Direct and Indirect Approaches

The comparison between the direct and indirect approaches is illustrated in Fig. 11. In the
direct approach, the MO problem is reformulated as an SO problem and the design point is
found by solving the SO problem only once. The direct approach is employed when there
is sufficient preference information on the objectives, i.e. the knowledge about the relative
importance of the objectives. The preference information provides the criterion for selecting
the weights for objective combination as in Eq. (24). When the MO problem has objectives
with limited user knownledge and the weights for objective combination cannot be determined
easily, the indirect approach is employed to explore the design space associated with the MO
problem. The indirect approach produces a set of representative Pareto optimal solutions and
the user needs to manually pick one solution as the design point. In general, the direct approach
is preferred whenever it is applicable, because the direct approach only requires solving one
optimization problem and generally takes fewer iterations to converge when compared to the
indirect approach.

Figure 11: Illustration of direct and indirect approaches for solving the MO problem
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5.3 Implementation Details

In the current study, both the direct and indirect approaches for the MO problems are imple-
mented in a Python library, Multi-Objective Bayesian Optimization (MOBO), that is developed
at the University of Michigan. For the SO problem associated with the direct approach, BO
algorithms employing PoI, EI, LCB acquisition functions are implemented. For the indirect ap-
proach, BO algorithms employing HVPoI and HVLCB acquisition functions are implemented.
The kriging model is generated using the scikit-learn library [62].

No matter which surrogate model and acquisition function are used, eventually the BO algo-
rithm boils down to a series of non-convex subproblems in the inner optimization step. It is hard
to find the global optimum of a non-convex function. One choice is to use global optimization
algorithms, such as the DIviding RECTangules (DIRECT) algorithm [63]. Another choice is
to apply local optimization algorithms, especially the gradient-based algorithms, with multiple
starts. In practice, multiple restarts usually result in a good global sub-optimal point that is
sufficient for the engineering purposes. Therefore, in the current study, the inner optimization
step of the BO algorithm is solved using a gradient-based algorithm, Sequential Least-SQuares
Programming (SLSQP), implemented in the SciPy library [64] with multiple starts. The initial
starting points are generated using the OLH method at the beginning of every inner optimization
step.

6 AEROTHERMOELASTIC SCALING OF A SKIN PANEL

The effectiveness of two-pronged approach for generating numerical scaling laws is demon-
strated using two cases. In the first case, the two-pronged approach is employed to generate
the numerical scaling laws for the transient aeroelastic response of a uniformly heated panel.
The aeroelastic case represents a simplified aerothermoelastic problem, for which the analytical
scaling laws exist. The first case serves as a sanity check to demonstrate that the two-pronged
approach can reproduce the analytical scaling laws via numerical optimization. In the second
case, the two-pronged approach is used to develop aerothermoelastically scaled models for a
generic panel representing skin of a hypersonic vehicle. This case illustrates the capability for
generating numerical hypersonic ASL when considering wind tunnel and manufacturing con-
straints.

6.1 Scaling of Transient Aeroelastic Response

6.1.1 Problem Description

The “prototype” configuration is illustrated in Fig. 12. It consists of a simply-supported square
panel with side length of 1 m and thickness of 2 mm. The flight conditions of the prototype
are M∞ = 6.0 and p∞ = 104Pa. The flow is aligned with the panel, i.e. the flow orientation
angle is zero. Initially, the panel is uniformly heated up by ∆T = 1K ≈ 2.425Tcr. The
aerodynamics is assumed to be inviscid and the piston theory is sufficient for the aeroelastic
simulation. The simulation of the prototype is carried out using a time step size of 0.001s to
capture the transient aeroelastic response of the panel. The prototype and model panels are
made of two different materials Inconel 718 and Ti 6242, respectively, which makes the scaling
problem more challenging. The material properties are assumed to be temperature independent
and equal to the values at room temperature (T = 300K) as provided in Table 2. It is also
assumed that the Mach numbers and heat capacity ratios associated with the prototype and the
model are the same.
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Table 2: Material properties of Inconel 718 and Ti 6242 for aeroelastic scaling

Material ρs, kg/m3 E, GPa ν α, ×10−5/K ks, W/mK csp, J/kgK
Inconel 718 [65] 8220 204.0 0.29 1.237 11.71 418.4

Ti 6242 [66] 4540 114.3 0.32 0.6975 6.937 459.4

Figure 12: Geometrical configuration of a square panel.

6.1.2 Analytical Aeroelastic Similarity Parameters
Analytical aeroelastic scaling laws exist for a uniformly-heated thin isotropic plate with piston
theory aerodynamics, involving the similarity parameters (pp. 85-88 of Ref. [67]),

ĥ

L̂
, λ̄F ,

∆T̂ N̂TxL̂
2

D̂xx

(39a)

ÎL̂4

D̂xxt̂2
(39b)

When the dimension of the scaled model Lm is given, the geometric scale ratio ξ = Lp

Lm , and
the panel thickness, freestream pressure, and temperature increment associated with the scaled
model are determined using Eq. (39a) as follows,

hm =
1

ξ
hp (40a)

pm∞ = ξ3
D̂m

xx

D̂p
xx

pp∞ (40b)

∆Tm = ξ2
D̂m

xx

D̂p
xx

N̂p
Tx

N̂m
Tx

∆T p (40c)

The scaling factor for time is determined using Eq. (39b),

∆tm =
1

ξ2

√
D̂p

xx

D̂m
xx

Îm

Îp
∆tp (41)
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6.1.3 Numerical Scaling by Optimization

The numerical scaling laws of the aeroelastic problem are generated by finding the scaled mod-
els for different geometric scales. For each geometric scale, the model configuration is found by
solving an SO problem. The objective is the difference between the nondimensional structural
responses of the prototype and the model, as in Eq. (17a),

Ju(d; {um
i }) =

√√√√ 100∑
i=1

∥∥∥∥um
i

ûm
− up

i

ûp

∥∥∥∥2 (42)

Note that in Eq. (42), the objective is computed based on the first 100 time steps of simulation,
which corresponds to the first oscillation period of the aeroelastic response. The number of
time steps is sufficiently large, so that the numerical result captures the characteristics of the
aeroelastic responses associated with different model configurations. The number of time steps
is also sufficiently small, so as to reduce the computational cost of sample generation in the BO
algorithm.

An aeroelastically scaled model should result in a difference of zero, Ju = 0. The time step
size for the aeroelastic simulation of the model is determined using Eq. (41). The time step size
is the only quantity in the numerical scaling approach that is determined using an analytical
similarity parameter.

The design variables include the thickness h, freestream pressure p∞, and temperature incre-
ment ∆T associated with the model. The constraints of the design variables are summarized in
Table 3.

The SO problem is solved using the BO algorithm. The optimizer employs the LCB acqui-
sition function with υ = 1.0. The optimization is initialized with 10 samples and run for
300 iterations. In the inner optimization loop, the acquisition function is minimized using a
gradient-based solver with multiple starts.

Table 3: Constraints of the design variables for the aeroelastically scaled model

Design variables h (mm) p∞ (kPa) ∆T (K)
Range [0.2, 1.2] [3.0, 11.0] [0.5, 4.5]

6.1.4 Numerical Scaling Results

The scaled models are generated for three different geometric scales, ξ = 2, 3, 4. In each case,
the convergence history is illustrated in Fig. 13, and the optimizer successfully converges within
300 iterations.

The nondimensional aeroelastic responses of the prototype and the models are compared in Fig.
14. In the first 100 time steps, the responses are used for the numerical scaling with the objective
Eq. (42), and the responses of the scaled models match very well with the prototype response
with errors less than 4%. For the responses beyond the first 100 time steps, the model and
prototype responses still match reasonably well, especially the frequency and amplitude of the
oscillation. The similarity parameters associated with the prototype and the scaled models are
almost identical, as shown in Table 4. Finally, the scaling of the design variables are compared
in Fig. 15. It is clear that the two-pronged approach has successfully generated the numerical
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scaling laws that recover the analytical scaling laws for the aeroelastic problem considered in
this section.

Finally, the results also show that the BO algorithm is effective in finding the global minimum
of the non-convex optimization problem associated with the two-pronged approach. As an
example, the contour of Ju w.r.t. variables p∞ and ∆T for the case ξ = 4 is illustrated in Fig.
16. The distribution of the objective Ju is highly non-convex. While the global minimum of Ju
is achieved at the point that corresponds to an aeroelastically scaled model, there are multiple
local minima that can lead to incorrectly scaled models. Nevertheless, the BO algorithm is able
to avoid the local minima and identify the global minimum successfully.

Table 4: Optimization results for different geometric scales

Parameters ĥ

L̂
λ̄F

∆TN̂TxL̂
2

D̂xx

Prototype 0.002 566.07 47.882
ξ = 2 0.00201 (0.379%) 566.85 (0.137%) 47.581 (0.629%)
ξ = 3 0.00200 (0.167%) 561.38 (0.829%) 47.759 (0.257%)
ξ = 4 0.00200 (0.166%) 566.69 (0.109%) 47.671 (0.439%)

(a) ξ = 2 (b) ξ = 3

(c) ξ = 4

Figure 13: Convergence history of the cases for ξ = 2, 3, 4
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Figure 14: Nondimensional aeroelastic responses of
the prototype and the scaled models

Figure 15: Comparison of analytical and numerical
scaling

Figure 16: Contour of Ju at h = 0.5mm for the case ξ = 4

6.2 Scaling of Quasi-Steady Aerothermoelastic Response

6.2.1 Problem Description

The “prototype” configuration is illustrated in Fig. 12. The case consists of a simply-supported
square panel with side length of 1m and front rigid wall length of 1m. The flow is aligned
with the panel, i.e. the flow orientation angle is zero. The layup of the panel is shown in Table
5, which resembles the honeycomb sandwich panel used in Ref. [3]. It is assumed that (1)
honeycomb cell is hexagonal, so the material properties of the honeycomb core are isotropic in
the x and y directions; (2) the honeycomb core carries only the shear stress and transfers the load
between the upper and lower surfaces through shear deformation. The effective transverse shear
modulus is computed using the analytical relation provided in Ref. [68]. The thermal properties
of the honeycomb is obtained using the Swann-Pittman relation [69]. The effective thermal
conductivity increases with temperature due to the radiative heat transfer. The emissivity of the
upper surface is assumed to be 0.85. The “model” panel is a square isotropic panel made of Ti
6242. The material properties of both the prototype and the model are temperature dependent
and the properties at room temperature (T = 300K) have been provided in Table 2.
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The objective of the scaling is to determine the geometrical dimensions of the model panel, as
well as the experimental conditions of the wind tunnel, so that the aerothermoelastic response
of the model in the wind tunnel is similar to the aerothermoelastic response of the prototype at
a given flight condition. The error of the structural response Ju is quantified by the difference
in the deflection at the center of the panel nondimensionalized by the thickness. The error of
the thermal response JT is quantified by the difference in the average body temperature nondi-
mensionalized by the stagnation temperature. The duration of the response of the prototype is
160s and the initial temperature of the prototype is 300K.

The fluid ROM for the prototype panel configuration has been developed in Ref. [21], and it is
employed in the numerical aerothermoelastic simulation of the prototype and the model. The
ROM was generated for flight conditions M∞ = 6.0 and H = 25km. When combined with the
correction and scaling technique, the ROM can be used to predict the aerodynamic loading and
heating at different conditions for a flight envelope covering the range of 5.0 ≤ M∞ ≤ 7.0 and
20 ≤ H ≤ 30km on the prototype as well as the model with a geometric scale 2 ≤ ξ ≤ 5.

Table 5: Layup of the prototype panel

Component Material Thickness
Upper sheet Inconel 718 1 mm

Honeycomb core Inconel 718 16 mm
Lower sheet Inconel 718 1 mm

Several wind tunnels that are suitable for hypersonic aerothermoelastic testing are illustrated
in Fig. 3. Among these wind tunnels, the Hypersonic Tunnel Facility (HTF) at NASA Glenn
Research Center is of interest [15, 17]. The HTF is a free-jet blow-down wind tunnel that is
capable of simulating the flight conditions at multiple Mach numbers, M∞ = 5, 6, 7, which are
representative of the flight envelope of interest, as illustrated in Fig. 17. The test conditions at
different Mach numbers are achieved using three nozzle configurations, all of which have an exit
diameter of 42in ≈ 1.07m. The dimensions of the test section are 42in×10ft ≈ 1.07m×3.05m.

The constraints representing the operating envelope of the HTF are necessary for the optimiza-
tion problem associated with refined aerothermoelastic scaling. However, the data defining the
exact operating envelope of the HTF is unavailable in the open literature. The only public data
available is the upper and lower limits of the stagnation temperature and pressure of the operat-
ing envelope at M∞ = 5, 6, 7 [15, 17]. Therefore, in the current study, three sets of “realistic”
wind tunnel conditions are synthesized based on the available HTF data in public [15, 17], il-
lustrated in Fig. 18 and listed in Table 6. Additionally, a set of “ideal” wind tunnel conditions
is assumed based on the flight condition of 5 ≤ M∞ ≤ 7 and 20km ≤ H ≤ 30km, which
encompasses the ranges of the three sets of “realistic” wind tunnel conditions. For each set of
the conditions, the Mach number is fixed and it is assumed that an arbitrary combination of the
stagnation temperature and pressure in the given range is attainable.

Another constraining factor for the aerothermoelastic test is the operation time of the wind
tunnel. In the quasi-steady aerothermoelastic problem, the scaling in time is determined by the
Fourier number, as required by Eq. (16a),

tm =
1

ξ2
[k̂s]p

[ρ̂sĉsp]
p

[ρ̂sĉsp]
m

[k̂s]m
tp (43)
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It means that the time duration of the the scaled test is inversely proportional to the square of
the geometric scale ξ. When the time duration of the quasi-steady aerothermoelastic response
is 160s, and the geometric scale ranges from 2 to 5, the time duration of the the scaled test is
expected to be less than 40s. The operation time of the HTF depends on the test condition and
ranges from 42s to 294s. Therefore, it is assumed that the wind tunnel can operate for sufficient
time length so as to accommodate the aerothermoelastic test of any model with geometric scales
of 2 ≤ ξ ≤ 5. In other words, no constraint is needed for the time duration of the scaled test in
the optimization problem associated with refined aerothermoelastic scaling.

Figure 17: Operating envelope of the HTF (Figure 1 of
Ref. [15])

Figure 18: Envelopes of the HTF test conditions
and typical hypersonic flight condi-
tions

Table 6: Wind tunnel conditions

M∞ p0 (MPa) T0 (K)
Ideal [5, 7] [0.27579, 86.184466] [416.483, 2500.0]

Realistic
WT5 5 [0.4860804, 2.82685] [1222.22, 1344.44]
WT6 6 [0.992845, 8.273709] [1647.22, 1838.89]
WT7 7 [2.96475, 8.273709] [2127.778, 2500.0]

The design variables considered for the scaling of the skin panel, as well as their constraints,
are summarized in Table 7. These design variables are selected from Table 1. The design
variables consist of the wind tunnel conditions, geometrical parameters of the model, and the
parameters for an external radiative heater. The constraints for the wind tunnel conditions have
been provided in Table 6. In the constraints for the geometrical parameters, the upper limits
are determined by the size of the wind tunnel test section and the lower limits are determined
by the manufacturing constraints. The radiative heating is assumed to enable the discussion of
the incomplete testing strategy. It is assumed that the radiation temperature Trad is constant
throughout the test and the surface emissivity of the model ε is uniformly distributed. The
model is assumed to be aligned with the flow, so the inclination angle θ is zero. The model
is built of a single material, Ti 6242, so the material properties are fixed and there is only one
design variable h representing the thickness of the panel.

When parameter relaxation strategy is employed, only the similarity parameters in Eqs. (16a)
and (16c) are imposed as equality constraints, and the matching of the similarity parameters in
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Table 7: Design variables for the scaled model and their constraints

M∞, p0, T0 L (m) Lle (m) h (m) ε Trad (K)
See Table 6 [0.1, 0.5] [0.1, 2.0] [0.001, 0.01] [0.5, 1.0] [300.0, 2500.0]

Eq. (16b) is not required. Equation (16a) defines the scaling of the time step size during the
simulation,

∆tm =
1

ξ2
[k̂s]p

[ρ̂sĉsp]
p

[ρ̂sĉsp]
m

[k̂s]m
∆tp (44)

Assuming T̂ p
T = T̂ p

S = T̂ p
w and T̂ p

F = T p
∞ for the prototype, Eq. (16c) implies the following

equality constraints on the design variables associated with reference temperatures,

T̂m
T = T̂m

S = T̂m
w , T̂m

F = Tm
∞ ,

Tm
w

Tm
∞

=
T p
w

T p
∞

(45)

6.2.2 Scaling With Ideal Wind Tunnel Conditions

First, the feasibility of numerical aerothermoelastic scaling is explored by generating scaled
models for different geometric scales with ideal wind tunnel conditions. The flight conditions
of the prototype are M∞ = 6.0 and H = 25km. The parameter relaxation strategy is used and
the design variables include M∞, p0, T0, Lle, h. Four different geometric scales are considered:
ξ = 2, 3, 4, 5. For each case, 20 samples are generated to initialize the SBO algorithm and 50
iterations are conducted during the optimization.

The Pareto fronts for the four cases are shown in Fig. 19. The results show that, reducing the
error of one of responses would result in a rapid increase in the error of the other response.
Thus it illustrates the failure of the classical aerothermoelastic scaling. Nevertheless, for each
geometric scale, it is possible to find a model configuration that satisfies approximately the
aerothermoelastic similarity, as indicated by the solid points in Fig. 19. These points are as-
sumed to be the final design points. The responses associated with these design points are
shown in Figs. 20 and 21. In all the cases, the errors in the aerothermoelastic responses are less
than 10%.

Figure 19: Pareto fronts for different geometric scales
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Figure 20: Comparison of nondimensional structural
responses

Figure 21: Comparison of nondimensional thermal re-
sponses

The values of the design variables are listed in Table 8 and illustrated in Fig. 22. Figure 22
illustrates the differing scaling requirements of the geometrical variables h and Lle. The numer-
ical scaling of the panel thickness h agrees with the analytical scaling requirements represented
by the blue dashed line. However, the variable Lle increases as the panel dimension decreases,
which is vastly different from the analytical scaling requirements. The scaling of Lle obtained
numerically represents a refinement of the analytical scaling relation. Table 8 illustrates the
activation of constraints at the design points. The constraints of h and Lle are active for the
cases ξ = 2 and ξ = 3, respectively, due to the limitation in the size of the test section. Using
the classical scaling approach, it is inconvenient to develop a scaled model that accounts for the
inequality constraints. That is because, for the classical approach the scaling requirements are
determined by the analytical similarity parameters. However, the derivation of these similarity
parameters does not involve any inequality constraints. Nevertheless, the inequality constraints
are treated efficiently using the two-pronged approach. A scaled model that satisfies all the
constraints is obtained by the refined and systematic adjustment using the optimization process
of the two-pronged approach.

To summarize, the results in this section show that it is possible to achieve refined ASL under
ideal wind tunnel conditions using the two-pronged approach. Furthermore, the results obtained
illustrate the advantages of the two-pronged approach over the classical scaling approach. First,
the two-pronged approach can generate the requirements for aerothermoelastic scaling by re-
fining the scaling requirements represented by the analytical similarity parameters. Second, the
two-pronged approach can account for the inequality constraints representing the limitations of
the wind tunnel and manufacturing capabilities, which cannot be treated efficiently using the
classical approach.
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Figure 22: Analytical and numerical scaling of geometrical variables

Table 8: Design points for different geometric scales

Design variables ξ = 2 ξ = 3 ξ = 4 ξ = 5
M∞ 6.841e+00 5.653e+00 5.407e+00 6.250e+00

p0 (MPa) 6.476e+01 3.916e+01 3.858e+01 7.330e+01
T0 (K) 2.280e+03 1.868e+03 2.130e+03 2.187e+03
Lle (m) 1.812e+00 2.000e+00 3.516e-01 1.950e-01
h (m) 1.000e-02 5.971e-03 4.317e-03 4.150e-03

6.2.3 Scaling With Realistic Wind Tunnel Conditions

Next, the scaling of the prototype is conducted with realistic wind tunnel conditions. The flight
conditions of the prototype are M∞ = 6.0 and H = 25km and the wind tunnel conditions
WT5, WT6 and WT7 from Table 6 are used. Two cases are considered. For Case 1, pure
parameter relaxation strategy is used and the design variables are p0, T0, L, Lle, h. For Case
2, combined strategy of parameter relaxation and incomplete testing is used and the design
variables are p0, T0, L, Lle, h, ε, Trad. For both cases, 20 samples are generated to initialize the
SBO algorithm and 50 iterations are conducted for the optimization.

The Pareto fronts of the two cases are shown in Fig. 23. For Case 1, the two-pronged approach
failed to find any good solution that have low errors in the structural and thermal responses for
any realistic wind tunnel conditions. For Case 2, it is possible to find configurations that can
satisfy approximately the aerothermoelastic similarity for all the three wind tunnel conditions.
The differences between the two cases are explained by examining the design points in Tables 9-
10. All the design points in Case 1 have reached the upper limit of p0 for the realistic wind tunnel
conditions, which is less than 10% of the maximum p0 in the ideal wind tunnel conditions. As
illustrated in Fig. 24, the low value of p0 leads to insufficient heating on the model and produces
a slow increase in the average temperature as well as the center deflection. The problem in Case
1 is resolved in Case 2 with the introduction of the external heating, which compensates for the
low heating rate in the realistic wind tunnel conditions.
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Table 9: Design points for realistic wind tunnel conditions in Case 1

Design variables WT5 WT6 WT7
p0 (MPa) 2.827e+00 8.274e+00 8.274e+00
T0 (K) 1.267e+03 1.664e+03 2.317e+03
L (m) 5.000e-01 5.000e-01 5.000e-01
Lle (m) 7.601e-01 6.270e-01 6.419e-01
h (m) 7.034e-03 8.794e-03 1.000e-02

Table 10: Design points for realistic wind tunnel conditions in Case 2

Design variables WT5 WT6 WT7
p0 (MPa) 4.861e-01 9.928e-01 6.543e+00
T0 (K) 1.222e+03 1.821e+03 2.220e+03
L (m) 5.000e-01 4.480e-01 4.448e-01
Lle (m) 2.000e+00 1.761e+00 1.717e+00
h (m) 7.500e-03 7.798e-03 8.210e-03
ε 5.000e-01 1.000e+00 1.000e+00

Trad (K) 1.621e+03 1.492e+03 1.548e+03

Figure 23: Pareto fronts for Cases 1 and 2

The comparison between Cases 1 and 2 shows that, using parameter relaxation and incomplete
testing, the two-pronged approach can be used to generate aerothermoelastically scaled models
with restrictive constraints of realistic wind tunnel conditions. However, it should be empha-
sized that achieving small errors in the structural and thermal responses is progressively more
difficult as the Mach number decreases. When M∞ = 5, the design point has most of the con-
straints active, indicating that the constraints imposed by the wind tunnel conditions WT5 are
not suitable for the flight condition considered in the current problem.

36



IFASD-2019-143

(a) Nondimensional structural response (b) Nondimensional thermal response

Figure 24: Comparison of prototype and model responses in Cases 1 and 2 for wind tunnel condition WT7.

6.2.4 Scaling for Multiple Flight Conditions in the Same Wind Tunnel
Finally, the two-pronged approach is used to generate scaled models for aerothermoelastic
testing associated with different flight conditions using the same set of wind tunnel condi-
tions. A range of flight conditions is considered: M∞ = 5.0, 5.5, 6.0, 6.5, 7.0 and H =
20, 22, 25, 28, 30km. The wind tunnel condition WT7 in Table 6 is assumed. The design vari-
ables are p0, T0, L, Lle, h, ε, Trad, which are the same as those in the previous problem. However,
in this problem, instead of solving the MO problem for each flight condition, an SO problem is
solved for a combined objective function,

Js =
√

J2
u + J2

T (46)

Solving SO problems requires fewer samples of numerical aerothermoelastic responses and thus
saves a considerable amount of computer time. The SO problems are solved in a sequential
manner. The first SO problem is initialized using 20 samples and 20 iterations are conducted.
Next, the SO problems are solved using 20 iterations with the initial samples recycled from the
previous SO problems.

The errors associated with different flight conditions are listed in Table 11. For all but five flight
conditions, it is possible to find configurations that can approximately satisfy the aerothermoe-
lastic similarity with errors of less than 5%. The errors exceed 5% in two cases: (1) high
Mach number (M∞ = 6.5, 7.0) and low altitude (H = 20km) and (2) low Mach number
(M∞ = 5.0, 5.5) and high altitude (H = 28, 30km).

Next, three typical cases are examined: (1) M∞ = 7.0, H = 20km, (Js = 5.22%), (2)
M∞ = 6.0, H = 22km, (Js = 1.50%), (3) M∞ = 5.0, H = 30km, (Js = 9.98%). Figure 25
illustrates the structural deformation and temperature distribution along the centerline at nondi-
mensional times t = 30, 90, 160. For all the cases, aerothermoelastic similarity is achieved
approximately. However, the temperature distribution of the prototype is more non-uniform
than the model, because the heat sources on the model include both aerodynamic heating and
external heating due to radiation. While the aerodynamic heating is stronger near the leading
edge of the panel, the radiative heating is almost uniform over the panel. This produces a rel-
atively uniform temperature distribution on the model. The temperature distribution becomes
more non-uniform as the Mach number increases and the altitude decreases, because the aero-
dynamic heating becomes stronger at higher Mach number and higher freestream pressure, i.e.
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lower altitude. In the long-term quasi-steady aerothermoelastic response, the panel deformation
is mainly caused by the thermal effect [31]. The maximum deflection of the panel increases as
the average temperature increases and the location of the maximum deflection of the panel is
closer to the leading edge when the temperature distribution is more non-uniform.

Figure 25: Nondimensional structural and thermal responses of selected cases

Among the three sets of flight conditions considered, the second one is a typical case where
aerothermoelastic similarity is achieved approximately. The temperature distribution of the
prototype is not highly non-uniform, so that the maximum deflections of the prototype and the
model occur approximately at the center of the panel. The average temperatures of the proto-
type and the model are similar, resulting in similar amplitudes of structural deformation and
smaller errors in the structural response. On the other hand, the first set of flight conditions rep-
resents a case where the aerodynamic heating is too strong and produces a highly non-uniform
temperature distribution that causes the location of maximum deflection of the prototype to
move from the center towards the leading edge. The mismatch in the shape of panel deflection
produces an increased error in the nondimensional structural response. The third set of flight
conditions represents the case where the aerodynamic heating is weak but the external heating
is insufficient to accurately control the average temperature of the model. The mismatch in the
average temperatures of the model and the prototype leads to the error in the magnitude of panel
deflection and the increased error of structural response.

Within the current optimization framework, the sources of errors in the first and the third cases
can be minimized or eliminated by refined adjustment of the model. For the first case, the dis-
tribution of the radiation temperature of the radiative heater can be optimized, so as to tune the
distribution of the radiative heat flux to resemble the non-uniform distribution of the aerody-
namic heat flux. Furthermore, the objective functions Ju and JT can be modified to include the
structural and thermal modal coordinates so as to ensure the matching of the distributions of
deformation and temperature. For the third case, the time variation of the radiation temperature
during the wind tunnel test can be optimized, so as to accurately control the average temperature
and thus the deformation of the panel.
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Table 11: Errors in aerothermoelastic responses of differernt flight conditions (in %)

H = 20km H = 22km H = 25km H = 28km H = 30km
M∞ = 5.0 4.82 4.41 3.69 7.20 9.98
M∞ = 5.5 3.40 2.95 3.34 4.51 5.47
M∞ = 6.0 2.75 1.50 4.52 3.2 4.13
M∞ = 6.5 6.16 2.15 3.24 2.25 2.81
M∞ = 7.0 5.22 3.58 2.43 5.17 2.01

7 CONCLUSIONS

This study examines the problem of hypersonic aerothermoelastic scaling employing a novel
two-pronged approach. It combines the classical scaling approach with augmentation from nu-
merical simulations of the specific problem based on a constrained optimization formulation.
In the optimization formulation, the strategies of parameter relaxation and incomplete testing
are incorporated to assist the refinement of hypersonic aerothermoelastic scaling. The new
two-pronged approach was applied to the aerothermoelastic scaling of a skin panel in hyper-
sonic flow. The aerothermoelastic similarity between the prototype and the scaled model was
successfully obtained using a systematic optimization approach, which accounts for realistic
constraints of the wind tunnel and manufacturing.

The principal conclusions are summarized below,

1. When the wind tunnel is capable of simulating flight conditions with sufficiently high
stagnation temperature and stagnation pressure, the aerothermoelastic scaling can be
achieved using a parameter relaxation strategy. An aerothermoelastically scaled model
is constructed by matching a partial set of the aerothermoelastic similarity parameters
between the prototype and the model.

2. When the wind tunnel is limited and cannot provide high stagnation temperature or stag-
nation pressure, aerothermoelastic similarity can be still achieved by combining parame-
ter relaxation with incomplete testing. Thus external loading and heating is introduced to
compensate for the insufficient aerodynamic loading and heating capability of the wind
tunnel.

3. Using one set of wind tunnel conditions, i.e. in the same wind tunnel, it is possible to
adjust the scaled model in a refined manner, so as to conduct hypersonic aerothermoelastic
testing for a range of flight conditions that are representative of the flight envelope of a
hypersonic vehicle.

The aerothermoelastic scaling approach described in this study can be applied to testing compo-
nents of a hypersonic vehicle. Furthermore, the approach can be used to map aerothermoelastic
results obtained in wind tunnel tests on scaled vehicles to a full-scale vehicle. Therefore, it
has the potential for saving considerable funds in the development process of future hypersonic
vehicles.
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