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Abstract: In the previous experimental research of aeroelasticity for supersonic transport wing 
model, limit cycle oscillation (LCO) boundary and amplitude characteristics have been 
obtained. The LCO started from smaller amplitude and grew up suddenly as dynamic pressure 
increased. Numerical analysis was performed for it, and large amplitude LCO was captured by 
Euler simulation. Bifurcation diagram was obtained by Harmonic balance method, and LCO 
amplitude is estimated. 
 
 
1 INTRODUCTION 
Transonic is a critical region in aeroelasticity even for a supersonic transport (SST). 
Furthermore, for the wing which is thin and low aspect ratio, a special characteristics such as 
instability in very narrow Mach range so called “chimney”[1] and divergent flutter at higher 
dynamic pressure than LCO region[2] have been reported. Using fundamental wind tunnel 
aeroelastic model of SST, further investigation was performed by the authors[3]. In the 
experiment, LCO which has the bottom of dip at Mach 0.94 and 1.01 was observed. Large 
amplitude LCO was observed over the smaller amplitude LCO dynamic pressure area instead 
of the divergent flutter. Numerical analysis corresponding to the wind tunnel test are performed 
by Euler / Navier-Stokes code. In addition to the time domain simulation, linearlized 
generalized aerodynamics, eigen value analysis using harmonic balance method are mentioned 
in this paper. 
 
2 WING MODEL AND WIND TUNNEL TEST 
The wing model (Figure 1) and wind tunnel test results are described in [1]. Geometry natural, 
mode, and some results are depicted in Figure 2 - Figure 5 and Table 1. LCOs were observed 
under the flow condition as shown in Figure 4. The test was held in blow down wind tunnel, 
which can operate in Mach or total pressure sweep mode. LCO occurred as total pressure, that 
is Equivalent Air Speed (EAS), increased. Furthermore, the EAS increased keeping LCO, the 
amplitude suddenly became large (Figure 5). Therefore, two types of LCO was observed in the 
test. After large amplitude LCO occurred, the wind tunnel operation was stopped immediately. 
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Figure 1: Wing model 

 
Figure 2: Geometry of the model 

 
Table 1: Natural frequencies 

# mode 
FEM 
Hz 

GVT 
Hz 

1 1st bending 65.7 64.１ 
2 2nd bending 186.4 186.6 
3 1st torsion 352.0 360.8 
4 3rd bending 397.0 416.8 

 

 
mode 1   mode 2   mode 3   mode 4 

Figure 3: Mode shapes by FEM 
 

 
Figure 4: LCO observed in the wind tunnel test 
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Figure 5: LCO amplitude variation in EAS changes at Mach 1.01. 

 
 
3 NUMERICAL ANALYSIS 
3.1 Linear analysis 
Figure 6 shows flutter boundary estimated by Doublet Point Method (DPM) which is based on 
a lifting surface theory. 8 modes are considered and p-k method was used for the eigen value 
analysis. The natural mode of splitter plate at the root was omitted. The first and the second 
flutter modes are hump mode which would be stabilized again as EAS increases over 
destabilized speed. Symmetric flow in span direction at the splitter plate was supposed in the 
DPM analysis. FEM was modified by GVT in eigen mode frequencies. At least 4 modes are 
necessary to get unstable results. 
 

 
Figure 6: Flutter speed (left) and frequency (right) estimated by DPM. 

 
 
3.2 Nonlinear analysis 
3.2.1 Euler / Navire-stokes code 
The numerical analysis was performed by NATAS which is the code developed by JAXA. 
Summary of the code descriptions is as follows. 

flow_solver  MFGS 
fluxtype   non-MUSCL 
turbulent_model  Spalart-Allmaras 
grid  

Euler structured multiblock grid 18 blocks node 2.8 mil. points 
NS structured multiblock grid 18 blocks node 6.9 mil. points 
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Pressure distributions are shown in Figure 7 and results of the time domain simulation are 
shown in Figure 8 - Figure 11. Loss factor, frequency and amplitude are estimated from the 
time history of the first eigenmode response. Positive loss factor means positive damping, 
which should be damped to the zero amplitude. In some cases, the computations have not been 
conversed enough to remain a certain amplitude. The conditions where loss factor is zero and 
the amplitude is non-zero value mean those are in Limit Cycle Oscillation. Negative loss factor 
means the amplitude still increases. Although different initial speed of the first mode was tried 
in some cases, no different equivalent condition was reached. Two stage amplitude of LCO in 
VEAS direction is not appeared in numerical results as observed in the wind tunnel test. LCO 
amplitude observed in the test is shown in Figure 11 for a reference. It is the amplitude at the 
measured point, which is not the first mode amplitude. Both viscous and non-viscous simulation 
reached to LCO condition. Both seem to be corresponded to the large amplitude LCO in the 
test. No small amplitude LCO was observed in the numerical simulations. Figure 12 shows the 
first and the second mode generalized aerodynamics (GA) in relation with the modal velocity 
during NS simulation with two different initial conditions. Higher mode GA shows nonlinearity 
as the amplitude become large. 
 

 
Figure 7: Cp distribution by Euler analysis at 𝛼𝛼 = 0°, Mach 0.90 (left), 0.95 (center), 0.99 (right) 

 

 
Figure 8: Euler / NS results at Mach 0.90. 

 

 
Figure 9: Mach 0.95 
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Figure 10: Mach 0.99 

 

 
Figure 11: Mach 1.01 

 

 
Figure 12: First and second mode GA vs. modal velocity at Mach 0.99 Veas=495m/s by NS analysis 

 
3.2.2 Generalized aerodynamics 
Generalized aerodynamics for each natural mode are estimated by the Euler code. Simulation 
for forced sinusoidal oscillation of the natural mode are performed first, then the time history 
of the generalized aerodynamics multiplied by the forced sinusoidal signal are integrated and 
normalized by the amplitude to obtain the coefficient of the Fourier series. Magnitude and phase 
are shown in Figure 13 for different amplitude with DPM results. No static deformation is 
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considered in Figure 13 because the wing model has symmetric profile and zero incidence is 
supposed. 
 
Figure 14 shows the flutter equivalent air speed estimated by the generalized aerodynamics. 
“Euler pk” in the figure are the results of the p-k method with the first harmonic component of 
the generalized aerodynamics by the Euler analysis. The flutter speed increases as the amplitude 
increases. This chart can be recognized as a bifurcation diagram which shows the amplitude of 
the LCO against the equivalent air speed. Higher speed than flutter is unstable, which means 
amplitude must be increased. Lower speed than flutter is vice versa. Therefore, the line which 
has positive inclination gives the equivalent condition at that speed. In this manner, LCO 
amplitude can be estimated 0.10 at 𝑉𝑉𝐸𝐸𝐸𝐸𝐸𝐸 ≅500 m/s. It is comparable to the time domain 
simulation result which is 0.14 as in Figure 10. It contains the error caused by super-impose 
effect, higher harmonic component, etc., comes from the nonlinearity of the aerodynamics. 
 
The harmonic balance method[4] can estimate flutter speed by eigen value analysis considering 
nonlinearity. In this method a relation between amplitude and flutter speed can be estimated to 
have a bifurcation diagram. Although the original method needs numerical code solving in 
frequency domain, it was performed by time domain analysis in this paper. The method is as 
follows. 
 
Definition of the equation. 
 
The flutter equation is 
 

𝑀𝑀𝑞̈𝑞 + 𝐶𝐶𝑞̇𝑞 + 𝐾𝐾𝐾𝐾 = 𝐹𝐹     (1) 
 
where 𝑀𝑀,𝐶𝐶,𝐾𝐾,𝐹𝐹, 𝑞𝑞  are generalized mass, damping, stiffness matrices and aerodynamics, 
coordinate vectors. It is supposed that the LCO can be expressed as Fourier series expansion as 
𝑞𝑞 = ∑ 𝑞𝑞λ𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑛𝑛

𝜆𝜆=0 . It is substituted into the equation and generalized aerodynamics is expanded 
as F= ∑ 𝜕𝜕𝜕𝜕

𝜕𝜕𝑞𝑞λ
𝑞𝑞λ𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑛𝑛

𝜆𝜆=0 . In each order of the harmonic component 𝜆𝜆, following equation is 
derived. 
 

(−𝜆𝜆2𝜔𝜔2𝑀𝑀 + 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 + 𝐾𝐾)𝑞𝑞λ = 𝜕𝜕𝜕𝜕
𝜕𝜕𝑞𝑞λ

𝑞𝑞λ    (2) 
 
It can be expressed as 
 

(𝐴𝐴𝑅𝑅 + 𝑖𝑖𝐴𝐴𝐼𝐼)𝑞𝑞𝜆𝜆 = 0     (3) 
 
where 𝐴𝐴R = −𝜆𝜆2𝜔𝜔2𝑀𝑀 + 𝐾𝐾 − � 𝜕𝜕𝜕𝜕

𝜕𝜕𝑞𝑞λ
�
R

, 𝐴𝐴I = 𝜆𝜆𝜆𝜆𝜆𝜆 − � 𝜕𝜕𝜕𝜕
𝜕𝜕𝑞𝑞λ

�
I
 and 𝜕𝜕𝜕𝜕

𝜕𝜕𝑞𝑞λ
= � 𝜕𝜕𝜕𝜕

𝜕𝜕𝑞𝑞λ
�
R

+ 𝑖𝑖 � 𝜕𝜕𝜕𝜕
𝜕𝜕𝑞𝑞λ

�
I
. In this 

paper, only the first harmonic component is considered and mean condition 𝑞𝑞0 is fixed zero 
vector, because the wing has symmetric profiled and only the case of zero incidence is 
considered. 
 
Solving equation (3) 
 
Equation (3) is nondimensionalized by reference mass 𝑚𝑚𝑟𝑟, reference length 𝑐𝑐, reference time 
𝑡𝑡𝑟𝑟 = 𝑐𝑐/𝑈𝑈∞, where 𝑈𝑈∞ is a true air speed of the uniform flow. It results 
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(𝐴̅𝐴𝑅𝑅 + 𝑖𝑖𝐴̅𝐴𝐼𝐼)𝑞𝑞�𝜆𝜆 = 0     (4) 
 
where 𝐴̅𝐴𝑅𝑅 = −𝜆𝜆2𝑘𝑘2𝑀𝑀� + 𝐾𝐾� − 1

2𝜋𝜋𝜋𝜋
� 𝜕𝜕𝜕𝜕
𝜕𝜕𝑞𝑞�λ

�
R

, 𝐴̅𝐴𝐼𝐼 = 𝜆𝜆𝜆𝜆𝐶̅𝐶 − 1
2𝜋𝜋𝜋𝜋

� 𝜕𝜕𝜕𝜕
𝜕𝜕𝑞𝑞�λ

�
I

, 𝑘𝑘 = 𝜔𝜔𝜔𝜔/𝑈𝑈∞ , 𝜇𝜇 = 𝑚𝑚𝑟𝑟
𝜋𝜋𝜋𝜋𝑐𝑐3

. 

Considering the m-th order generalized coordinate, 2m equations are derived on each harmonic 
component. As for the first harmonic component 𝑞𝑞�1, the first natural mode is fixed as 𝑞𝑞�11 =
𝑞𝑞�1,𝑅𝑅
1 + 𝑖𝑖𝑞𝑞�1,𝐼𝐼

1 = 𝑞𝑞�1,𝑅𝑅
1 , which means the amplitude of the first natural mode is given. The equation 

can be solved for the rest of the natural mode 𝑞𝑞�1
𝜉𝜉 = 𝑞𝑞�1,𝑅𝑅

𝜉𝜉 + 𝑖𝑖𝑞𝑞�1,𝐼𝐼
𝜉𝜉  , reduced frequency 𝑘𝑘 and mass 

ratio 𝜇𝜇. It is solved by the Newton - Raphson (NR) method from the initial value to obtain 
converged solution. Although the aerodynamics is obtained by the simulation of the forced 
oscillation of the LCO mode expressed by the combination of the natural modes, linear 
aerodynamics can be applied for the initial condition. Once the eigen vector and 𝑘𝑘, 𝜇𝜇  are 
obtained, forced oscillation simulation is performed with the eigen vector with reduced 
frequency 𝑘𝑘 at mass ratio 𝜇𝜇. Generalized aerodynamics for each natural mode 𝑓𝑓ξ̅(𝑡𝑡) is stored 
for estimating the complex Fourier series coefficient. Complex Fourier series expansion is  
 

𝑓𝑓ξ̅(𝑡𝑡) = ∑ 𝑐𝑐𝜉𝜉,𝜆𝜆𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖∞
𝜆𝜆=−∞     (5) 

and Fourier coefficient is 
𝑐𝑐𝜉𝜉,𝜆𝜆 = 1

2𝜋𝜋 ∫ 𝑓𝑓ξ̅(𝑡𝑡)
𝜋𝜋
−𝜋𝜋 𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖    (6) 

 
In the present research, five cycles simulation was performed, and last cycle was used for 
Fourier integration. Fourier coefficients are separated in real and imaginary part and are 
normalized by the first natural mode amplitude |𝑞𝑞�11|, resulting in as follows. 
 

(𝑄𝑄𝜉𝜉,𝜆𝜆)𝑅𝑅 =
𝑐𝑐𝜉𝜉,𝜆𝜆+𝑐𝑐𝜉𝜉,−𝜆𝜆

2�𝑞𝑞�11�
, (𝑄𝑄𝜉𝜉,𝜆𝜆)𝐼𝐼 =

𝑐𝑐𝜉𝜉,𝜆𝜆−𝑐𝑐𝜉𝜉,−𝜆𝜆

2�𝑞𝑞�11�
   (7) 

 
𝑓𝑓ξ̅(𝑡𝑡) = |𝑞𝑞�11| �

𝑐𝑐𝜉𝜉,0

�𝑞𝑞�11�
+ ∑ �(𝑄𝑄𝜉𝜉,𝜆𝜆)𝑅𝑅 + 𝑖𝑖(𝑄𝑄𝜉𝜉,𝜆𝜆)𝐼𝐼�𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖∞

𝜆𝜆=1 �   (8) 

 
In equation (4), 𝑓𝑓ξ̅(𝑡𝑡) is treated as the function of the first natural mode only. 
 

𝐴̅𝐴𝑅𝑅 = −𝜆𝜆2𝑘𝑘2𝑀𝑀� + 𝐾𝐾� − 1
2𝜋𝜋𝜋𝜋

⎣
⎢
⎢
⎢
⎢
⎡

(𝑄𝑄1,𝜆𝜆)𝑅𝑅 0 ⋯ 0
⋮ ⋮

(𝑄𝑄𝜉𝜉,𝜆𝜆)𝑅𝑅 0 0
⋮ ⋮

(𝑄𝑄𝑚𝑚,𝜆𝜆)𝑅𝑅 0 ⋯ 0⎦
⎥
⎥
⎥
⎥
⎤

    (9) 

𝐴̅𝐴𝐼𝐼 = 𝜆𝜆𝜆𝜆𝐶̅𝐶 − 1
2𝜋𝜋𝜋𝜋

⎣
⎢
⎢
⎢
⎢
⎡

(𝑄𝑄1,𝜆𝜆)𝐼𝐼 0 ⋯ 0
⋮ ⋮

(𝑄𝑄𝜉𝜉,𝜆𝜆)𝐼𝐼 0 0
⋮ ⋮

(𝑄𝑄𝑚𝑚,𝜆𝜆)𝐼𝐼 0 ⋯ 0⎦
⎥
⎥
⎥
⎥
⎤

    (10) 

 
The first natural mode is fixed in equation (4), therefore derivative for Newton-Raphson (NR) 
iteration is independent to the aerodynamics. It makes difficult in acquiring converged result. 
As shown in Figure 15, variation of flutter speed and reduced frequency is so large in the 
iteration. To avoid this difficulty, equation (4) is reconstructed as follows. 
 



IFASD-2019-137 

8 

(𝑆𝑆 + ℱ + ℱ′)(𝑞𝑞�𝜆𝜆
[𝜂𝜂] + Δ𝑞𝑞�𝜆𝜆) = 0 

 
where 𝑆𝑆 is structural part of the matrix, ℱ is the aerodynamics previously mentioned, ℱ′ is 
gradient of the aerodynamics, 𝑞𝑞�𝜆𝜆

[𝜂𝜂] is eigen vector solution at 𝜂𝜂 step iteration, Δ𝑞𝑞�𝜆𝜆 is difference 
to the 𝜂𝜂 + 1  step solution. Although precise ℱ′  is preferable, generalized aerodynamics 
obtained by the forced oscillation simulation with Euler code as shown in Figure 13 is adopted. 
Consequently, the convergence in the NR iteration become much better as shown in Figure 16. 
Figure 17 shows a difference of GA and eigen vector between the beginning and converged 
value in NR iteration. Furthermore, eliminating the overshooting in the iteration, damping 
factor for convergence is applied. 𝜂𝜂 + 1 step variable 𝑥𝑥[𝜂𝜂+1] is changed as 
 

𝑥𝑥[𝜂𝜂+1] ← 𝑥𝑥[𝜂𝜂] + 𝜍𝜍(𝑥𝑥[𝜂𝜂+1] − 𝑥𝑥[𝜂𝜂]) 
 
Figure 18 and Figure 19 shows the results by this manner with 𝜍𝜍 = 0.5. 
 
In Figure 14 flutter speed estimated by NR method is shown. Flutter speed is slightly lower 
than the p-k method in this case. 
 
Flutter boundary changes in Mach variation is shown in Figure 20. The amplitude of the first 
natural mode is 0.05 for NR method. 8 modes for Euler simulation and 4 modes for eigen value 
analysis are considered unless explicitly indicated. As previously mentioned, small amplitude 
LCO can not be captured by Euler simulation, therefore the boundary in Figure 20 means for 
flutter or large amplitude LCO. Both simulation and eigenvalue analysis by Euler code shows 
LCO speed reduction close to sonic speed, while DPM boundary shows slightly increase. LCO 
appears in Euler simulation at lower EAS estimated by eigen value analysis with Euler code. 
By DPM analysis, number of modes considered influence on the flutter speed close to Mach 
one. Eigen value analysis with Euler code only consider 4 modes while the 8 modes are 
considered in the simulation, therefore it might cause the difference of the LCO boundary. 
 

 

 
Figure 13: Generalized aerodynamics (mode 1 and 2 Excited by mode 1, 2 at Mach 0.99) 
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Figure 14: Amplitude effect on the flutter 

equivalent air speed at Mach 0.99.  

 
Figure 15: Flutter speed and reduced frequency 

variation in NR method iteration. Mach 0.99, first 
mode amplitude is |∆𝑞𝑞1| = 0.100. GA is 

independent in the iteration 
 

 
Figure 16: Flutter speed and reduced frequency 

variation in NR method iteration. Mach 0.99, first 
mode amplitude is |∆𝑞𝑞1| = 0.100. GA is 

considered for perturbed part 

 
Figure 17: Difference of GA and eigen vector in 
NR iteration corresponding to Figure 16. 
 

 

 
Figure 18: Flutter speed and reduced frequency 
variation in NR method iteration. Mach 0.99, first 
mode amplitude is |∆𝑞𝑞1| = 0.100. Considering 
converged factor. 

 
Figure 19: Difference of GA and eigen vector in 
NR iteration corresponding to Figure 18. 
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Figure 20: Flutter speed vs. Mach, |∆𝑞𝑞1| = 0.005 
for NR. 
 
4 CONCLUDING REMARKS 
Numerical analysis was performed for the wind tunnel test of Super Sonic Transport wing 
model. Conclusion is as follows. 
 Large amplitude LCOs are captured by inviscid numerical simulation, which means flow 

separation with viscosity is not dominate for the limitation of the oscillation in amplitude.  
 Small amplitude LCOs are not observed in the numerical analysis both viscos, inviscid 

code. We may need more accurate turbulence model to capture it and need more precise 
test data. 

 Generalized aerodynamics of natural mode is calculated by Euler code. Fourier 
integration of the time history of generalized aerodynamics are performed with different 
amplitude forced oscillation of the natural modes. GA obtained by different amplitude 
give the flutter speed change estimated by p-k method. 

 Newton-Raphson method using time domain CFD simulation is proposed. The result in 
flutter speed is close to it estimated by p-k method with linearlized GA. 

 Bifurcation diagram was obtained, and it shows comparable LCO amplitude to CFD 
simulation. 
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