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Abstract: Different numerical models are available for the prediction of laminar-turbulent
transition in boundary layer flows. Although these models gained some maturity in the ap-
plication for steady flows, little is known about the applicability for unsteady problems in a
broad frequency and Reynolds number range. This paper will investigate different unsteady
transition prediction methods in external aerodynamics. Flow conditions are identified that un-
ambiguously require an unsteady transition prediction and such that are likely to be covered by a
quasi-steady approach. This will help to outline the requirements for future unsteady transition
models and to trace deficiencies of existing methods.

1 INTRODUCTION

Boundary layer transition is the process in which a laminar boundary layer changes into a tur-
bulent state. A boundary layer flow that undergoes transition at some point will be called tran-
sitional. Laminar flow is often discussed in terms of a possible drag reduction by some active
or passive means. However, the transitional flow affects forces acting on airfoils and wings
in a much more fundamental way: as the laminar part of the boundary layer flow reduces the
displacement thickness of the boundary layer at the trailing edge, the effective camber of the
device and the lift and moment are changed.

An example of this effect on the pressure distribution is shown in Fig. 1 for a NACA0012
airfoil at α = 1◦ obtained with computational fluid dynamics (CFD). The transition locations
for both cases are imposed in the CFD computation. As the transition location on the upper
side of the airfoil moves downstream, the displacement thickness is reduced. On the lower side,
the opposite effect can be observed. The overall displacement of the flow given by the airfoil
and the displacement thickness of the boundary layer is changed and the difference in effective
camber results in a different pressure distribution.

Although the displacement thickness and the relative difference between a transitional and a
fully turbulent boundary layer decreases with increasing Reynolds number, differences in the
lift and moment characteristics of an airfoil or wing are still found. This is especially true for
transonic flow conditions, where the difference in boundary layer displacement changes the
shock location and strength [1].
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Figure 1: Displacement thickness for different transition locations and the effect on the pressure distri-
bution.

The different aerodynamic characteristics of transitional flows influence the aeroelastic behavior
which in turn needs to be reliably assessed. Although transitional effects are expected to be less
significant at free-flight Reynolds numbers than at moderate wind tunnel Reynolds numbers,
they have to be treated with the same degree of confidence as done for fully turbulent flow
conditions [2].

At the moment, there is a lack of genuine unsteady transition models as most available mod-
els are based on steady flow assumptions. These models are usually applied to unsteady flow
conditions, leading to a quasi-steady approach. In addition, experience is sparse on how differ-
ent transition models behave in a broad frequency band, Mach number, and Reynolds number
range. Fehrs [1] and Helm et al. [3] observe that correlation-based models with free boundary
layer transition give similar results as computations with a constant transition location at small
excitation amplitudes and free-flight Reynolds numbers in unsteady flow. This indicates that a
threshold Reynolds number may exist for which no unsteady transition prediction is required
for an aeroelastic assessment. This paper is meant to improve the understanding of transition
model behavior in the framework of dynamic stability problems.

The next section describes the methods used to obtain the aerodynamic data required for flutter
computations of airfoils with free boundary layer transition. The third section presents steady
and unsteady aerodynamic data for boundary layer flows with free transition and results ob-
tained with a novel frozen transition approach described in the second section. The last section
draws the conclusion of this paper.

2 METHODS

2.1 CFD-based Unsteady Aerodynamics

Unsteady aerodynamics includes a broad variety of different time-depending flow conditions.
The temporal changes in flow conditions might be periodic in nature (e.g. wake encounter in
turbomachinery) or a discret event (e.g. gust encounter). This article will focus on motion
induced, harmonic forces as they are required for stability analysis.
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Stability is the quality of being immune to small disturbances [4]. Therefore it is sufficient
to determine if a system is stable by addressing small departures from the static state. These
may be an excitation in the pitch or heave degree of freedom of an airfoil. The aerodynamic
response to these disturbances determines if the system encounters, for example, flutter. The
general form of the flutter equation is given by [5]:

[
U2

c2
[M ] p2 + [K]− 1

2
ρU2 [A(p)]

]
{q} = 0 (1)

with the eigenvalue1 p = δ + ik describing the reduced damping and reduced frequency of the
system, the freestream velocity U , the chord length c, and density ρ. The reduced frequency is
given by:

k =
c ω

2U
(2)

The vector {q} describes the generalized coordinates. The inertia [M ] and stiffness [K] matrices
define the structure of the system. For harmonic motion, it is assumed that the aerodynamic
matrix is a function of reduced frequency k: [A(ik)]. In the case of an airfoil with heave and
pitch degrees of freedom, the aerodynamic matrix is given by the derivatives of the aerodynamic
coefficients:

[A(ik)] =

[
−clh(ik)S −clα(ik)S
cmh(ik)Sc cmα(ik)Sc

]
=

[
−∂cl

∂h
(ik)S −∂cl

∂α
(ik)S

∂cm
∂h

(ik)Sc ∂cm
∂α

(ik)Sc

]
, (3)

where the unsteady aerodynamic coefficients clh, clα, cmh, cmα are complex-valued functions2

of reduced frequency k and S is a reference area. In general, there is no explicit function to de-
scribe the frequency-dependent aerodynamic matrix. Therefore, [A(ik)] needs to be determined
at discret values of k.

One way to obtain [A(ik)] is to rely on time-domain CFD computations and afterwards obtain-
ing the transfer function G(ik) given by the Fourier-transformed system response Y (ik) and
excitation U(ik):

G(ik) =
Y (ik)

U(ik)
, (4)

where e.g. G(ik) = clα(ik) = FFT{cl(t)}/FFT{α(t)} for pitch motion of a specific reduced
frequency k. An example of the unsteady forces acting on an airfoil during a mono-frequent,
forced motion pitch excitation3 is given in Fig. 2.

1Assuming e.g. the p-k method by Hassig [5].
2The moment reference axis is about quarter-chord for all data given in this paper. For all pitch computations

in this paper, a rotation about the quarter-chord position is used.
3The overbars denote mean value.
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Figure 2: Forced pitch motion computation at a single frequency.

More straightforward than the mono-frequent approach is the use of linear system identification
techniques, for which a broadband pulse excitation is used to obtain the frequency response
of the system for a certain frequency band [6]. The fundamental frequency f depends on the
number of time steps N computed and the time step size ∆t:

f =
1

T
= 1/

N∑
n=1

∆t (5)
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Figure 3: Pulse computation for a pitch excitation.

The system response cl is corrected by the lift coefficient time series of a second computation
without excitation cl0 to remove any drift in the unsteady solution. An example of a pulse
excitation of the angle of attack and the corrected lift response cl − cl0 is shown in Fig. 3.

In order to obtain a linear response of the system with any of the two approaches, the excitation
needs to be sufficiently small. Figure 4 depicts the effect of excitation amplitude α̂ on the
magnitude of the unsteady moment coefficient derivative |cmα|. The unsteady aerodynamics
converges towards the amplitude independent value for sufficient small excitation amplitudes.
A converged system response in transonic airfoil flows is usually found for amplitudes α̂ ≤
1◦ · 10−4.
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Figure 4: Influence of excitation amplitudes α̂ on the magnitude of the unsteady aerodynamic moment
coeffcient derivative |cmα|.

2.2 Transition Prediction

2.2.1 Free Transition

Different methods exist in a Reynolds-averaged Navier-Stokes (RANS) framework to predict
the transition location that is freely determined by the specific flow conditions. The most known
is the eN method independently developed by van Ingen [7] and Smith & Gamberoni [8], where
the stability of the boundary layer flow with respect to small disturbances is investigated for
local velocity profiles inside the boundary layer. The amplification rates αi are integrated along
the body to obtain the amplification factor n =

∫ x
x0
αi dx, which is compared to a critical N

factor [9].

The critical N factor needs to be determined by experiments for different wind tunnel or flight
conditions. Therefore, the method is considered semi-empirical. The method requires non-local
quantities (velocity profiles, integral quantities), which requires some additional data handling.
Highly sophisticated implementations of the eN method exist and it has become the standard
method in the aircraft industry [10, 11].

In recent years, correlation-based local transition models have gained more attention, especially
the γ-Reθ transition model, for which the strictly local formulation allows a straightforward use
in modern CFD codes [12–14]. A comprehensive overview about correlation-based transition
models is given by Dick & Kubacki [15].

The γ-Reθ transition model correlates the momentum loss thickness Reynolds number at tran-
sition onset Reθt to the local turbulence level and streamwise pressure gradient. The actual
momentum loss thickness Reynolds number Reθ is approximated by the locally defined vor-
ticity Reynolds number Reν to determine the transition onset. Fehrs [1] proposes a simplified
version of the γ-Reθ model solely based on the γ transport equation and therefore named γ tran-
sition model. The model is specifically designed for Tollmien-Schlichting transition in external
flows in a low turbulence environment and improves the correlation for accelerated boundary
layer flows. The γ transition model is used for all free transition computations in this article.

Besides the differences between the transition prediction methods, all models mentioned above
are coupled to the underlying turbulence model in a similar manner: when a laminar flow re-
gion is identified, the turbulence production is disabled, which results in a laminar boundary
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layer flow as µt → 0. However, the blending used to increase the turbulence kinetic energy
downstream of the transition location is different.

Figure 5: CAST10-2: Difference in blending between γ transition model (left) and TAU transition mod-
ule (right).

The DLR TAU-Code transition module provides an eN method implementation, where no spe-
cific blending is used. The full turbulence kinetic energy production term Pk is enabled down-
stream of the transition location. This behavior is shown on the right of Fig. 5. In the γ-Reθ and
γ transition model, the intermittency variable γ is used within an additional transport equation
to increase the turbulence kinetic energy production over a certain distance4: P̃k = γ Pk. This
leads to a smooth blending from the laminar to the turbulent boundary layer as shown on the
left of Fig. 5.

In addition, the γ model approximates the thickness of the laminar boundary layer to pre-
serve the turbulence model characteristics in the freestream. In the TAU transition module
(eN method), the production term is disabled up to a user specified wall-normal distance.

The TAU transition module sets the transition location to the surface grid points closest to the
location specified by the user or found by the stability analysis. Therefore, the method is more
sensitive to the grid resolution at the transition location. Although the transition onset (e.g.
first intermittency increase) found by the γ model is also started at some grid point, the model
blending allows for a more sensitive and smoother reaction to changes in the flow conditions.

Fehrs [1] shows that the TAU transition module (eN method) applied for transition prediction
at Re = 20 · 106 gives no variation of the transition location for a pitching airfoil with a pitch
amplitude of α̂ = 1◦ · 10−4. The grid has a constant cell length of ∆x/c = 0.002. To obtain
an unsteady motion of the transition location, a local grid refinement is required, which is not a
viable option if many different flow states within the flight envelope are considered.

The unsteady aerodynamics obtained with the TAU transition module for these cases are identi-
cal to results predicted by the γ transition model for which the intermittency distribution reacts
to the unsteady flow field. The same behavior is reported by Helm et al. [3] for airfoil sections
of the DLR-F5 wing at high Reynolds numbers. For these specific cases, there is no additional

4It should be noted that in the laminar flow region the minimum blending factor is γ = 0.02.

6



IFASD-2019-124

benefit by using the available transition prediction in an unsteady computation as the unsteady
intermittency field (γ transition model) results in the same aerodynamics as the constant transi-
tion location (TAU transition module, eN method).

2.2.2 Frozen Transition Location

Frozen transition location will denote a flow state in an unsteady CFD computation, for which
the transition location and the blending to turbulence does not change in time. The DLR TAU-
Code transition module allows to impose a user-defined transition location independently of the
actual flow, which can be used to model a boundary layer tripping in a steady computation. The
consideration of the boundary layer tripping improves the agreement between numerical and
experimental data significantly [16].

2.2.3 Frozen Intermittency

Frozen intermittency will denote a flow state in an unsteady CFD computation, for which the
intermittency field does not change in time. The intermittency field is determined by a steady
computation with the γ transition model for given flow conditions. At the moment it is not
possible to specify an arbitrary transition location like it is possible with the TAU transition
module.

3 RESULTS

3.1 Overview

Steady and unsteady results for three different airfoils at different flow conditions are pre-
sented in this section. The test cases include a transonic flow at a moderate Reynolds num-
ber (CAST10-2), subsonic flows at moderate to high Reynolds numbers (NLF1-0414F), and
transonic flows at moderate to high Reynolds numbers (SC(2)-0012).

Steady results with free boundary layer transition are obtained in some angle of attack range
with the γ transition model. One angle of attack is chosen for further unsteady computations.
For this angle of attack, the TAU transition model is used to impose a transition location that
gives a good approximation of the transition location predicted by the γ model. The imposed
transition location is afterwards used in an unsteady computation as a frozen transition loca-
tion. The results are compared to unsteady computations with free boundary layer transition as
predited by the γ transition model. For some cases, the frozen intermittency approach is used
as well.

3.2 CAST10-2: Transonic Flow at a moderate Reynolds number

3.2.1 CAST10-2: Airfoil Description

The CAST10-2 supercritical airfoil is part of a family of airfoils designed for a transonic com-
mercial transport aircraft. The design point of the airfoil is given at M = 0.76, α = 0.2◦ with
cl = 0.595 [17]. The section coordinates are given by Dress et al. [18], see Fig. 6. The DLR
projects IGREEN [19] and ALLEGRA [20–23] provide experimental and numerical data on the
aerodynamics and flutter stability of the CAST10-2 in transonic flow. Investigations on limit
cycle oscillations and flutter occurring at transonic flow conditions are presented by Braune &
Hebler [24]. Braune & Hebler [25] provide a further analysis of the single-degree-of-freedom
flutter observed for the CAST10-2 at these transonic flow conditions.
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Figure 6: CAST10-2: Geometry.

3.2.2 CAST10-2: Steady Results

The CAST10-2 airofil is investigated at a Reynolds number of Re = 2 · 106 and Mach number
M = 0.73 at an angle of attack at the upper bound of the laminar drag bucket. Braune & Hebler
[24] provide experimental data that allows an assessment of the transition model capabilities
for the given flow conditions. Figure 7 depicts the aerodynamic coefficients computed with the
γ transition model and the experimental data of Braune & Hebler [24] for different angles of
attack α. The root mean square (rms) errors of the aerodynamic coefficients are included for
the experimental data.

The grey shaded area in the CFD data marks flow conditions, for which the steady solver does
not converge. The flow is inherently unsteady for these angles of attack with a periodic devel-
opment of flow separations and shocks on the upper surface of the airfoil. The shaded area is
limited by the instantaneous maximum values of the unsteady aerodynamic coefficients. Wind
tunnel walls and model deformations are not considered in the numerical model, which accounts
for some of the off-set between experiment and numerical values. The overall agreement is rea-
sonably well as the lift, drag, and moment curves are qualitatively reproduced by the γ transition
model.

Figure 8 depicts the pressure cp and skin friction cf coefficient distributions for α = 0◦ for a
free transition computation and the result given by an imposed transition location defined by the
TAU transition module. In both cases, the flow is transonic with a weak shock at the transition
location. Transition is set to x/c = 0.265 on the upper and to x/c = 0.56 on the lower surface,
which gives the best agreement with the free transition case. It takes about 10 % of the chord
length to activate the turbulence production over the full height of the boundary layer for the γ
model compared to the sudden increase given by the TAU transition module5. As a result, it is
not possible to match the exact increase in skin friction as the blending differs.

In addition, γ model results for α = [−0.1◦,−0.05◦, 0.05◦, 0.1◦] are depicted by gray lines in
Fig. 8 to demonstrate the change of transition location6 with angle of attack. In order to analyse
the effect of the transition location on the steady aerodynamics further, these angles of attack
are computed with a frozen transition location given by the imposed location for α = 0◦ and a
frozen intermittency field given by the intermittency field for α = 0◦.

The resulting aerodynamic coefficients are shown in Fig. 9. Although the pressure distribution
indicates a good agreement for the free and frozen computations at α = 0◦, the quasi-steady

5The blending between the laminar and turbulent boundary layer for this case is depicted in Fig. 5.
6Given by the main increase in cf .
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Figure 7: CAST10-2: Aerodynamic coefficients at Re = 2 · 106, M = 0.73.
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derivatives are significantly different in magnitude, which already shows the importance of a
free transition prediction for these flow conditions.

Table 1: CAST10-2: Quasi-steady lift and moment coefficient derivatives atα = 0◦ obtained with central
differences.

∆cl /∆α / rad−1 ∆cm /∆α / rad−1

γ model 6.56 0.720

frozen intermittency 9.12 0.362

frozen tr. location 8.96 0.320

Table 1 gives the quasi-steady lift and moment coefficient derivatives at α = 0◦ obtained with
central differences. Both frozen transition approaches give similar results but differ significantly
from the free transition case. Therefore, the change of transition position with angle of attack
is more important than the blending from laminar to turbulent.

3.2.3 CAST10-2: Unsteady Results

A pulse excitation with a pitch amplitude of α̂ = 1◦ · 10−5 is used to determine the unsteady
aerodynamics at a mean angle of attack of α = 0◦. Figure 10 shows the lift coefficient derivative
clα and the moment coefficient derivative cmα in magnitude and phase against reduced frequency
k.

The difference in the quasi-steady gradients shown in Sec. 3.2.2 are present at k = 0. The
free transition results show aerodynamic resonance peaks, which are found neither for the
frozen transition location nor for the frozen intermittency case. Mono-frequent computations
are used to confirm the resonance behavior. All results are similar for reduced frequencies of
k > 0.5. For these high reduced frequencies, the unsteady aerodynamics is determined by
non-circulatory forces, for which the overall displacement of fluid caused by the airfoil and the
boundary layer are similar for all cases considered.

Figures 11 and 12 depict the local unsteady pressure cpα = ∂cp/∂α and skin friction cfα =
∂cf/∂α coefficient distributions for k = 0.25 and k = 0.45 in magnitude and phase against
chord length7. The main resonance peak in the unsteady moment coefficient cmα occurs at
k = 0.45.

The difference in unsteady loads at k = 0.45 is caused by the oscillation of the shock position
and transition location on the upper surface, mainly affecting the downstream pressure distribu-
tion. The effect is strongest for the free transition case predicted by the γ transition model. For
k = 0.25, the magnitude of the unsteady pressure |cpα| at the transition location decreases. The
upstream pressure distribution is mainly affected by the shock-wave/boundary layer interaction
at this reduced frequency. All cases show a qualitatively similar behavior in phase. An inverse
shock motion is found at k = 0.45 and a regular shock motion at k = 0.25.

7The dimensional frequencies are f = 19.25 Hz at k = 0.25 and f = 34.65 Hz at k = 0.45.
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Figure 9: CAST10-2: Aerodynamic coefficients with free transition, frozen transition location, and
frozen intermittency.
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Figure 10: CAST10-2: Unsteady aerodynamic derivatives with free transition, frozen transition location,
and frozen intermittency for a pulse excitation. Diamonds indicate mono-frequent results.
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Figure 11: CAST10-2: Unsteady pressure cpα = ∂cp/∂α and skin friction cfα = ∂cf/∂α coefficient
distribution at k = 0.25. Dashed lines depict lower surface.
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Figure 12: CAST10-2: Unsteady pressure cpα = ∂cp/∂α and skin friction cfα = ∂cf/∂α coefficient
distribution at k = 0.45. Dashed lines depict lower surface.
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3.3 NLF1-0414F: Subsonic Flows at moderate to high Reynolds numbers

3.3.1 NLF1-0414F: Airfoil Description

In this section, the NLF1-0414F airfoil is used to investigate the unsteady transition behavior in
subsonic flow. The airfoil is designed for lift coefficients of cl = 0.4 to 0.45 at Re = 10 · 106

and M ≤ 0.4 [26]. It is shown in Fig. 13. Fehrs [1] uses the wind tunnel data of McGhee et
al. [26] to validate the γ transition model in a Mach number range of M = 0.05 to 0.4 at low to
moderate Reynolds numbers of Re = 3 · 106 to 10 · 106. It is found that the extent of the laminar
drag bucket is predicted reasonably well.

0.0 0.2 0.4 0.6 0.8 1.0

x/c

−0.2
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0.2

z/
c

NLF(1)− 0414F

Figure 13: NLF1-0414F: Geometry.

3.3.2 NLF1-0414F: Steady Results

The steady flow field around the NLF1-0414F airfoil is computed at different Reynolds numbers
at M = 0.3 with the γ transition model. The results in terms of aerodynamic coefficients for
Re = 2 · 106, 10 · 106, and 20 · 106 are presented in Fig. 14. As the Reynolds number increases,
the extent of the laminar drag bucket decreases. The lowest drag coefficients are found for the
design Reynolds number of Re = 10 · 106. The quasi-steady lift and moment curve slope inside
the laminar drag bucket is similar for all Reynolds numbers.

The transition location at α = −1◦ given by the γ transition model is approximated by imposing
a transition location with the TAU transition module. Figure 15 shows the approximation in
terms of pressure cp and skin friction cf coefficients. The agreement is best for high Reynolds
numbers. At Re = 2 · 106 transition takes place over a large laminar separation bubble on
the upper surface. The friction coefficient distribution indicates that the imposed transition
location needs to be moved further downstream. However, moving the transition location further
downstream results in an unsteady flow condition. The approximation by the TAU transition
module is worst for this Reynolds number.

The imposed transition locations for α = −1◦ are kept and the angle of attack is slightly varied.
The results are depicted in Fig. 16. The agreement of the values of lift and moment coefficients
together with the slope of the curves is best for Re = 10 · 106, indicating that the transition
location is independent of the angle of attack. As shown in Fig. 15, transition takes place
downstream of the pressure minimum over a small laminar separation bubble. As the location
of the pressure minimum is rather insensitive to small changes in the angle of attack, this turns
out in a stable transition location.

At Re = 20 · 106 transition takes place in a favorable pressure gradient region. Any change
in angle of attack will change the pressure gradient, directly affecting the transition location
and thus causing a larger difference between the free and imposed transition results than for
Re = 10 · 106.
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Figure 14: NLF1-0414F: Aerodynamic coefficients at M = 0.3 with free boundary layer transition.
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Figure 15: NLF1-0414F: Approximation of γ model results with an imposed (frozen) transition location
at α = −1◦.
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Figure 16: NLF1-0414F: Aerodynamic coefficients with corresponding Reynolds numbers.
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Figure 17: NLF1-0414F: Unsteady aerodynamic derivatives for a pulse excitation at Re = 2 · 106.
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Figure 18: NLF1-0414F: Unsteady aerodynamic derivatives for a pulse excitation at Re = 10 · 106.

0

2

4

6

8

10

12

|c l
α
|/

ra
d
−
1

γ model

frozen tr. location

0.0

0.4

0.8

1.2

1.6

2.0

2.4

|c m
α
|/

ra
d
−
1

0.0 0.2 0.4 0.6 0.8 1.0

k

−15

0

15

30

45

60

75

Φ
lα

/
d
eg

0.0 0.2 0.4 0.6 0.8 1.0

k

−210

−180

−150

−120

−90

−60

−30

Φ
m
α
/
d
eg

Figure 19: NLF1-0414F: Unsteady aerodynamic derivatives for a pulse excitation at Re = 20 · 106.
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3.3.3 NLF1-0414F: Unsteady Results

Figures 17 to 19 present the unsteady aerodynamic coefficient derivatives clα and cmα for a
pulse excitation in pitch. The free and the frozen transition location results for higher Reynolds
numbers are virtually identical. There are minor differences at Re = 2 · 106 for k → 0 but these
can be attributed to the different laminar-turbulent blending as a difference is already found in
the steady results, see Fig. 16.

3.4 Modified SC(2)-0012: Transonic Flows at moderate to high Reynolds numbers

3.4.1 Modified SC(2)-0012: Airfoil Description

In this section, the SC(2)-0012 airfoil is used to investigate the unsteady transition behavior
in transonic flow. The airfoil is part of a family of supercritical airfoils designed by NASA
for transport aircraft. The 12-percent-thick symmetrical SC(2)-0012 is designed for non-lifting
applications such as the vertical stabilizer [27, 28].
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Figure 20: SC(2)-0012M: Geometry.

0.0 0.2 0.4 0.6 0.8 1.0

x/c

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

(z
m
od

−
z o

rg
)
/c

·1
03

Figure 21: SC(2)-0012M: Deviation from original geometry.

The airfoil coordinates are given with 5-digit precision. The flat surface at x/c = 0.4 results in
a wavy surface if a b-spline is used to represent the surface, which in turn results in pressure dis-
tortions that do not allow CFD computations at high Reynolds numbers. Therefore, a smoothed
geometry is used, denoted as SC(2)-0012M. The original and modified airfoil are depicted in
Fig. 20. The deviation from the original geometry is shown in Fig. 21.

Figure 22 shows the pressure coefficient distribution at α = 0◦, M = 0.8, and Re = 20 · 106

computed with the γ transition model. The modified geometry gives a reasonable pressure
distribution when compared to the original geometry8.

8Both CFD results are well converged. Although the original and the modified airfoil are symmetric, the CFD
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Figure 22: SC(2)-0012M: Pressure coefficient distribution at α = 0◦, M = 0.8, Re = 20 · 106 for the
original and modified airfoil.

3.4.2 Modified SC(2)-0012: Steady Results

The steady flow is computed for the SC(2)-0012M airfoil at M = 0.8 at different Reynolds
numbers. The lift, moment, and drag coefficients are shown in Fig. 23. The slope of the lift
and moment curves increase with Reynolds number as the airfoil drag decreases. There is no
converged solution for Re = 20 · 106 at α ≥ 0.4◦. No attempt is made to obtain further results
by URANS computations and thus the mean and rms error values are given. Angles of attack
α > 1.4◦ for Re = 20·106 are excluded as the flow is inherently unsteady at the given freestream
conditions.

Figure 24 shows the pressure and skin friction coefficient distributions for α = 0.2◦ as obtained
with the γ transition model and the TAU transition module approximation with an imposed
transition location. Transition takes place at the pressure minimum on the upper and lower
surface for all Reynolds numbers investigated. The boundary layer flow separates for all cases
at the transition location with the exception of the lower surface at Re = 20 · 106, where no
laminar separation is found. The laminar separation bubble decreases in size as the Reynolds
number increases.

The transition location found for α = 0.2◦ is then imposed as a frozen transition location at
different angles of attack. The results for all Reynolds numbers are shown in Fig. 25. The
largest offset between the free transition and the frozen transition location results are found for
Re = 10 · 106.

Table 2: SC2-0012M: Quasi-steady lift and moment coefficient derivatives at α = 0.2◦ for Re = 10 ·106
obtained with central differences.

∆cl /∆α / rad−1 ∆cm /∆α / rad−1

γ model 15.9 −0.699

frozen intermittency 16.0 −0.718

frozen tr. location 16.7 −0.847

A frozen intermittency computation is performed in addition to the frozen transition location
computation to determine the effect of the blending. Table 2 gives the quasi-steady lift and

grid is not fully symmetric, which results in small differences between the pressure distribution on the upper and
lower surface.
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Figure 23: SC(2)-0012M: Aerodynamic coefficients at M = 0.8 with free boundary layer transition (γ
transition model).

moment coefficient derivatives at α = 0.2◦ for Re = 10 · 106 obtained with central differences
based on the data given in Fig. 25. The aerodynamic coefficients for the γ transition model
agree well with the frozen intermittency results once the same blending in the transition region
is used.

3.4.3 Modified SC(2)-0012: Unsteady Results

Figures 26 to 28 show the unsteady aerodynamic coefficient derivatives for a pulse excitation in
pitch. The results for Re = 2 · 106 and 20 · 106 are similar for the free transition and the frozen
transition location approach. There are some differences for Re = 10 · 106, especially in the
unsteady moment coefficient at k ≈ 0.25 if a frozen transition location is used.

These differences are significantly reduced if the frozen intermittency field is used in the un-
steady computation9. The different blending in the transition zone accounts for the different
unsteady results given by the free transition and the frozen transition location computations.
In the CAST10-2 test case by contrast, the free transition behavior is required to capture the
aerodynamic resonances and the blending has only a minor effect on the unsteady results.

9The reason for the deviation at higher reduced frequencies is not known at the moment and might be due to a
different unsteady time step size used in the computations in combination with a different pulse signal.
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Figure 24: SC2-0012M: Approximation of γ model results by an imposed transition location atα = 0.2◦.
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Figure 26: SC2-0012M: Unsteady aerodynamic derivatives for a pulse excitation at Re = 2 · 106.
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Figure 27: SC2-0012M: Unsteady aerodynamic derivatives for a pulse excitation at Re = 10 · 106.
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Figure 28: SC2-0012M: Unsteady aerodynamic derivatives for a pulse excitation at Re = 20 · 106.

4 CONCLUSION

This paper presents steady and unsteady RANS computations for transitional flows over airfoils
in a wide range of Mach and Reynolds numbers. As there are no genuine unsteady transition
models that are widely accepted, the unsteady flow computations rely on the quasi-steady ap-
plication of existing models. In prior investigations it was observed that certain models with
free transition give the same unsteady loads as computations with a constant transition loca-
tion, where the transition location remained unchanged as the numerical grid did not allow any
unsteady motion of the transition location. To improve the understanding of the predicted un-
steady transition behavior, a novel approach of frozen transition is introduced: the transition
location is determined for the steady mean flow and this transition location (or intermittency
field) is kept constant in time in an unsteady computation. This allows to determine the effect
of the unsteady transition movement in a more systematic way.

The Reynolds number has a first-order effect on the transition location: the transition location
moves upstream with increasing Reynolds number for a constant disturbance environment. In
addition, the pressure distribution is usually affected by a change in Reynolds number as e.g.
the separation behavior of the laminar boundary layer is altered. Any change in pressure gra-
dient will alter the transition location as well. Both effects aggravate the difficulties to trace
transitional effects over a broad Reynolds number range. In general, it can be stated that the
approximation of the unsteady aerodynamics with free boundary layer transition by a frozen
transition approach improves with increasing Reynolds number. At the moment, there is no
specific threshold Reynolds number above which a steady approach is sufficient.

Unsteady flow conditions for which the frozen transition location or intermittency field give a
good quasi-steady approximation of the aerodynamics, are likely to be captured with the frozen
transition assumption. However, resonance phenomena as found for the CAST10-2 depend
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highly on the unsteady transition behavior and need to be captured by an appropriate transition
model. Although effects of similar severity have not been observed at free-flight Reynolds
numbers, they cannot be dismissed.

The NLF1-0414F airfoil in subsonic flow does not show a significant effect if free transition
results are compared to frozen transition location results. This is rather surprising as one might
expect an inclination towards unsteady flow behavior in the case of large laminar separations
or for transition in a favorable pressure gradient region. Future investigations will show if a
transitional, subsonic flow can experience a transition-induced resonance behavior similar to
that observed in transonic flows in the presence of shocks.

The low Reynolds number results for the CAST10-2 airfoil show that the modeling of the tran-
sition zone has already a strong influence on the steady flow field. Although the approximation
of the γ model’s transition location by the TAU transition module is reasonable, the down-
stream development of the boundary layer results in rather large differences in the values of
the aerodynamic coefficients. In addition, this observation underlines the difficulties to match
experimental data as a good agreement in the transition location does not necessarily produce a
good agreement in the aerodynamic coefficients even at steady flow conditions.

Future transition models need to improve the model behavior inside the transition zone. The
transition process itself is an unsteady and three-dimensional phenomenon, although the overall
flow conditions on a larger scale might be steady. This raises the question if an appropriate
representation within the framework of a RANS model is feasible. In theory, it should be
possible to define an intermittency field within a transition model that gives a representation of
the intermittency factor measured in an experiment. The intermittency factor should provide
the blending from a laminar to a turbulent boundary layer, but it should also be descriptive in
terms of physical quantities inside the transition zone, as the development of the displacement
thickness over the transition zone is essential for the prediction of the aerodynamic behavior. In
addition, further validation data in a broad frequency range at different mean flow conditions
is required to improve existing transition models or to develop and validate unsteady transition
models.
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