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Abstract: Frequency-domain linear aeroservoelastic (ASE) equations of motion, with a 

unified application in dynamic response to gust, control commands and direct force 

applications, are presented.   The increased-order modeling (IOM) approach is then used to 

complement the linear solutions with nonlinear effects.  The resulting process, implemented 

in the Dynresp framework software, is demonstrated in various industrial applications and 

research projects.  The parametric flutter margin (PFM) method, based on adding a reference 

parameter that expands the system stability range, is applied with virtually the same response 

formulation for linear and nonlinear stability analysis.  The more general MIMO version of 

PFM is shown to be very useful in design studies and overall stability characteristics.  The 

SISO version, however, is shown to be more practical and intuitive as it is based on direct 

response functions.  The computation framework facilitates for convenient inclusion of 

morphing scenarios and rapid changes in flight conditions using the nonlinear time-domain 

block. Promising applications to flutter flight tests and high-fidelity fluid-structure interaction 

are presented.  

 

 

1 INTRODUCTION 

The dynamic aeroservoelastic (ASE) response and stability characteristics have primary 

effects on the design and testing of flight vehicles. Most intensive ASE calculations in 

industrial environment are for dynamic loads, aimed at the definition of critical load 

distributions for structural design, and for flutter onset conditions, aimed at ensuring that 

destructive flutter does not occur in the flight envelope plus safety margins.  While most ASE 

design and certification calculations are performed using linear frequency-domain models, 

increasing portions require adequate evaluation of nonlinear aerodynamic, structural or 

control-system effects.  An Increased-Order Modeling (IOM) methodology was developed for 

this purpose and presented a few years ago [1, 2].  It started as a practical and efficient 

approach to the modeling of dynamic systems that are mostly linear, but their behavior may 

be significantly affected by nonlinearities.  The approach is based on the augmentation of a 

main linear block with feedback loops that represent the system nonlinearities.  This paper 

relates mainly to the recently developed IOM-based Dynresp framework code for numerical 

nonlinear ASE response simulations and stability analysis. The framework makes use of 

common frequency-domain aeroelastic response methods and facilitates the addition of time-

domain control, aerodynamic, structural and actuator nonlinearities in a systematic feedback 

architecture. The Dynresp code has been applied to all aspects of dynamic loads analysis at 

Airbus D&S [3] since 2007, and by other companies and research institutes [4].   
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A new Parametric Flutter Margin (PFM) method [5] for response-based flutter analysis was 

recently added to the IOM concept.  Being based on a single stabilizing parameter, such as a 

certain modal damping value or discrete mass that enhances the ASE stability, the PFM 

method facilitates very efficient massive sensitivity studies with respect to selected stabilizing 

parameters [6].  Furthermore, it facilitates safer flutter tests where flutter or nonlinear limit-

cycle oscillation (LCO) boundaries of a certain configuration are positively identified while 

actually testing a more stable configuration [7].  Two proof-of-concept wind-tunnel tests have 

already been performed [8,9] with very encouraging results.  The stability analyses that 

supported the design studies and flutter tests were based on the basic IOM response 

formulation where the stabilizing parameter appears as a gain that closes a single-input-

single-output (SISO) feedback loop. 

 

The purpose of this paper is to provide an overall description of the IOM method and its use 

in the Dynresp framework, using a unified formulation and application to ASE analysis, 

design and testing.  The application of the IOM methodology in Dynresp and its integration in 

the ASE response and aircraft loads calculation scheme are briefly described in Section 2. The 

unified formulation for linear and nonlinear dynamic response to gusts, control commands 

and direct forces is outlined in Section 3.  The expansion of the ASE response formulation to 

stability analysis and sensitivity to design variables and element nonlinearities is outlined in 

Section 4.  Applications of Dynresp in aerodynamic morphing scenarios and in CFD-based 

linear and nonlinear response and stability analyses are discussed in Section 5.  The use of the 

PFM method in wind-tunnel and flight tests with enhances safety is discussed in Section 6 

and conclusions are given in Section 7.  Numerical examples, mostly taken from previous 

works, are given along the mentioned sections to demonstrate the process. 
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2 INCREASED-ORDER-MODELING METHODOLOGY IN DYNRESP 

The IOM approach and the Dynresp framework present a systematic methodology and 

computational tools that exploit the numerical advantages in dealing with linear systems while 

keeping the complexity of the added nonlinear elements as low as required for obtaining 

adequate accuracy. The method, schematically depicted in Fig. 1, is based on a main linear 

block that is stable when disconnected from the nonlinear elements, and a nonlinear element 

that expresses all the nonlinearities as feedback loops. The additional CFD-related block is an 

example of user-defined functions (UDF) that can be added by the user to perform a particular 

nonlinear simulation, fluid-structure interaction (FSI) in this example.  The various features of 

the FSI block are discussed in Section 5 below. 

  

 

Figure 1: IOM block diagram with CFD-based data. 

 

The response calculations are performed in 3 stages: (a) response of the linear block with the 

nonlinear block disconnected; (b) addition of nonlinear effects using nonlinear elements and 

convolution integrals; and (c) complementary response of the linear block to inputs from the 

nonlinear block to generate the final output.  The main features of Dynresp-v12 are: 

• Dynamic response to gust, maneuver-command and direct-force excitations. 

• Flutter, limit-cycle oscillations (LCO) and control stability margins. 

• Deterministic and stochastic excitations in all disciplines. 

• Modal structural data from finite-element codes. 

• Efficient structural changes and accommodation of fictitious masses.  

• Unsteady aerodynamics from panel-based or linearized-CFD codes. 

• Most general control and mechanical feedback architecture. 

• Structural, aerodynamic and control nonlinearities. 

• Modal coupling and morphing scenario. 

• Summation-of-Force and Mode-Displacement loads. 

• Coupling with high-fidelity nonlinear solvers. 
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The integration scheme of Dynresp with other codes and databases at Airbus D&S [3] is 

shown in Figure 2.  

  

 

 
 

Figure 2: ASE response and aircraft loads calculation scheme 

 

 

3 UNIFIED AEROSERVOELASTIC RESPONSE FORMULATION  

The first IOM stage is performed in the linear block in Fig. 1.  The vehicle FD equation of 

motion with gust, maneuver and direct-force external excitations, plus excitations from the 

nonlinear block, is  

               
( )

( ) ( ) ( ) ( ) ( )G
L G M vM D D NL NL

w i
A i x i B i B u i B F i B U i

V


             (1) 

where  ( )Lx i  is the FD vector of modal displacements, linear control-system states and 

actuator states,  ( )A i  is the closed-loop linear system matrix. ( ) /Gw i V  is the induced gust 
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angle of attack at a reference point, that can be replaced with a general 3D wake excitation 

[9].  ( )vMu i  is the vector of simultaneous maneuver commands applied in terms of control 

inputs or direct control forces.   DF i  is the vector of simultaneous direct forces, in discrete 

or generalized coordinates.   ( )NLU i  is the vector of inputs from the nonlinear block whose 

numerical values are not known at this stage. Detailed description of the matrices and vectors 

of Eq. (1) is given in [2].  The generic response to terms   extu i  in the right side of Eq. (1), 

except for the  ( )NLU i term, is 

         
1

( ) ( ) ( )L ext extx i A i B i u i   


                (2) 

where [Bext(i)] is the input distribution matrix. {uext(i)} is obtained via Fast Fourier 

Transform (FFT) of the input signal {uext(t)}. The {yL(i)} outputs of the linear block in Fig. 

1, which are inputs to the nonlinear block, can be generally expressed as  

          ( ) ( ) ( ) ( )L L exty i C i x i D i u i       (3) 

where the coefficient matrices, [C] and [D], are related to modal displacements and direct-

force effects (in the case of acceleration outputs). Other FD response functions are calculated 

in the linear block in preparation for the subsequent interaction with the nonlinear block. 

 

The singularity of the aeroelastic system matrix in free flight at zero frequency,  (0)A , does 

not allow a direct solution for the various  (0)X  vectors. Dynresp provides four options for 

overcoming this difficulty [11].  The first option avoids the zero-frequency solution and 

defines the FD  (0)X  such that the resulting TD solution, obtained by IFFT, starts at 

 (0) {0}x  , while the FD velocity and acceleration responses at zero frequency are set to 

zero.  The second option starts with the first one and then modifies the initial rigid-body pitch 

and yaw angles at zero frequency to yield zero rigid-body incidence angles (and ), which 

yields zero initial loads.  The third option transforms Eq. (1) at zero frequency to flight 

mechanics variables in a way that removes the singularity problem
 
[11].  The forth option 

starts by calculating the TD modal accelerations using FFT, and then obtains the modal 

velocities and displacements by numerical integration, starting at their zero values.     

  

 

Frequency response functions (FRFs) of the state vectors {xL(i)} to unit inputs in  ( )NLU i  

from the nonlinear block are arranged in the [xLU(i)] matrix and calculated by 

      
1

( ) ( ) ( )LU NLx i A i B i  


  (4) 

from which the FRFs [yLU(i)] of the linear output vector to unit inputs from the nonlinear 

block are calculated by 

       ( ) ( ) ( ) ( )LU LU LU LUy i C i x i D i      (5) 

To complete the first stage and generate the interim outputs of the linear block in Fig. 2, the 

linear FD responses of Eqs. (2) and (4) are transformed to TD by  
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    ( ) ( )L Ly t IFFT y i ;     ( ) ( )LU LUy t IFFT y i  (6) 

The second stage is performed in the nonlinear block of Fig. 2. The time, t, is set back to zero 

and a time-marching nonlinear computation of the outputs {uNL(t)} of the nonlinear block is 

performed in consecutive time steps. The outputs {yL(t)} of the linear block are amended in 

each time step by the convolution integral  

       
0

( ) ( ) ( ) ( )

t

NL L LU NLy t y t y t u d       (7) 

and serve as inputs to the nonlinear functions (NLF) in the following time step 

    ( ) ( )NL NLu t NLF y t  (8) 

which may require some sub iterations when {uNL(t)} includes direct forces and {yNL(t)} 

includes accelerations. The computation process returns in the third stage to the linear block 

of Fig. 1. The second-stage output {uNL(t)} of Eq. (8) is converted to FD by FFT and the final 

response is calculated by 

         
1

( ) ( ) ( ) ( ) ( )NL L NL NLx i x i A i B i u i    


   (9) 

followed by  

    ( ) ( )NL NLx t IFFT x i  (10) 

This final TD state response may be used for calculating any desired output that is a function 

of {xNL(t)}.  

 

The generic transport aircraft (GTA) model of [2] is used here for gust-response numerical 

example, and later for flutter and LCO analysis.  This is a T-tail stick model whose horizontal 

tail plane (HTP) stiffness has been reduced to yield flutter at velocities below 200m/s.  

Symmetric analyses were performed with various rotational stiffness values of the elevator 

actuators.  Linear symmetric flutter analysis using p-k in MSC/NASTRAN resulted in a 

bending-torsion flutter at Vf=163m/s, f=12.7Hz,  when the actuator was fully attached with 

its nominal stiffness value of Knom= 2*10
7
N-m/rad.  With a disconnected HTP actuator, 

elevator flutter at Vf=91m/s, f=12.2Hz was obtained.  The model was then modified by 

removing the actuator stiffness and adding a large fictitious moment of inertia at the elevator 

rotation degree of freedom relative to the HTP when the modal basis was generated.  The 

fictitious inertia is removed in the response analyses, but its effects on the modal basis 

facilitates high-accuracy variations of the local actuator stiffness over a large range without 

changing the modal coordinates, as detailed in [2].    

 

Linear gust response analyses were performed at V=140m/s with Kact= Knom and with Kact= 0.  

The stiffness was added in the first case in two ways: (1) by a zero-order “control loop” that 

measures the actuator rotation angle, multiplies it by the actuator stiffness defined as a control 

gain, and applies the resulting moment as a direct control feedback moment applied to the 

same rotation degree of freedom, with a negative sign; and (2) as an incremental generalized 

stiffness matrix due to a CELAS2 spring element.   The HTP tip acceleration response and the 

actuator angle with the actuator at its nominal value are shown in Figure 3, with the two 
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stiffness addition ways exhibiting practically same results.  The response with the actuator 

disconnected (not shown) exhibited a diverging flutter, as expected.   

 

 

Figure 3: HTP tip acceleration and elevator rotation in response to gust excitation, nominal 

actuator stiffness 

 

A block diagram of the Dynresp non-linear model for simulating the response to gust 

excitation with actuator free play of = 0.02rad is given in Figure 4.  The nonlinear feedback 

block replace the linear feedback used in way (1) of the linear analysis.  The linear plant was 

also modified by adding the CELAS spring as in way (2) above. The nonlinear feedback 

block removes the added spring using an equivalent lookup table that forms a nonlinear gain 

element (NLGAIN).  In parallel, the same NLGAIN element is used to add the spring back 

again, but after the feedback signal passes through a Dynresp-library dead-zone element 

(DEAZON). The TIMER and SWITCH elements are added to disconnect the feedback after 6 

seconds, such that the system becomes stable and returns to zero, as required by the FFT 

process.   

      

       
        Dynresp model scheme    DEZON nonlinear element 

 

Figure 4: Block diagram of the nonlinear model 

 

The resulting nonlinear HTP tip acceleration and actuator rotation angle response are shown 

in Figure 5.  The time histories start with a transient response to the gust excitation, continue 

with a diverging flutter within the free-play amplitude and exhibit constant-amplitude LCO 

with the actuator angle amplitude being slightly larger than the free-play amplitude, until the 
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feedback is disconnected at t=6s and the response returns to zero. The modal response may be 

used for calculating the dynamic loads during LCO using a post-processing loads code such 

as in the block diagram in Figure 2. 

 

 

 

Figure 5: HTP tip acceleration and elevator rotation in response to gust excitation, with 

actuator free play [2] 

 

Other nonlinear ASE response calculations at Airbus D&S are described in [3], following the 

computation scheme of Figure 2.  The ASE include flight mechanics with nonlinear 

aerodynamic coefficients, nonlinear gust loads alleviation (GLA) system, aerial refueling 

boom operation with nonlinear joints and flight-test data, control surface freeplay induced 

loads, rapture of elastomeric devices during turbopropeller blade loss, and aerodynamic stall 

at selected panels of the aerodynamic model. 

 

   

4 AEROSERVOELASTIC STABILITY FORMULATION  

4.1 Generalized parametric flutter margin (PFM) method 

Linear ASE dynamic stability analysis techniques are aimed at finding the flight conditions 

that form the flutter boundary at which there is a nontrivial solution to the homogeneous 

version of Eq. (1), namely 

    ( ) ( ) 0LA i x i             (11) 

While common flutter solutions are based on finding the conditions at which ( ) (0.,0.)A i  , 

The Parametric Flutter Margin (PFM) method is based on FRFs with a stabilizing flutter 

parameter, pf,  added to the ASE system.  Flutter margins are defined by the fraction of pf  that 

would cause flutter if removed from the modified system.  At the flutter boundary, this 

fraction would be 1.0.    

The PFM method was first presented in [5] in its single-input-single-output (SISO) version, in 

which the selected pf must be such that its effects can be removed by a SISO control feedback, 

as demonstrated in Section 4.2.  In this paper we first deal with the more general multi-input-

multi-output (MIMO) PFM version that was related to in [6].  The flutter onset velocity Vf, the 

associated flutter frequency f  and the respective flutter mode  ( )f fx i   that solves Eq. 

(11) characterize the flutter boundary. The only constraint on pf is defined in a way that yields 

the FD equation of motion 



IFASD-2019-118 

9 

    

    

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

fA i p B i C i x i B i u i

y i C i x i

     

  

   

     (12)
 

where the input and output vectors are of the same size.  It may be observed that the point 

(V,) at which there is an input vector  ( )fu i  that yields the output  ( )fy i  that satisfies  

   ( ) ( ) /f f fy i u i p       (13) 

must be a flutter onset point, (Vf, f),  because  ( )u i  in Eq. (12) may then be replaced by 

  ( ) ( )fp C i x i  , which yield Eq. (11).   The solution  ( )fx i  of Eq. (12) forms in this 

case a nontrivial solution to Eq. (11).  Eqs. (12) and (13), with the real-valued fp  replaced by 

 1/ i  , yield the eigenvalue problem 

    ( ) ( ) ( ) ( )T i u i i u i    
    

 (14)
 

where         
1

( ) ( ) ( ) ( ) ( ) ( )fT i C i A i p B i C i B i     


    .   

 

The numerical process for finding a flutter onset point is: 

1. Define ranges of V and , and their increments. 

2. For each velocity, solve Eq. (14) for the eigenvalues ( )i i  . 

3. Plot the magnitude ( )iG    and phase ( )i   of ( ) /i fi p  . 

4. Interpolate for ( )i pcoG    where pco  is the phase-cross-over frequency at which 

( ) 0i pco   .  The system is stable when all ( ) 1.0i pcoG   . 

5. Plot gain ( )i pcoG    and pco  vs. V. 

6. Interpolate for Vf , at which ( ) 1.0i pcoG    and extract f pco  .   

7. Solve for the flutter mode  ( )fx i  of Eq. (11) at (Vf, f).    

   

Flutter margins can be defined in two ways.  The first one by the gain ( )i pcoG  , in [dB],  

 20log ( ) [ ]i pcoFM G dB       (15) 

that becomes 0dB when ( ) 1.0i pcoG   . The second way is by the increment fp  that would 

bring the system to the flutter boundary 

 
maxf f pcop p           (16) 

 

Unlike Equation (15), Eq. (16) can be applied with 0fp  , which implies that the eigenvalue 

analyses associated with different design parameters may be based on the same 

decomposition of the system matrix inversion  ( )A i .   This may be very helpful in design 

optimization with structural and control variables.  

 

As discussed below, the simplified SISO version of the PFM method may be more efficient in 

flutter and LCO analyses, various sensitivity studies and flutter tests.  The MIMO approach, 

however, may be of greater value in sensitivity analysis with respect to actual design 

variables.  Reference [6] presents a flutter perturbation study with respect to a factor fp  that 

multiplies the mass matrix of a refueling pod mounted near the GTA wing’s tip.  A single 

MIMO-PFM analysis is shown in [6] to provide the variations in the flutter characteristics for 
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several flutter mechanisms over a selected velocity range.  The results are show in [6] to be 

practically identical to those obtained in numerous MSC/NASTRAN flutter runs. 

 

Another application of the MIMO-PFM method in [6] is for calculating classic “V-g plots” of 

the variations of aeroelastic frequency and damping vs. velocity, which may be very 

instrumental in certification documents and in comparing PFM results with classic ones.        

This was done by defining Pf as a structural damping coefficient.  With the modal 

displacements in  ( )x i  used as “sensors”, and the distribution matrices in Eq. (12) being 

[Bf(i)]=[I] and [Cf(i)]=i[Khh],  ( )A i  is supplemented with an extra modal damping 

matrix ipf[Khh].   The resulting Pf of Eq. (16) is the damping coefficient g needed to be added 

to the nominal system for making it neutrally stable, which agrees with the V-g-plot concept. 

Figure 6 compares the MIMO-PFM results with those obtained with p-k. The same flutter 

point (at g=0) is obtained in both methods and the curve variations are similar. There are 

slight differences between the damping curves because the added g-related damping term in 

NASTRAN’s p-k application [12] involves the aerodynamic matrix as well.  

 

 

Figure 6: V-g plots computed by MIMO-PFM (solid) and p-k (dashed), taken from [6] 

 

4.2 Linear SISO-PFM method 

When the flutter parameter is limited to those that can be expresses by SISO feedback loops, 

the incremental  ( ) ( )fp B i C i       matrix in Eq. (12) is now of rank1.  This allows the 

solution process to be based more efficiently on SISO dynamic response functions without 

resorting to eigenvalue analysis.  In addition, being combined with the IOM method, the ASE 

stability analysis can be easily expanded to a nonlinear one yielding LCO.  Other important 

applications of the IOM-PFM scheme are in performing safe flutter tests and in CFD-based 

FSI, as discussed in the following sections.     

 

The SISO-PFM method was originally presented in [5].  It is easy to see that if the open 

control loop in Eq. (12) is closed by the SISO gain 

    f f fu i p y i 
     (17) 

the homogeneous equation (11) is obtained, which implies that the interpolated velocity-

frequency pair for which Eq. (17) is satisfied forms the flutter velocity Vf and the flutter 

frequency f. 
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The selected fp  and the associated single output and single input parameters of Eq. (12) yield 

frequency response functions to sinusoidal inputs of amplitude ( ) 1.0fu i  .  The FRFs are 

presented as Bode plots by their gain and phase variations with frequency 

 ( ) 20log ( ) [ ]; ( ) ( ) [deg]f f f fG P y i dB P y i        (18) 

 

The Bode plots are generated for selected points along a line in the flight envelop.  The points 

can be of various air velocities at constant altitude, and various altitudes along a constant 

Mach line.  We assume here a search for non-match flutter conditions at constant altitude and 

Mach number. The phase functions at the various flight velocities are used for defining the 

phase crossover frequencies pco  at which ( ) 360o

pco n   . These values, and the 

associated parametric flutter margins ( )pcoPFM G   . 

 

The GTA model of Section 3 is used here for demonstrating the SISO-PFM flutter, LCO and 

perturbation analyses with respect to the elevator actuator, based on the numerical examples 

in [5, 6].  The PFM model is based on the model of Section 3.  A control system that 

represents the actuator stiffness is shown in Figure 7.  It reflects the baseline nominal stiffness 

in the model, Knom, and the large actuator stiffness, pf=4*10
7
N-m/rad used as the flutter 

parameter.  The two stiffness values are combined for a single actuator that is connected 

symmetrically to the two elevators.  A linear flutter analysis was first performed to find the  

free elevator flutter velocity with Knom=0 and pf=4*10
7
N-m/rad.  The resulting gain and phase 

Bode plots are shown in Figure 8.  All the corresponding phase cross-over frequencies and the 

associated parametric flutter margins (PFM) vs. velocity, calculated in Dynresp, are shown in 

Figure 9.  The branch of smallest flutter margins crosses the zero-dB line at Vf=91.1 m/s, 

f=12.2 Hz.  The interpolated complex response vector at this flutter onset point, normalized 

to maximal value of (1.0; 0.0), is the flutter mode   f fx i .   

 

 

Figure 7: Control gains that represent the actuator stiffness 
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Figure 8: Flutter gain and phase plots vs. frequency 

 

 

Figure 9: Phase cross-over flutter margins and frequencies vs. velocity 

      

An important advantage of the SISO-PFM method is that the baseline PFM plot can be used 

for an extensive perturbation analysis in which the flutter parameter varies over a wide   

range.  The perturbation analysis can be performed by simply moving the 0dB line in the 

PFM plot of Fig. 9 vertically. Moving it down by 6dB is equivalent to repeating the PFM 

analysis with pf/2=2*10
7
N-m/rad becoming part of the system, and the other half of is used as 

the new pf.  Now, with the flutter velocity defined by the PFM crossing of the -6dB line, the 

flutter velocity becomes 163 m/s.  Since the pf/2 value is that of the original actuator, we just 

found the flutter characteristics of the GTA model with a fully connected actuator.  In this 

way, the same plot can be used to extract the entire variation of flutter characteristics vs. 

actuator stiffness by simply moving the 0dB line up or down. 
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The Dynresp framework provides for using any ASE response parameter, which can be 

defined as a direct or frequency-dependent linear combination of the system states and control 

inputs, as a “sensor”.  It also allows the use actuator commands and other control inputs, as 

well as direct discrete and generalized forces, as feedback inputs.  This facilitates the 

application of numerous parameters, such as discrete masses [7-9], modal damping [6], 

aerodynamic coefficients and local stresses as flutter parameters pf, with respect to which 

flutter analysis is performed. When the selected pf  is an actual control gain, the stability 

analysis in Dynresp provide the standard Nyquist SISO control gain and phase margins [13], 

with aeroelastic effects of course. 

 

4.3 Nonlinear SISO-PFM method 

Nonlinear LCO analysis can be performed in Dynresp in various ways.  One way is by 

running nonlinear response simulation, such as the free-play one done in [2] and in Section 3 

above, and searching for diverging or LCO response.  This solution may yield the most 

accurate result, but it might also be very inefficient and with numerical difficulties in dealing 

with diverging systems.  Alternatively, the SISO-PFM method can be based on dynamic 

response functions with nonlinear elements, performed with different excitation levels.  

Harmonic Balance (HB) techniques can be used to account for the inter-frequency effects due 

to non-harmonic response functions [5].   

 

A special case is when the only nonlinearity is in the SISO feedback loop that defines pf [6].   

Linear FRFs can be calculated in this case for extracting ( )Ly t  and ( )LUy t  of Eq. (6), and then 

used for calculating the nonlinear feedback in frequency-domain terms as function of the 

vibration level.  This process, detailed in [6], is very efficient when used with 1
st
-order HB, 

which is equivalent to the Describing-Function (DF) technique.  A comparison between LCO 

response of the actuator spring in the GTA example of Section 2, obtained by full IOM 

solutions [2], by the 1
st
-order HB [5] and the DF [6] special-case solutions, is given in Figure 

10.  The normalized LCO amplitudes θ∕δ and the LCO frequency vs. velocity plots indicate 

that LCO starts at the free-elevator flutter velocity of 91.1 m/s, and approached infinity at the 

fully-connected flutter velocity of 163 m/s.  It is clear that the efficient solutions are similar to 

the time simulation ones and slightly more conservative. 

 

 
Figure 10: LCO amplitudes by nonlinear IOM response [2], 1

st
-order HB and describing 

function [6] 
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The sensor definitions in Dynresp facilitate the inclusion of section loads, such that they can 

be monitored in the simulation runs. The related sensors are based in the following example 

of stiffness properties of the CBAR element in NASTRAN.  Alternatively, full net-load 

distributions and associated section loads can be obtained by post processing the modal and 

control-surface response functions using load codes such as Dynload in Fig. 2.  The post 

processing can be based on the mode-displacement (MD) approach, which is also used in the 

CBAR sensor definition, or on the more accurate summation-of-force (SOF) approach.     

 

The CBAR loads in the DF LCO simulations of Fig. 10 are compared in Fig. 11 with the HTP 

root loads calculated using the SOF approach.  There is 5.3% difference between the two 

shear force amplitudes and 3.4% difference between the two bending moment amplitudes.  

Considering the fact that the modes taken into account contain only a few symmetric elastic 

modes with significant HTP participation, this comparison is quite good.  The SOF loads are 

more accurate than the MD ones as they converge faster with the number of modes taken into 

account.     

 

 

Figure 11: Shear force and bending moment at HTP root in LCO, by CBAR output and SOF 

 

5 AERODYNAMIC MORPHING AND NONLINEARITY 

Common industrial aeroelastic response and dynamic loads codes assume fixed flight 

conditions and aerodynamic shape, except for small elastic deformations and control-surface 

deflections. Linear unsteady aerodynamic coefficients usually account for the aerodynamic 

load changes due to the associated shape changes and regulation gust excitation.  The IOM 

application in the Dynresp framework provides for unconventional response simulations with 

morphing configurations [14], rapid changes of flight conditions [15], wake encounter [16] 

and CFD-based unsteady aerodynamics [17,18]. The gust response simulation of a morphing 

configuration in [14] exhibits the key features in Dynresp that facilitated these analyses.  It is 

of an air vehicle whose symmetric aeroelastic model is divided into two substructures, body-

tail, and wing.  The wing rotates from zero sweep angle to 60 deg in one second.  Aeroelastic 

response analysis was performed to study the wing loads when the vehicle is excited by a 

uniform discrete vertical gust while the wing changes its sweep angle. The time history of the 

sweep angle is assumed to be known.  Modal coupling between the two substructures is 

performed at each time point in a way that satisfies the boundary interface displacements and 

slopes.  The coupling equations are developed in [14] such that the wing rigid-boy modal 

coordinates are eliminated and the remaining generalized mass matrix changes continuously.  

The incremental mass coupling terms are introduced in the Dynresp run by a feedback loop 
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that reads generalized accelerations, multiplies them by the time-dependent mass coupling 

terms and applies the resulting generalized forces, with reversed signs, as nonlinear inputs in 

 ( )NLu i  of Eq. (9).   

 

The aerodynamic panel model also changes during the morphing process, which affects the 

generalized aerodynamic forces.  The linear ZAERO model is first generated with the aircraft 

geometry at 0   with the respective modal matrix (0)h .  The aerodynamic matrices at 

other sweep angles are also generated in preparation for the linear run at several sweep angles 

between 0 and 60 deg. The unsteady modal matrices and gust vectors ( )hhiQ i  and  hGiQ i  

are generated for the selected sweep angles considering the affected aerodynamic model and 

structural modes ( )h i  .  They are used in Dynresp for defining the linear outputs of Eq. (3) 

as 

  

 

 

 

 

1 1
1

2 22

2

( ) ( )

( ) ( )

( ) ( )

( ) 0

L

L

L

L

h hG
hh

h hGhh

G

L

hn hhn hGn

acc

y i Q iQ i

y i Q iQ i
w i

X i
V

y i Q i Q i

Iy i

 

 




  



    
    
    

        
    
    
        

   (19)  

such that  ( )
Lhiy i  reflects the generalized unsteady aerodynamic forces if   would change 

to i  and  ( )
Laccy i  is the vector of generalized accelerations needed for the modal 

coupling.  Similarly to the aerodynamic matrices in Eq. (1), the FD coefficient matrices in Eq. 

(22) are defined at the selected frequency values and interpolated during the FD solution to all 

the frequency values at which Eq. (1) is solved with discrete gust inputs.  

Once the solution  ( )LX i  and the output  ( )Ly i  are calculated, they are transformed to 

TD,  ( )LX t  and  ( )Ly t , using IFFT.  In addition, the frequency response matrix  ( )LUy i  

is calculated using Eqs. (4) and (5) with the inputs being unit-amplitude generalized forces 

and the outputs are those of Eq. (19).  IFFT of   ( )LUy i  yields the respective impulse 

response matrix  ( )LUy t  for the convolution of Eq. (7), performed with  ( )NLu                

      ( ) ( ) ( ) ( )
NL NLNL hh acc hu t M y t q y t          (20) 

where the sweep angle   is a prescribed function of t.  The generalized aerodynamic 

feedback  ( )
NLhy t  is interpolated from the aerodynamic outputs of  ( )NLy t  in Eq. (7).   

 

All the element of the linear aeroelastic model, including the FD coefficient matrices in Eq. 

(19), were constructed with standard elements of the Dynresp code.  A special user-defined 

function (UDF) was programmed for the interpolation of the nonlinear inertial and 

aerodynamic feedback forces of Eq. (20).  The Dynresp framework provides for adding such 

UDFs to the library of nonlinear elements at the user site, without the need to recompile the 

entire code.  Sample wing-root section loads and wing-tip acceleration, taken from the gust-

response analysis presented in [14] are shown in Fig. 12. The plots demonstrate that the gust 

loads may be affected significantly by the sweep angle and by morphing rate and direction. 
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Figure 12:  Wing-root section loads and wing-tip vertical acceleration [14] 

   

The response simulations in [15] included rapid change in the flight condition, with the 

vehicle accelerating from rest to Mach 2.0 in a few seconds, together with a significant 

change of mass during the acceleration, nonlinear structural joints, and misaligned follower 

thrust force.  The treatment of the velocity and mass changes is done with sensors and 

nonlinear feedback terms similar to those of Eqs. (19) and (20), with the special UDF 

connecting between them includes a gain that expresses the changes in the dynamic pressure q 

in Eq. (20).  The nonlinear joint stiffness was introduced with a feedback loop similar to the 

one in Fig. 4, with a nonlinear lookup-table gain element of Dynresp library replacing the 

DEZON element. The lateral component of the thrust misalignment force was also introduced 

by a nonlinear library element based on the modal deformations.  

 

The wake-encounter analysis in [16] was performed to analyze the dynamic loads on an 

aircraft crossing its own wake or that of another aircraft.  It requires a preliminary analysis 

that maps the wake velocities in space and extracts the induced wake incidence angles at the 

control points of the aerodynamic boxes, for any encounter penetration geometry. The 

introduction the wake incidence angles is facilitated in Dynresp by its ability to define 

separate gust velocities to every aerodynamic model box or group of boxes.  The computation 

process was validated at Airbus D&H [16] by comparison of A400M flight-test section loads 

measurements with the measured aircraft penetrating the wake of another aircraft.  Since the 

position of the wake penetration was not known with sufficient accuracy, it was optimized to 

provide a good overall comparison of the numerical and experimental results.  A block 

diagram of the optimization process and a sample comparison wing-root bending moments 

are given in Fig. 13.   
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Figure 13: Numerical simulations of A400M wing root bending moment in wake vortex 

encounter compared with flight test results (encounter at an angle of =40º) [16] 

 

 

A rapidly growing usage of Dynresp is in integration with unsteady CFD codes for FSI.  The 

basic idea is that the ASE simulation and the CFD codes should be separated, with an 

interface module. In this way, each code is developed and maintained by its own professionals 

that typically have very different backgrounds.  The Dynresp interface module with generic 

CFD codes is marked in the lower-right part of the block diagram of Fig. 1.  It indicates three 

different coupling procedures with CFD codes: (a) via CFD-based linearized generalized 

unsteady aerodynamic force coefficient matrices [Qhh(i)]; (b) with a tight-coupling 

procedure; and (c) with a loose-coupling procedure. 

 

The procedures for extracting [Qhh(i)] matrices for CFD codes , see for example [17], are 

beyond the scope of this paper.  Once generated, they may replace the entire input 

aerodynamic matrices for Dynresp, or only some portions of them.  After the ASE 

characteristics are studied using Dynresp, the CFD-based modal and frequency contents may 

be updated. 

 

The Dynresp nonlinear UDF module in Fig. 1 was developed for tight coupling with any CFD 

framework that can handle projected structural modes to its surface grid, import modal 

displacements, solve for time-marching surface pressure distributions, calculate generalized 

forces, and export them at every time step.  It reads the time-domain generalized aerodynamic 

forces of Dynresp, update them according to those imported from the FSI files, and exports to 

them the current modal displacements for a subsequent CFD time step.  While the UDF is 

fixed and belongs to the Dynresp environment, the FSI interaction procedure and data files 

are customized according to the CFD procedures.   

 

  

6 SAFE FLUTTER TESTS 

Flight and wind-tunnel flutter tests are conducted during the development of flight vehicles to 

demonstrate that they are free from flutter over their entire operation envelope.  Various 
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experimental methods may be applied to validate the numerical stability models and identify 

the flutter boundaries.  However, for obvious safety reasons, the tests are conducted very 

carefully such that flutter would not occur, which make the tests expensive, risky and time 

consuming. The idea of using the PFM approach to perform safer flutter tests was first raised 

in [7].  A procedure was presented in which the tests are performed with a SISO element 

added to the aeroelastic system in a way that expands the flutter envelope.  Tests are then 

performed to positively identify the nominal flutter conditions while testing the stabilized 

article. 

 

Three proof-of-concept wind-tunnel tests [7-9] have already been performed and 

published.  The first one [7] was not planned for this purpose. The tests were carried out as 

part of the EU-funded Clean-Sky GLAMOUR project [19]. A 1:6 half-span, floor-sliding, 

aeroelastically-scaled model of the aircraft was built and mounted vertically downstream of 

specially designed gust generators, as depicted in Figure 14.  Two wing ailerons and one T-

tail elevator, driven by mini actuators were used for gust alleviation based on various response 

measurements at CG, wing tips and elevator, a virtual AOA sensor and control-surface 

rotations.   

   

 
 

Figure 14: Wind-tunnel model, gust generators, the dummy floor internal structure and the 

GLA1 control scheme [19] 

     

Open-loop flutter tests were carried out using sinusoidal excitation sweeps obtained by 

commanding the aileron in the range of 0.3 to 2.51, where1 is the natural frequency of the 

first wing-bending mode.  Experimental modal analysis verified that the model is free from 

flutter in the entire tunnel velocity range.  However, flutter started to develop when one of the 

gust alleviation loop was closed, which caused an immediate disconnection of the control 

feedback.  The open-loop test results and the PFM method provided us with the opportunity 

of identifying closed-loop flutter events from the open-loop test results. The flutter parameter, 

pf , was selected to be the closed-loop control gain, Gain1, of the GLA1 control loop that 

relates the aileron input to the measured CG acceleration.  This selection yields the gain 

margins associated with GAIN1.    The PFM analysis did not indicate flutter in the searched 

envelope.  However, with pf =- Gain1, the PFM gain and frequency plots of Fig. 15 indicated 

flutter in the middle of the test velocity rang.  An excellent agreement is shown in Fig. 15 

between the plots based on the experimental results and those extracted from the numerical 

aeroelastic model.   
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Figure 15: Cross-over frequency and flutter gain variations with velocity 

 

The two other PFM wind-tunnel flutter tests were performed with a single mass serving as the 

stabilizing element.  The first one was a 2D test [8] conducted at TUDelft with a wing section 

connected at its rotation axis to the ground through heave and pitch spring.  Preliminary tests 

exhibited flutter within the tunnel velocity range.   A mass, mf, was then connected to the 

rotation axis at a forward position with a loads cell for measuring the impulsive normal 

hammer inputs, and an accelerometer for measuring the normal acceleration.  FFT analysis of 

the input and output signals resulted in Bode plots from which the no-mass flutter velocity 

was identified using the PFM analysis.  Even though the results were noisy, the nominal 

flutter velocities were identified for several spring combinations with less than 5% errors. 

 

The third PFM test was conducted at Technion with a 3D wing model, whose nominal flutter 

characteristics were already known, with a mass added at the tip store, in a forward position, 

serving as stabilizing element.  The excitation was performed by tying the mass to a fishing 

chord, pulling it with a known static force, and cutting the chord at several velocities.  Here  

again, FFT analysis and PFM plots predicted the flutter velocity of the nominal system, from 

flutter tests of the stabilized one, with less than 5% errors. 
 

 

7 CONCLUSIONS 

The Dynresp framework for aeroservoelastic response and stability module has been 

demonstrated in many industrial and research applications to yield all the numerical data 

necessary for dynamic stability characteristics and dynamic loads for certification of modern 

aircraft.  The linear results has been shown by various examples in technical publications to 

be practically identical to other commonly used software packages, when performed with 

same input parameters and analysis requirements.  The unified frequency-domain formulation 

of the response equations with various excitation means, control-system integration options 

and the expanded simulation output parameters provide for convenient operation of the 

software in all it disciplines for both deterministic and stochastic analyses.  The implemented 

IOM approach facilitates the inclusion of nonlinear elements at any appropriate complexity 

level, from simple lookup tables to the interaction with high-fidelity codes.  The nonlinear 

module facilitates the simulation a large variety of operational events such as morphing, 

system malfunctions and changes in flight conditions.  Loads perturbation analyses are easily 

performed as many parametric changes may be adequately introduced without changing the 

modal and aerodynamic data base.  The PFM stability analysis is virtually based on the same 

system modeling and equations of motion.  The more general MIMO-PFM version may be 
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more useful in automated design studies and in generating classical V-g plots.  The SISO-

PFM, however, is more efficient and useful in regular flutter and control-margin analyses, and 

in investigating nonlinear effects on flutter and LCO.   Preliminary investigations have 

already demonstrated the potential in using the IOM-PFM integrated software for high-

fidelity fluid-structure interaction analysis and in enhancing the safety of flutter flight tests.  
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