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Abstract: Formulations for the flight dynamics of flexible aircraft have been commonly ap-
plied to aircraft having all six rigid-body degrees of freedom unconstrained. However, during
takeoff and landing, the aircraft motion becomes constrained by the ground. An intricate dy-
namical problem arises when the flexible aircraft has multiple underwing pod-mounted landing
gears. During liftoff, the most outboard landing gears become airborne earlier than the most
inboard ones. The equations of motion used in a simulation model must then include time-
varying ground constraint forces. Aerodynamically, the ground effect becomes relevant and
can be modeled using the method of images. Wheel-to-ground rolling resistance also needs to
be considered. This paper aims at the derivation of equations of motion that allow simulating
the takeoff of such complex aircraft configurations. The developed formulation is important
because it is readily applicable also to the landing phase, allowing the calculation of landing
loads and the design of takeoff and landing control systems with less uncertainties. As spinoffs,
the stability analysis of flexible aircraft in ground effect and evaluation of takeoff performance
are also made possible.

1 INTRODUCTION

A formulation for the flight dynamics of flexible aircraft using general body axes was proposed
by Guimarães Neto et al. [1] In the formulation, small elastic deformations are assumed and a
finite-element representation of the aircraft structure together with a lumped-mass representa-
tion of its properties of inertia are considered available. In the equations of motion (EOMs),
the origin of the body axes is at a generic point O not necessarily coincident with the center of
gravity (CG) of the aircraft. Moreover, in the case of dually-constrained axes [1], the origin S
of the structural axes (point of no elastic displacement) is a material point (and structural node)
that can be non-coincident with the origin O of the body axes.

The equations of motion derived in Ref. [1] and elsewhere [2–9] usually apply to aircraft that are
free to fly in the three-dimensional space, having all six rigid-body degrees of freedom (DOFs)
unconstrained. However, if the flexible aircraft is in contact with the ground, constraints must be
applied to the landing gears, affecting the elastic deformation of the structure. Moreover, during
takeoff and landing, the aerodynamic ground effect becomes relevant and must be modeled.

It is known that high-altitude, long-endurance (HALE) unmanned aerial vehicles have mission
profiles that demand high-aspect-ratio wings [9]. Typically, several landing gears are mounted
at underwing pods that are also used to carry instrumentation, flight control system components,
batteries and, possibly, electrical motors. An example of such configuration is the NASA Helios
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Prototype, shown in Fig. 1, with five pod-mounted fixed landing gears, each comprising two
wheels in tandem.

Retrieved from: https://www.nasa.gov/sites/default/files/images/370828main ED01-0209-1 full.jpg

Figure 1: The NASA Helios Prototype moments after takeoff (Credits: NASA photo).

Depending on how many wheels are in contact with the ground, the aircraft rigid-body motion
can be constrained in a different number of degrees of freedom. For instance, with one wheel
touching the ground, the vertical translation becomes constrained and a normal reaction force
develops at the constraint, together with a rolling resistance force. This constraint also modifies
the structural dynamics. As more wheels touch the ground, aircraft pitching and rolling also
become constrained.

The aerodynamic ground effect adds to the complexity of this dynamical problem. If the flexible
aircraft aerodynamics is modeled using the vortex-lattice (VLM) [10] or the doublet-lattice
(DLM) [11] methods, then the ground effect can be approximately modeled using the method
of images [12]. The dependence of the aerodynamic model on height above ground is then
introduced, increasing the number of independent variables used in the aerodynamic look-up
tables.

It is well known that the solution to the problem of trimming an aircraft with wheel-to-ground
constraints and under the influence of the aerodynamic ground effect is possible in software like
MSC Nastran [13], with the solution based on the formulation derived by Rodden and Love [14].
However, this paper aims at deriving a formulation that makes time-marching simulations of
takeoff and landing of flexible aircraft possible, including aerodynamic nonlinearities in look-
up tables and taking into account the nonlinear EOMs in the rigid-body DOFs.

The EOMs for flexible aircraft with multiple underwing pod-mounted landing gears, subjected
to different ground constraints, are derived in this paper. Models for the ground effect and
for wheel-to-ground rolling resistance are included. The EOMs are derived using Lagrange’s
equations with holonomic constraints [15, 16]. Similar constraints were already used before by
Guimarães Neto et al. in Ref. [17], which dealt with the response and stability of a remotely-
piloted flexible aircraft in wind-tunnel tests, with at least the aircraft rigid-body translational
DOFs constrained.
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The formulation derived in this paper can allow an accurate evaluation of takeoff field length,
whenever accurate aerodynamic and rolling resistance models are available. The formulation
also allows numerically testing different rotation strategies for safer operation. Stability analysis
of flight in ground effect also become possible, allowing the prediction of potential degradation
of handling qualities in the landing phase, which is known to be critical for such flexible aircraft.
For instance, poor Dutch roll damping is very objectionable to the pilot in the approach for
landing, and an adequate flight dynamics model for this flight phase can help in the mitigation
of problems. Moreover, the formulation also makes possible the calculation of landing loads
for aircraft of the type under consideration, making it useful in structural design.

The developed formulation is applied in this paper to the six-meter-span X-HALE aircraft con-
figuration [18]. Designed at the University of Michigan, the aircraft was also built and is cur-
rently in operation by ITA (Instituto Tecnológico de Aeronáutica, Portuguese for Aeronautics
Institute of Technology) in Brazil. Numerical results are shown and analyzed for equilibrium
and stability under the influence of ground effect, for static equilibrium on ground, and for
takeoff and landing simulations.

2 EQUATIONS OF MOTION OF THE CONSTRAINED AIRCRAFT

The equations of motion derived in this section are based on the assumption that the flexible
aircraft has nc ≥ 0 constraints applied by the ground to wheels of its landing gears. The EOMs
are then derived using Lagrange’s equations with nc holonomic constraints [15, 16]:

d

dt

(
∂L
∂q̇i

)
− ∂L
∂qi

+
∂F
∂q̇i

=
nc∑
c=1

λc
∂fc
∂qi

+Qi, (1)

where L = T − U is the Lagrangian, T is the kinetic energy and U the potential energy; F is
Rayleigh’s dissipation function; fc, c = 1, 2, · · · , nc, are the functions describing the constraints
of the system; λc are the corresponding Lagrange multipliers; qi, i = 1, 2, · · · , 6 + n, are the
6 + n generalized coordinates of the system; and Qi are the corresponding non-conservative
generalized forces.

The generalized coordinates qi constitute a vector q. By definition, the holonomic constraints
depend only on the generalized coordinates and time:

fc = fc (q, t) = 0, c = 1, 2, · · · , nc. (2)

The body reference frame (BRF) has its set of orthonormal basis vectors forming the columns
of a matrix Fb, which is then an orthogonal matrix. The Earth is assumed to define an inertial
reference frame (IRF). The IRF orthonormal basis vectors are assumed to form the identity
matrix: F0 = I3. The transformation matrix from the IRF coordinate system to the BRF system
is then given by:

Cb0 = Fb
TF0, (3)

and it can be obtained by a classical sequence (3-2-1) of Euler rotations, with the Euler angles
ψ, θ and φ [19].

The elected set of 6 + n generalized coordinates for the flight dynamics of the flexible aircraft
comprises: the components of the position vector RO,b of the origin O of the BRF, expressed
in the body axes, b: RO,b =

[
xO yO zO

]T ; the Euler angles ψ, θ, and φ; and n elastic DOFs,
constituting the displacement vector uG =

{
u1 u2 · · · un

}T .
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Important details regarding the derivation of the EOMs are now provided. For a more in-depth
explanation of specific steps, the reader is referred to Ref. [1]. The position vector of any point
I in the aircraft with respect to the origin of the IRF is expressed by:

RI = RO + sOK + sKJ + sJI + dOK + dKJ + dJI , (4)

where s(•) refers to the relative position vectors in the undeformed (unstrained) condition, usu-
ally called the jig shape; and d(•) stands for the changes in the s(•) vectors due to the structural
deformation. The point J is the center of mass (CM) of the jth mass element in a finite-element
model that has lumped properties of inertia. There are Nm mass elements in the model. The
CM of the jth mass element is rigidly attached to the structural node K.

The contact between any landing gear wheel and the ground is assumed, for simplification, to
consist of a point, instead of an area. Then, let this point be denoted by L. The position vector
of L is given by substituting L for I in Eq. (4), and can be written as:

RL = RO + rL. (5)

The nc constraints are obtained based on the simplifying assumption that the runway is plane
and horizontal. The runway altitude above sea level is hrunway. If en,i denotes the ith column
of the identity matrix of size n, In, then any specific landing gear constraint in Lagrange’s
equations can be expressed by:

fc = eT
3,3C0bRL,b + hrunway = 0, (6)

where C0b = CT
b0 and RL = FbRL,b.

In what refers to the rigid-body DOFs, Lagrange’s equations (1) can be cast in a much more
convenient form, using the inertial velocity vector components Vb =

[
u v w

]T and the in-
ertial angular velocity vector components ωb =

[
p q r

]T , both in the body system, as quasi-
coordinates [15, 20]:

d

dt

(
∂T

∂Vb

)T

d

dt

(
∂T

∂ωb

)T

+

[
ω̃b 0

Ṽb ω̃b

]
(
∂T

∂Vb

)T

(
∂T

∂ωb

)T

 =
nc∑
c=1

 λcCb0e3,3

λcr̃L,bCb0e3,3


+

 Fa,b + Fp,b + Frr,b +mgb

Ma,O,b + Mp,O,b + Mrr,O,b +mr̃CG,bgb

 . (7)

In Eq. (7), the skew-symmetric operator applied to a vector v =
[
vx vy vz

]T is equal to
ṽ = vx

(
e3,3e

T
3,2 − e3,2e

T
3,3

)
+ vy

(
e3,1e

T
3,3 − e3,3e

T
3,1

)
+ vz

(
e3,2e

T
3,1 − e3,1e

T
3,2

)
; Fa,b, Fp,b, and

Frr,b are the total aerodynamic, propulsive, and rolling resistance forces, respectively; Ma,O,b,
Mp,O,b, and Mrr,O,b are the total aerodynamic, propulsive, and rolling resistance moments about
the originO, respectively; gb is the gravity vector, assumed uniform over the airframe; and rCG,b

is the position vector of the deformed aircraft CG, coincident with the aircraft CM.
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The other EOMs are those in the elastic DOFs, obtained from Eq. (1):

d

dt

(
∂L
∂u̇g

)
− ∂L
∂ug

+
∂F
∂u̇g

=
nc∑
c=1

λc
∂fc
∂ug

+Qg, g = 1, · · · , n. (8)

To calculate the kinetic energy, the velocity vectors are expressed in terms of time derivatives
taken in the IRF:

0ṘI = 0Ḟb (RO,b + sOK,b + sKJ,b + sJI,b + dOK,b + dKJ,b + dJI,b) (9)

+Fb

(
bṘO,b + bḋOK,b + bḋKJ,b + bḋJI,b

)
.

The following equations were derived in Ref. [1] and are used in the present development:

0Ḟb = Fbω̃b, (10)

ω̃b = Cb0Ċ
T
b0, (11)

implying:
0ṘI = Fb

(
Vb + bḋOI,b + ω̃bsOI,b + ω̃bdOI,b

)
, (12)

where Vb = bṘO,b + ω̃bRO,b, sOI,b = sOK,b + sKJ,b + sJI,b, and dOI,b = dOK,b + dKJ,b + dJI,b.

The elastic displacements of a node K are given by the translation vector dK = FbdK,b and by
the Euler angle vectorϕK,b =

[
φK,b θK,b ψK,b

]T , with small deformations assumed, yielding:

dOK,b = dK,b, (13)
dKJ,b = ϕ̃K,bsKJ,b, (14)
dJI,b = ϕ̃K,bsJI,b. (15)

The nodal displacements and rotations, dK,b and ϕK,b, can be recovered from the finite-element
displacement vector, uG, with time-invariant Boolean matrices [1], Ut,b,KG and Ur,b,KG, re-
spectively:

dK,b = Ut,b,KGuG, (16)
ϕK,b = Ur,b,KGuG. (17)

Then, as in Ref. [1], the kinetic energy becomes:

T = 1/2

∫
V

0ṘT
I
0ṘIρdV = 1/2

Nm∑
j=1

∫
Vj

0ṘT
I
0ṘIρdV =

= 1/2 mVb
TVb + 1/2 ωb

T (JO,b + ∆JO,b)ωb + 1/2 u̇T
GMGGu̇G

−mVb
T
(
s̃CG,b + d̃CG,b

)
ωb +mVb

T bḋCG,b + u̇T
GMωG

Tωb, (18)

where the summation of the contributions over Nm lumped-mass elements is implied, and:

JO,b =
1

2

Nm∑
j=1

(
mj s̃OJ,b

T s̃OJ,b + Jj

)
, (19)
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∆JO,b = 2
Nm∑
j=1

mj

(
s̃OJ,b

T d̃K,b + s̃OK,b
T
sKJ,bϕK,b

T − s̃OJ,b
T
ϕK,bsKJ,b

T
)

+
Nm∑
j=1

mj

(
d̃K,b

T
d̃K,b + 2

(
d̃K,b

T
sKJ,bϕK,b

T − d̃K,b

T
ϕK,bsKJ,b

T
))

+
Nm∑
j=1

((
mj s̃KJ,b

T
s̃KJ,b + Jj

)
ϕK,bϕK,b

T
)

+
Nm∑
j=1

(
ϕ̃K,b

(
2Jj − tr (Jj) I3 − ϕ̃K,b

(
mjsKJ,bsKJ,b

T − Jj + 1/2 tr (Jj) I3
)))

, (20)

MGG =
Nm∑
j=1

mj

(
Ut,b,KG

TUt,b,KG −Ut,b,KG
T s̃KJ,bUr,b,KG

−Ur,b,KG
T s̃KJ,b

T
Ut,b,KG

)
+

Nm∑
j=1

Ur,b,KG
T
(
mj s̃KJ,b

T
s̃KJ,b + Jj

)
Ur,b,KG, (21)

sCG,b =
1

m

Nm∑
j=1

mj (sOK,b + sKJ,b), (22)

dCG,b =
1

m

Nm∑
j=1

mj

(
Ut,b,KG − s̃KJ,bUr,b,KG

)
uG = DCG,buG, (23)

MωG
T = −

Nm∑
j=1

(
mj

(
Ut,b,KG − s̃KJ,bUr,b,KG

)T
s̃OJ,b −Ur,b,KG

TJj

)
−

Nm∑
j=1

mj

(
Ut,b,KG − s̃KJ,bUr,b,KG

)T
skew

(
Ut,b,KGuG − s̃KJ,bUr,b,KGuG

)
−

Nm∑
j=1

Ur,b,KG
T
(

˜Ur,b,KGuG (−Jj + 1/2 tr (Jj) I3)
)

= MωG
T

+ ∆MωG
T . (24)

mj is the mass and Jj is the inertia matrix of the jth lumped-mass element about its own center
of mass. Comparing Eq. (7) with Eq. (18), the relation rCG,b = sCG,b + dCG,b holds.

The elastic strain energy for the flexible aircraft modeled with finite elements reads:

U elas = 1/2
(
TFEM |BRFuG

)T
KFEM

(
TFEM |BRFuG

)
= 1/2 uG

TKGGuG, (25)

where the finite-element method (FEM) model nodal displacements can be calculated in generic
coordinate systems other than the flight-mechanics BRF coordinate system. The transformation
matrices from the BRF to such coordinate systems are collected in the block-diagonal transfor-
mation matrix TFEM |BRF , such that the original FEM stiffness matrix, KFEM , is transformed
to KGG = TFEM |BRF

TKFEMTFEM |BRF .
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The gravitational potential energy is given by:

Ugrav = −
Nm∑
j=1

∫
Vj

gTRIρdV

= −mgb
T (RO,b + sCG,b + dCG,b) . (26)

At last, structural dissipation due to damping forces of viscous nature is assumed [21]:

F = 1/2 u̇T
GBGGu̇G. (27)

2.1 Generalized forces

The generalized forces in the elastic DOFs comprise aerodynamic, propulsive, and rolling re-
sistance forces acting on the aircraft, and they are calculated with the equation [21]:

Qg =

∫
V

fI
T ∂RI

∂ug
dV =

∫
V

fI,b
TFb

T

(
∂Fb

∂ug
RI,b + Fb

∂RI,b

∂ug

)
dV =

∫
V

fI,b
T ∂RI,b

∂ug
dV , (28)

where fI is the force vector per unit volume acting on the generic point I in the aircraft. The
forces and moments in the rigid-body DOFs can be obtained from the derivations shown in
Ref. [1], which are omitted here for brevity.

The propulsive forces can be modeled as concentrated thrust forces acting on the thrust center
of each one of theNE aircraft engines. Considering that a matrix Cbe transforms the thrust force
from an engine frame – whose x axis is aligned with the thrust line – to the body frame, one
has the concentrated force Te,b = Cbee3,1Te applied at a point E whose position vector with
respect to O in the undeformed aircraft is sOE,b.

Every thrust center is also considered to be coincident with or rigidly connected to a structural
node KE in the FEM model of the aircraft, with associated Boolean matrices Ut,b,KEG and
Ur,b,KEG. The translations and the rotations of the thrust center are then given by the vectors
de,b =

(
Ut,b,KEG − s̃KEE,bUr,b,KEG

)
uG and ϕe = Ur,b,KEGuG, respectively, with sKEE,b the

position vector of the thrust center with respect to KE .

Under small deformations, the thrust vector is Te,b = (Cbe + ϕ̃e) e3,1Te and the thrust center
is sOE,b + de,b. The concentrated propulsive force can be represented as a distributed force by
means of a three-dimensional Dirac’s delta function [7].

The rolling resistance generalized forces can also be modeled as concentrated forces acting
horizontally at the wheel-to-ground points of contact, whenever vertical reaction forces are
nonzero. Every wheel point of contactL is considered to be coincident with or rigidly connected
to a structural node KL in the FEM model of the aircraft, with associated Boolean matrices
Ut,b,KLG and Ur,b,KLG. sKLL,b is the corresponding position vector. The rolling resistance force
acts opposite to the direction of the landing gear velocity vector, with the corresponding unit
vector given by −ev,c.

The aerodynamic forces can be simplified with the use of lifting-surface methods like the vortex-
lattice method (VLM) [10] or the doublet-lattice method (DLM) [11]. Hence, the aerodynamic
forces and moments are concentrated on a discrete set of NP aerodynamic grid points, located

7



IFASD-2019-107

at the centroids of the VLM/DLM boxes (panels), with NP equal to the number of boxes in the
discretization of the aerodynamic model.

The structural displacements at the aerodynamic grid points are calculated with a linear trans-
formation matrix GAG that provides the vector of aerodynamic normal and rotational displace-
ments, uA, from the structural displacements, uG: uA = GAGuG.

Each aerodynamic grid point has two degrees of freedom – plunge and pitch – and the length
NA of the uA vector is then NA = 2NP . The vector containing the aerodynamic forces and
moments at the aerodynamic grid points is PA. With this rationale and based on Eq. (28), the
generalized force in each ug = en,g

TuG DOF reads:

Qg = en,g
TGAG

TPA

+en,g
T

NE∑
e=1

(
Ut,b,KEG − s̃KEE,bUr,b,KEG

)T
Te (Cbee3,1 − ẽ3,1Ur,b,KEGuG)

+en,g
T

nc∑
c=1

(
Ut,b,KLG − s̃KLL,bUr,b,KLG

)T
Frr,c (−Cb0ev,c), (29)

and each Qg can be collected in a vector QG =
n∑

g=1

en,gQg respecting the ordering of uG:

QG = GAG
TPA +

NE∑
e=1

(
Ut,b,KEG − s̃KEE,bUr,b,KEG

)T
Te (Cbee3,1 − ẽ3,1Ur,b,KEGuG)

+
nc∑
c=1

(
Ut,b,KLG − s̃KLL,bUr,b,KLG

)T
Frr,c (−Cb0ev,c). (30)

2.2 Equations of motion

The equations of motion for the constrained flexible aircraft can be obtained by the substitution
of the energy expressions, Eqs. (18), (25) and (26); Rayleigh’s dissipation function, Eq. (27);
the holonomic constraints, Eq. (6); and the generalized forces, Eqs. (30), into Lagrange’s
equations, Eqs. (7) and (8). It is assumed in the derivation that no change in the aircraft mass
with time occurs. The EOMs then read:

mV̇b +mω̃bVb −ms̃CG,bω̇b −mω̃bs̃CG,bωb +mDCG,büG

+m˜̇ωbDCG,buG + 2mω̃bDCG,bu̇G +mω̃bω̃bDCG,buG

= mgb + Fa,b + Fp,b + Frr,b +
nc∑
c=1

λcCb0e3,3, (31)

JO,bω̇b + ω̃bJO,bωb +ms̃CG,b

(
V̇b + ω̃bVb

)
+mD̃CG,buG

(
V̇b + ω̃bVb

)
+∆J′O,bω̇b + ω̃b∆J′O,bωb + ∆J̇′O,bωb + ṀωGu̇G + MωGüG + ω̃bMωGu̇G

= ms̃CG,bgb +mD̃CG,buGgb + Ma,O,b + Mp,O,b + Mrr,O,b +
nc∑
c=1

λcr̃L,bCb0e3,3, (32)

8
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MGGüG + BGGu̇G + KGGuG +mDCG,b
T
(
V̇b + ω̃bVb

)
+MωG

T ω̇b + 2ṀT
ωGωb −

1

2

n∑
g=1

en,gωb
T ∂∆JO,b

∂ug
ωb

= mDCG,b
Tgb + QG +

nc∑
c=1

(
Ut,b,KLG − s̃KLL,bUr,b,KLG

)T
λcCb0e3,3. (33)

In Eqs. (31), (32), and (33), ∆J′O,b = 1/2
(
∆JO,b + ∆JO,b

T
)

is the symmetric inertia matrix
increment, and all the time derivatives are taken in the BRF (the left superscript b was omitted
for brevity). Moreover, the EOMs are also subjected to the constraints of Eq. (6), so that the
number of equations and unknowns match, allowing the calculation of the Lagrange multipliers.

2.3 Aerodynamic formulation

The aerodynamic loads acting on the flexible aircraft can be calculated as the superposition of
loads that would be obtained for a perfectly rigid airframe with the incremental loads due to
structural deformation. In this paper, to obtain the generalized aerodynamic loads related to the
structural motion, the VLM [10] is used. The aerodynamic formulation is totally analogous to
the one described in Ref. [1], and is omitted for brevity.

2.4 Inertia relief

Since the stiffness matrix KGG refers to an unrestrained three-dimensional structure, it is a
positive semi-definite matrix, with rank n−6 and a null space consisting of the space spanned by
six linearly-independent vectors [22]. Therefore, six linearly-independent rigid-body motions
are allowed by the FEM formulation. This condition is not desired because the coordinates of
the point O and the Euler angles were already considered to be the rigid-body DOFs of the
flexible aircraft. Hence, six constraints are needed to further specify the body axes with regard
to the structural displacements.

In this paper, the body axes are assumed to be dually-constrained axes [1]. In this case, the
origin S of the structural axes (point of zero elastic displacement) can be non-coincident with the
origin O of the body axes. Enforcing uS = 0 is only correct if the external forces applied to the
structure are self-equilibrating. If inertia relief is considered, a self-equilibrating force system
can be generated if the d’Alembert force vector corresponding to rigid-body accelerations is
summed to the right-hand-side of Eq. (33). In Ref. [1], this was demonstrated to be equivalent
to left multiply all the terms in Eq. (33) by the inertia-relief projection matrix, Pr:

PrMGGüG + PrBGGu̇G + PrKGGuG +mPrDCG,b
T
(
V̇b + ω̃bVb

)
+PrMωG

T ω̇b + 2PrṀ
T
ωGωb −

1

2
Pr

n∑
g=1

en,gωb
T ∂∆JO,b

∂ug
ωb

= mPrDCG,b
Tgb + PrQG + Pr

nc∑
c=1

(
Ut,b,KLG − s̃KLL,bUr,b,KLG

)T
λcCb0e3,3, (34)

where Pr = In −MGGΨr,S

(
ΨT

r,SMGGΨr,S

)−1
ΨT

r,S , and Ψr,S is the matrix of rigid-body
modes of the FEM model having unit displacements or rotations of the node S.

9
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2.5 Use of modes of vibration as shape functions

The modal superposition technique is generally a valid approach to solve dynamic problems
involving the deformation of structures [21]. Mode shapes obtained from the undamped, lin-
earized and conservative system can then be applied as shape functions in the solution of the
structural-dynamic problem of the aeroelastic aircraft. In this paper, the elastic deformations
around the initial equilibrium condition are represented by a superposition of the aircraft inertia-
relieved constrained modes of vibration [1], ∆uG = Φη.

The modal matrix Φ is constant throughout the simulation, and consists of the modes calculated
with the Pr matrix obtained when all six rigid-body modes are kept in Ψr,S . However, the
inertia-relief projection matrix is updated in Eq. (34) whenever a rigid-body DOF is added
to or removed from the flexible aircraft by the ground constraints, as described in the next
subsection. The consideration of inertia relief ensures that no support reaction will develop on
unconstrained rigid-body DOFs [1].

2.6 Landing gear constraints

The wheel-to-ground constraints, given by Eq. (6), give rise to normal reaction forces at each
point of contact. Considering Eq. (31), each normal reaction force is given by:

Nc,b = λcCb0e3,3, (35)

which is a vertical force in the IRF because the runway was assumed to be plane and horizontal.

According to Eq. (35), if λc ≥ 0, then the normal force is null or has a down component in
the IRF coordinate system. Hence, if λc ≥ 0, it results that the fc constraint should be inactive,
because there are no physical means by which the ground would pull the aircraft down. Active
constraints are only those that result in λc < 0.

Depending on the aircraft geometry and on the active constraints, the aircraft can have:

1. no DOF constrained, leading to:
Ψ′r,S = Ψr,S

2. its vertical translational DOF constrained, if only one wheel is touching the ground, lead-
ing to:

Ψ′r,S =
[
Ψr,Se6,1 Ψr,Se6,2 Ψr,Se6,4 Ψr,Se6,5 Ψr,Se6,6

]
3. its vertical translational DOFs constrained at two wheels that are side by side, therefore

also constraining the rolling motion, leading to:

Ψ′r,S =
[
Ψr,Se6,1 Ψr,Se6,2 Ψr,Se6,5 Ψr,Se6,6

]
4. its vertical translational DOFs constrained at two wheels that are one behind the other,

therefore also constraining the pitching motion, leading to:

Ψ′r,S =
[
Ψr,Se6,1 Ψr,Se6,2 Ψr,Se6,4 Ψr,Se6,6

]
5. its vertical translational DOFs constrained at three or more wheels that are side by side

and also one behind the other, constraining both rolling and pitching motions, leading to:

Ψ′r,S =
[
Ψr,Se6,1 Ψr,Se6,2 Ψr,Se6,6

]
10
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In the foregoing equations, Ψ′r,S is the rigid-body mode matrix that is to be effectively used in
determining the inertia-relief projection matrix contained in Eq. (34).

In nonlinear time-marching simulations, the structural displacements become states of the sys-
tem, in the form of modal coordinates. It is then necessary to obtain the first and second time
derivatives of the equations of constraints, so that the constraints and their time derivatives
themselves also become states of the system. Otherwise, the constraints cannot be correctly
enforced, because in a time step only the derivatives V̇b, ω̇b and η̈ can have their values altered.

The time derivative of the constraint equation (6) is given by:

ḟc = eT
3,3Ċ0bRL,b + eT

3,3C0bṘL,b. (36)

From Eqs. (11) and (5), one obtains:

ḟc = eT
3,3C0b (Vb + ṙL,b + ω̃brL,b) . (37)

The second time derivative of fc is then given by:

f̈c = eT
3,3C0b

(
V̇b + ω̃bVb + r̈L,b + 2ω̃bṙL,b + ˜̇ωbrL,b + ω̃bω̃brL,b

)
. (38)

Equation (37) is used to evaluate the time derivative of the states fc and Eq. (38) is used
to calculate the constraints at each time step. The calculation of V̇b, ω̇b, üG, f̈c, and λc is
simultaneous. If λc ≥ 0, then the cth constraint is inactive, and f̈c is allowed to be nonzero; if
λc < 0, then the cth constraint is active, and f̈c = 0. Depending on the active constraints, the
inertia-relief projection matrix may need to be changed, according to the previously described
procedure. The solution may then become iterative inside a time step.

2.7 Rolling resistance

Whenever a landing gear constraint is active, a rolling resistance (or rolling friction) force,
Frr,c,b, tangent to the runway, can be included in the EOMs. Typically, the rolling resistance
force is modeled as proportional (in magnitude) to the normal reaction force, with a constant of
proportionality given by µr, the rolling resistance (or rolling friction) coefficient:

‖Frr,c,b‖ = µr ‖Nc,b‖ . (39)

In this paper, the rolling resistance force at a landing gear wheel is parallel to the runway, its
magnitude is given by Eq. (39), and its direction is considered opposite to that of the velocity
vector of the wheel-to-ground point of contact with respect to the IRF. For simplicity, the rolling
resistance is considered to act only when such velocity vector is not null, implying that the
aircraft will more easily start its motion from rest in the model than in reality.

The rolling friction coefficient depends on many factors such as the condition of the runway,
the tire material, tread, pressure and loading, the condition of the wheel bearings and, to some
extent, the speed [23]. Typical values can be found in Refs. [23, 24].

11
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3 NUMERICAL MODEL

The aircraft analyzed in this paper is the six-meter-span X-HALE, a remotely-piloted flexible
aircraft designed by Prof. Carlos Cesnik and coworkers at the University of Michigan [18], and
currently also in operation by ITA in Brazil.

The six-meter-span configuration contains six wing sections with span of 1.0 m and chord of
0.2 m each, as well as five pods at the connections between the wing panels. Therefore, the
wing aspect ratio is 30. At the pods, the aircraft electric motors, landing gears, electronics
and sensors are installed. Booms are connected to the pods and, at the tip of each boom, a
horizontal tail is mounted. The four side tails are all-moving control surfaces that can be used
for both longitudinal and lateral-directional control, and are then named elevons. The central tail
has a flipping-up capability, in order to modify the aircraft longitudinal and lateral-directional
flying qualities as desired in operation. For ground clearance during takeoff, the central tail has
approximately 33% less span in its right (bottom) part than in the left (top) part. The wing-tip
sections have a dihedral angle of 10◦. The wing is built with an incidence of 5◦.

The aircraft has ten landing gears, two per pod. With the origin O of the body axes at the
wing central node in the FEM model, with the body xb axis oriented forward and the zb axis
downward, the front gears wheel-to-ground points of contact have xb coordinate equal to 0.130
m and zb coordinate equal to 0.224 m, whereas the rear gears have the xb coordinate equal to
−0.055 m and the same zb coordinate.

Spring elements were included in the structural-dynamic model to approximately model the
flexibility of the wheels. The vertical flexibility is considered as 1 centimeter of deformation
for 10 Newtons of load, or 1000 N/m, more flexible than what observed – but not yet measured
– in the real aircraft. The flexibility in other directions is numerically ten times higher. In the
lack of experimental data, the rolling resistance coefficient is assumed as µr = 0.065.

The aircraft structural-dynamic model consists of 144 beam elements along the wing span. The
beam element formulation is as explained in Refs. [25, 26]. Beam elements are also used for
the connection between the wing and the booms and for the booms themselves. The horizontal
tails are modeled with rigid elements. Scalar spring elements are included to represent the
stiffness of the motion of all the control surfaces around the corresponding hinge lines, but such
stiffnesses are high enough not to modify the results to be obtained. The complete structural-
dynamic model assembled in the ITA/AeroFlex program is shown in Fig. 2.

The mass of the aircraft is 12.2 kg. With respect to the wing central node, which is the origin of
the body axes, the center of gravity is located at sCG,b =

[
−0.007 −0.002 0.027

]T meters.

In the time-marching simulations, stiffness-proportional structural damping is considered, with
a constant of proportionality such that the first free-free mode of vibration has 1.5% damping
ratio. Modes of vibration with frequency less than 51 Hz are retained – it was observed that the
landing gear modes were between 50 and 51 Hz in the free-free model. The modal basis then
has 46 modes, making the model more accurate in representing constraints that can significantly
change during the simulation. A time step of 5 milliseconds is used for the simulations shown
in this paper.

The aerodynamic model of the aircraft is based on the VLM [10], combined with the XFOIL
code [27] to correct for viscous effects for both the wing EMX07 [18] and the elevons/horizontal

12
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GRIDs
CBARNs
CONM2 CGs
CONM2 Offsets
RBARs
RBE2s
MPCs
CELAS2s

Figure 2: X-HALE six-meter-span configuration linear structural-dynamic model in ITA/AeroFlex. GRIDs: struc-
tural nodes; CBARNs: beam elements; RBARs: rigid bar elements; CONM2 CGs: CG locations of
lumped-mass elements; CONM2 Offsets: offsets between such CG locations and the structural node to
which the lumped-mass element is attached; CELAS2s: spring elements; and SUPORT: support location.

tail NACA 0012 airfoils. A local effective angle of attack is calculated for each strip of boxes
in the VLM model, at each time step, considering the local airfoil incidence, the aircraft angle
of attack and rigid-body motion, and the induced angle of attack calculated with the method-
ology of Ref. [28]. The effective angle of attack is then used to obtain airfoil coefficients and
pressure coefficient distributions from look-up tables obtained off-line with XFOIL. Therefore,
the aerodynamic model includes both finite-wing and nonlinear viscous aerodynamic effects.
The viscous drag of aircraft components other than the lifting surfaces is calculated with semi-
empirical methods.

The VLM mesh used in the aerodynamic model is shown in Fig. 3, and its refinement with
1674 boxes is due to its having been built to satisfy the guidelines of the doublet-lattice method
[11, 29]. The aircraft has two ailerons, at the wing-tip modules.

Linear spline interpolation matrices, as derived in Ref. [13], are calculated and used to obtain the
displacement-transferal and the load-transferal matrices between the structural-dynamic model
and the aerodynamic model.

The propulsive model consists of a look-up table of thrust as a function of airspeed and throttle
setting, based on experimental data obtained from wind tunnel tests. Linear interpolation is
used both on airspeed and throttle setting to calculate thrust.

13
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Figure 3: VLM mesh of the aircraft, with a total of 1674 boxes. Control surfaces are plotted in orange.

4 NUMERICAL RESULTS

4.1 Ground effect

In this paper, the ground effect is modeled using the method of images [12]. Because the
aerodynamic model is a quasi-steady one, based on the VLM [10], unsteady flow phenomena
that are potentially important [12] are not captured.

Regarding the rigid aircraft, results were obtained for the stability derivatives of lift and pitching
moment coefficients with respect to the angle of attack,CLα andCmα , respectively. In the results
shown in this section, the pitching moment is calculated about the origin of the ARF, located at
the quarter-chord point of the wing symmetry plane. Figure 4 contains the results for the ratio
of a derivative at a certain height above ground level (AGL) to the same derivative at an infinite
height – that is, out of ground effect. The aircraft under analysis is the six-meter-span X-HALE
with the central tail in the horizontal configuration.

One observes from Fig. 4 that the ground effect becomes more relevant the smaller the height
above ground is compared with the wing span of six meters, without significant effects at heights
greater than one wing span. Moreover, for the rigid aircraft, the effect is of greater magnitude on
Cmα than on CLα , because of the five horizontal tails downstream of the wing that are subjected
to less downwash under ground effect. The neutral point would then tend to move rearward the
closer the rigid aircraft was to the ground – the rearward shift is calculated to be 4.6% of the
mean aerodynamic chord from hAGL →∞ to hAGL = 0.

To evaluate the influence of ground effect on the flexible aircraft, equilibrium conditions of
straight level flight were then calculated for V = 15 m/s, at different values of hAGL. The
runway altitude is 650 m. Then, the aircraft equations of motion were linearized around the
equilibrium condition. The linearized dynamics allowed the calculation of the CLα and Cmα

derivatives for the flexible aircraft subjected to quasi-static aeroelastic effects, according to the
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Figure 4: Ground effect on the CLα and Cmα derivatives, for the rigid aircraft.

methodology of Ref. [30]. The determination of the natural modes was also possible. It was
observed that all the aeroelastic modes are very slightly affected in both frequency and damping
when under ground effect. The lateral-directional modes are also almost unaffected. The short-
period and phugoid modes are more influenced. The results are summarized in Table 1.

Table 1: Equilibrium conditions and longitudinal modes at different values of hAGL, for V = 15 m/s.

hAGL [m]
0.5 1.0 3.0 6.0 10.0 20.0

αeq [deg] 1.48 1.54 1.61 1.64 1.65 1.66
δe,eq [deg] −0.69 −0.52 −0.44 −0.42 −0.42 −0.43
Thrust [N] 20.4 20.6 20.8 20.9 20.9 20.9
ωn,sp [rad/s] 12.56 12.97 12.87 12.93 12.92 12.90

ζsp 0.495 0.500 0.506 0.503 0.503 0.503
ωn,ph [rad/s] 0.541 0.601 0.688 0.692 0.692 0.692

ζph 0.714 0.324 0.211 0.210 0.210 0.210
Cflex

mα
[1/rad] −3.46 −3.55 −3.53 −3.51 −3.51 −3.51

Cflex
Lα

[1/rad] 6.55 6.43 6.35 6.32 6.31 6.31

Table 1 shows that, because the ground effect allows more lift to be generated for the same
angle of attack, the aircraft needs a smaller angle of attack to trim, αeq, the closer it is to the
ground. Because there is less downwash at the tails, the tail (elevator) deflection to trim, δe,eq,
is slightly in the direction of more trailing-edge up as height decreases. Because there is less
induced drag, the total thrust to trim the aircraft is slightly smaller in ground effect.

The results for the short-period natural frequency ωn,sp and damping ratio ζsp in Table 1 would
at first seem counterintuitive, when compared with the trends in Fig. 4. However, one must
have in mind that Fig. 4 holds for the rigid aircraft. In ground effect, the smaller aerodynamic
downwash at the horizontal tails implies greater effectiveness and, for a flexible aircraft in
which such tails are mounted on booms connected to the wing, the elastic twist produced by an
increment in angle of attack can result in an effective aeroelastic downwash at very low hAGL

greater than the aerodynamic downwash out of ground effect. This is confirmed by the pitching
moment coefficient derivative with quasi-static aeroelastic effects, Cflex

mα
. The flexible aircraft
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neutral point for hAGL = 0.5 m can be calculated to be 2.8% of the mean aerodynamic chord
forward of that for hAGL = 20.0 m.

Table 1 also shows that the phugoid is the most affected mode. Its natural frequency ωn,ph

decreases and its damping ratio ζph increases when the aircraft is closer to the ground.

4.2 Static equilibrium

At the beginning of the simulation of the takeoff run, the flexible aircraft needs to be in static
equilibrium. This equilibrium condition was calculated, and it was found that, due to the flexi-
bility included in the wheels, the aircraft has an equilibrium pitch attitude θeq = 4.89 deg. This
angle is positive because there is more vertical load at the rear landing gear wheels than at the
front wheels. Table 2 shows the calculated normal reaction force on each wheel.

Table 2: Normal force on each landing gear wheel in static equilibrium.

Normal force on wheel [N]
Left

Central
Right

Outer Inner Inner Outer
Front 5.63 2.99 4.14 3.07 5.66
Rear 21.0 18.2 20.0 18.3 20.9

Having the yb coordinate of each landing gear, it is possible to use the normal forces of Table
2 and estimate the yCG,b coordinate of the aircraft CG. The result is yCG,b = −0.002 m, which,
with the precision of millimeters, is the same as calculated from the known mass distribution
of the model. This is then a valid experimental procedure to estimate the yb coordinate of the
CG, even with the aircraft being flexible. The same numerical test was performed and was un-
fortunately confirmed not to be valid for xCG,b, because of the flexibility of the wheels. A more
accurate experimental procedure would then probably require the removal of the very light flex-
ible wheels for an adequate estimation of the CG location based on normal force measurement.

4.3 Takeoff simulation

With the aircraft starting at the static equilibrium condition, full throttle was applied at t = 0.1
s and a simulation of the takeoff dynamics was obtained using the formulation derived in this
paper. The transfer function from commanded throttle to true throttle comprises a simple lag
with time constant of 150 milliseconds, combined with a transport delay of 60 milliseconds,
both estimated experimentally. The propulsive model was obtained via wind-tunnel tests. The
deflections of control surfaces are zero throughout the simulation. The obtained results are
shown in Figs. 5 and 6.

The time histories of the landing gear normal forces in Fig. 6 show that the aircraft lifts off
slightly after t = 4.37 s, when the front central gear leaves the ground. The plots also confirm
that the outer landing gears are the first to leave the ground, followed by the inner ones, and at
last by the central ones. This is expected and consistent with the wing tip vertical displacements
shown in Fig. 5. The takeoff is approximately symmetric, with the small asymmetries ex-
plained by both the small lateral offset of the CG (2 millimeters to the left) and the asymmetric
horizontal central tail.

In the initial one to two seconds of the ground roll, the normal force on the front wheels in-
creases with respect to the corresponding static equilibrium values, whereas the opposite occurs
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Figure 5: Takeoff dynamics of the X-HALE after a full-throttle command is applied, beginning at t = 0.1 s.
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Figure 6: Landing gear wheels normal reaction forces during and after takeoff.

on the rear wheels. This is explained by the negative aerodynamic pitching moment that devel-
ops as airspeed increases. The liftoff without using elevator deflection occurs slightly before
the aircraft attains V = 16 m/s. The distance traveled is approximately 40 meters until liftoff.
This result can be affected by the value of the rolling friction coefficient, which was arbitrarily
considered to be µr = 0.065 in the simulations of this paper.
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4.4 Simulation of landing without flare

The developed formulation is also applicable to the landing phase of flight. To illustrate this,
the results of a simulation of landing without flare are shown in this section. The runway is
assumed perfectly rigid. For the initial condition of the simulation, the aircraft was trimmed
in a straight flight with a flight-path angle of −5 degrees at a height AGL of 15 meters. The
simulated flight is approximately steady until the aircraft reaches about 2 meters AGL. The time
histories of height AGL and pitch attitude, in the six seconds after reaching hAGL = 2 m, are
shown in Fig. 7. The normal reactions on the wheels, the normal load factors that would be
measured by accelerometers installed in the aircraft, and the wing tip vertical displacements are
shown in Fig. 8.

The aircraft does not land smoothly and has two unsuccessful touchdowns before finally land-
ing. After the first touchdown, the throttle was set to zero. The unsuccessful touchdowns occur
with the central wheels touching the ground, followed by the inner wheels and then the outer
wheels, which are then the last to leave the ground. High normal load factors would be mea-
sured by the accelerometers when the outer landing gears strike the ground – such load factors
are in a direction normal to the local wing plane.

The aircraft comes to a halt at t = 14.0 s, not shown in Figs. 7 and 8. This simulation is
illustrative and considers the wheel flexibility modeled by springs with stiffness of 1000 N/m in
the zb axis direction. Moreover, the structural damping is a stiffness-proportional damping such
that the first free-free mode of vibration of the aircraft has modal damping ratio of 1.5%. The
actual wheels are probably less flexible but less damped, and adjustments of the model with
experimental data are necessary before any correlation with flight-test data is intended.
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Figure 7: Height AGL and pitch attitude time histories in a landing without flare.
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5 CONCLUSIONS

In this paper, a formulation for the takeoff dynamics of flexible aircraft with multiple underwing
pod-mounted landing gears was derived and the results of its application to the X-HALE aircraft
were analyzed. In the derived equations of motion, small deformations were assumed, and
the runway was assumed rigid, plane and horizontal. The proposed formulation includes the
wheel-to-ground constraints, with both normal reaction and rolling resistance forces, as well as
ground-effect aerodynamics.

The constraint dynamics are properly simulated with an on-line test of the active constraints,
namely, those for which the constraint equation is satisfied and a normal force in the negative
inertial z-axis direction exists. As the constraints become inactive during takeoff, modifications
are made to the inertia-relief projection matrix to take into account only the rigid-body degrees
of freedom that are unconstrained in the aircraft, until complete rigid-body freedom is attained
at aircraft liftoff.

The aerodynamic model of the aircraft in this paper was simplified as a quasi-steady vortex-
lattice-method model, instead of an unsteady doublet-lattice-method one that would have been
more adequate to capture the unsteady effects in close proximity to the ground. The ground
effect calculated with the quasi-steady model and the method of images is more significant for
heights above ground on the order of a few wing chords. The wing-boom-tail type X-HALE
flexible aircraft is subject to an aeroelastic downwash that leads to a decrease in the short-period
natural frequency close to the ground, contrary to what would be expected for a rigid aircraft.

Using the developed formulation, the static equilibrium condition of the aircraft on the ground
could be determined, including the normal forces applied on each landing gear wheel. The static
equilibrium served as the initial condition for takeoff simulation, the results of which showed the
expected behavior of the outer landing gears lifting off before the inner and then the central ones,
which is also consistent with the wing deformation time history. An example of application to
landing without flare was also analyzed, with significant structural loads developing.

Adjustments of the landing gear structural-dynamic model and of the rolling resistance coeffi-
cient are still necessary before any correlation with X-HALE flight-test data is intended. The
developed formulation is readily applicable to simulations of takeoff and landing in gusty en-
vironments, which then require coupling with a control augmentation system or a human pilot
model in order to produce meaningful results.
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[28] Kálmán, T. P., Giesing, J. P., and Rodden, W. P. (1970). Spanwise distribution of induced
drag in subsonic flow by the vortex lattice method. Journal of Aircraft, 7(6), 574–576.
doi:10.2514/3.44219.

[29] Rodden, W. P., Taylor, P. F., McIntosh, S. C., and Baker, M. L. (1999). Further convergence
studies of the enhanced doublet-lattice method. Journal of Aircraft, 36(4), 682–688. doi:
10.2514/2.2511.
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