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Abstract: Since the pioneering work by Whitcomb [1] in the mid-70’s winglets have demon-
strated their capabilities to improve aircraft efficiency. However, they are fixed devices and op-
timized for certain flight conditions. This paper investigates the opportunity to make these wing
extensions active to control aircraft performances along the flight. To assess the efficiency of
such a technology, high-fidelity computations coupling aerodynamics and structural mechanics
disciplines are used. Surrogate models are built to speed-up the optimization process. Multi-
objective and gradient-free algorithms are used to search the optimal winglet shape in cruise
condition and the optimal winglet deflection along the mission with block fuel minimization as
objective. The capability of active winglets to control the wing shape and particularly the twist
is demonstrated. It is also highlighted that the wing flexibility is a key driver of the efficiency
of active winglets and must be considered to assess the performances of morphing devices.
This document shows that depending on the baseline choice the gains can be quadrupled if the
stiffness is neglected.

1 INTRODUCTION

Since the very beginning of aviation history aircraft manufacturers have been stretching their
imagination to propose the most efficient products and particularly to reduce fuel consumption.
In recent years, this preoccupation has been center stage with combination of oil prices increase
and expansion of global warming. Much efforts were concentrated on the optimization of the
wing-tube configuration: profile shapes were designed to reduce drastically wave and viscous
drag, engines performances were dramatically improved and every aircraft were equipped with
wing-tips designed to decrease the induced drag. However, this configuration is reaching its
limits and a new paradigm must be considered. Quite recently, Boeing introduced the folding
wing-tip that aims to increase the wing span once in the air and so reducing the drag while
still be compliant with airport regulation once on ground [2]. This is the first step toward more
versatile aircraft configurations. Nevertheless, this step-forward still relies on the ’old’ process
that consists in the optimization of the aircraft for a limited number of flight conditions.
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The future is to fully adaptive configurations optimized for each point of the flight domain. Mor-
phing technologies are promising solutions that become popular among the aeronautic commu-
nity and many studies are dedicated to the subject [3, 4]. Morphing, i.e. changing aircraft form
depending on the flight conditions, is not new in aviation history since the very first plane, the
Wright Flyer, had taken-off with differential wrapping wings for rolling control. Then flaps
and slats were introduced to improve the landing characteristics as aircraft were gaining speed.
Even the flapping nose of the Concorde may be consider as a morphing device dedicated to
improve the pilots’ visibility. However these devices were designed to act on a narrow range of
flight conditions. Today studies on morphing devices focus on technologies that enable to con-
trol (mainly) the wing shape all along the flight. Most of them deal with trailing edge devices,
that represent the most promising solutions as they enable to reduce drag, noise but also loads
and may even be used for flutter control. All these considerations may lead to block fuel saving
up to 10% [5–9]. However, the actuation system of such devices may have a detrimental weight
and is still one of the blocking point to be solved before implementation on civil aircraft. The
certification is also an issue that must be tackled [10].
Active winglet concept is at the crossing between wing morphing technologies and folding
wing-tips. The technology studied in this paper is inspired by the concept patented by Airbus in
the early 2000’s [11]. This device takes advantage of the span increase due to the folding wing-
tip but is also thought to be able to optimize the aircraft performances along the flight by acting
on the wing shape. Previous conceptual studies on similar concepts and using intermediate-
fidelity tools estimated that additional 2% of block fuel can be saved comparing to fixed winglet
configurations [12, 13]. The present analysis aims to assess the capability of active winglets to
efficiently control aircraft performances during a flight. High-fidelity CFD/CSM (Computa-
tional Fluid Dynamics/ Computational Structural Mechanics) are used to properly evaluate the
aerodynamic performances and the wing displacements. Engine performances are also consid-
ered to have to estimate precisely the fuel burnt. XRF1 model, an Airbus provided industrial
standard multi-disciplinary research test-case representing a typical configuration for a long
range wide body aircraft, is considered. A winglet is optimized for this configuration at the de-
sign point using surrogate models and multi-objectives algorithm. The cant angle of this design
is then adjusted for all points of a typical mission to minimize the fuel burnt using a gradient-
free differential evolution algorithm. Computations with rigid and flexible wings are performed
to highlight the sensitivity of the winglet efficiency with respect to the wing stiffness.

2 THEORETICAL BACKGROUND OF SURROGATE-BASED OPTIMIZATION

2.1 Design of Experiment

For every problem dealing with surrogate models the first stage consists in the selection of the
sampling points. Indeed, these models aim to approximate an expensive (computationally or
experimentally) or difficult to evaluate (experiment data) function, based on the observations at
a limited and predefined number of points. The selection of these points, called the sampling
plan or the Design of Experiment (DoE), is determinant as the accuracy of the models highly
depends on their spreading and their number.
Let’s N be the dimension of design space and assume that each direction can be split in n
levels, it forms a partition of the design space into nN ’boxes’. A first DoE consists in filling
each box with a randomly selected sample. This is called a Full Factorial sampling plan. It
has the advantage of being uniform i.e same number of points in each direction. However, the
number of calls to the expensive function is nN and may rapidly becomes detrimental for high
dimension problems and/or high accuracy requirements. There is a need for smarter techniques
to reduce the number of samples, one of the most popular is the Latin Hypercube Sampling
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(LHS). The design space is still divided into nN boxes, here the objective is not to fill all the
boxes but to have each level of a direction filled with exactly one point as illustrated on Figure
1. This sampling technique ensures a projected uniformity in each direction and requires only

Figure 1: Example of Latin HyperCube Sampling for N=2 and n=6, from [14]

n evaluations of the expensive function. However, for each level points being quasi-randomly
selected, the global uniformity is not guaranteed with possible consequence on the quality of
the surrogate model. Indeed, the first sample is selected randomly in a box of the design space
that is also randomly selected, then all the boxes on the same levels as the selected one are
remove from the set of boxes. A second box is randomly chosen in the remaining ones and a
sample is randomly picked in this box, the schema is iterate until their is no remaining boxes.
Solutions exist to improve the global uniformity of LHS: the minimal distance between sam-
ples can be maximized, the correlation between samples can be minimized or the DoE can be
optimized using a Stochastic Evolutionary Algorithm [15]. This latter option was selected in
our study to improve the spreading of the sampling points. This methods has the advantage to
use a global search technique that guarantee to find a solution near to the global optimum and
to be compatible with several quality criteria such as maximum minimal distance. Given an op-
timal sampling plan matrix X = [x(1), ...,x(n)] of n configurations x(i) the output vector from
the expensive function can be derived y = (y(1), ..., y(n)), the set

{
(x(1), y(1)), ..., (x(n), y(n))

}
forms the learning data-base.

2.2 Surrogate modelling

In many engineering problems as soon as high-fidelity is targeted the limiting factor is the
computational time/cost. This could make some simulations not suitable for optimization pur-
poses. To cope with this issue, a solution is to approximate the ”true” functions f , in our case
CFD/CSM simulations results, by simplified and cheap-to-evaluate mathematical models f̂ .
Many kind of techniques exist among the most popular we can cite:

• Polynomial regressions
• Radial basis function models
• Gaussian process / Kriging models
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The objective of the surrogate model building is to find the parameters of the models that best
fit the observed data y. The principles of the three above-mentioned models will be detailed in
the next sub-paragraphs.

2.2.1 Polynomial regressions

The simplest way to introduce polynomial models is to consider a one dimension problem. Let’s
take the example of a degree m function to approximate f :

f̂(x) = ω0 +
m∑
j=1

ωjx
j (1)

The parameters ω are selected to minimize the squared error with respect to the data-base points:

min
ω

n∑
i=1

(y(i) − f̂(x(i)))2 (2)

Polynomial models are regressive and are suited if the function to model is thought to be poly-
nomial, otherwise the approximation error could be high. In the frame of optimization problem
that means that some optimum may not be captured. Besides, the higher the degree the more
flexible the model i.e. the model will be able to limit the error at the sampling points but the
higher risk to over fit the data and to introduce artificial noise. To finish, the example deals
with a simple 1D case, if more dimensions are to be considered the formulations becomes more
complex with interaction terms:

f̂(x) =
M∑
j=1

ωjΨi(x) (3)

Where Ψi are functions taken from the set of all functions of order m or lower. To find the ω′s
parameters and choose the Ψ functions to be used becomes a fastidious task.

2.2.2 Radial basis function models

Radial basis functions (RBF) are classes of interpolating functions whose values depends on the
distance from center points. In the frame of surrogate modelling it is wise to use the sampling
points as centers. The formulation of the substitution function becomes:

f̂(x) =
n∑
j=1

ωiψ(||x− x(j)||) (4)

Radial basis functions ψ can be chosen among non-parametric forms, whose most popular are:

1. Linear function ψ(r) = r
2. Cubic function ψ(r) = r3

3. Thin plane spline ψ(r) = r2 log(r)

In the present case only ω′s parameters must be found, this is done considering the interpolating
properties of the model at each sampling points:

y(i) =
n∑
j=1

ωjψ(||x(i) − x(j)||) (5)
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This can be sum up by the linear system:

y = ωψ (6)

More complex parametric functions that enable more flexibility can also be chosen:

1. Multi-quadratic ψ(r) =
√
r2 + γ2

2. Gaussian ψ(r) = exp
(−r2
2σ2

)
The parameters γ or σ are fixed by minimization of the cross-validation error. This method
consist in removing a test set of ns points from the DoE, fit a model for the remaining n − ns
points and test the model on the test set. Errors can be derived, for example the Mean Squared
Error(MSE):

MSE =

∑ns

j=1(y
(j) − f̂(x(j)))2

ns
(7)

The operation can be reproduced for several test sets, the cross-validation error being the mean
value of the errors. A limit case is when the number of test sets equal the number of sampling
points and ns = 1, this is called the leave-on-out cross-validation. The parameter that presents
the lowest cross-validation error is selected. Note that for each parameter the ω′s must be
recomputed using (6).

2.2.3 Kriging and Gaussian processes

An other class of surrogate models that is widely used is Kriging also known and generalized
as Gaussian Processes (GP). This kind of models relies on the work by the geophysicist Danie
Krige in the 50’s [16]. Here an output from the expensive function can be seen as the results
of a random process Y (x) following a normal law N (µ, σ). For two points in the design space
x(i) and x(j), the outputs are then random variables correlated with each other according to the
following formula:

Corr(Y (xi), Y (xj)) = exp(−
N∑
k=1

θk|x(i)k − x
(j)
k |

pk) (8)

In (8) N is the dimension of the design space θk and pk are hyperparameters of the model that
are determined such that the model goes through the database points. The hyperparameters
represent respectively the influence on the output of a given direction in the design space and
the smoothness of the output in this direction. In other words a high θk means the direction k
will have significant influence and a high pk means that the output will vary smoothly in the
direction k. Considering the sampling points X and their responses y, a correlation matrix C
can be derived:

C =


Corr(Y (x(1)), Y (x(1))) ... Corr(Y (x(1)), Y (x(n)))
Corr(Y (x(2)), Y (x(1))) ... Corr(Y (x(2)), Y (x(n)))

... ...
...

Corr(Y (x(n)), Y (x(1))) ... Corr(Y (x(n)), Y (x(n)))

 (9)

The parameters µ, σ, θ′s and p′s are estimated by maximization of the likelihood function for
the database points:

L =
1

(2πσ2)
n
2 |C|0.5

exp
(−(y − µ)C−1(y − µ)

2σ2

)
(10)
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This function represents the probability for a given set of parameters to represent correctly the
observed data of the sampling plan. Taken the logarithm of expression (10) without constant
terms:

ln(L) ≈ −n
2

ln (σ2)− 0.5 ln (|C|)−
(−(y − µ)C−1(y − µ)

2σ2

)
(11)

Looking for an extremum the derivatives with respect to σ and µ should be null which leads to:

µ =
ItC−1y

ItC−1I
(12)

σ =
(y − µ)C−1(y − µ)

n
(13)

In (12) I stands for the identity vector. Substituting (12) and (13) in (11) a formulation of the
log-likelihood depending only on C i.e. on θ′s and p′s parameters can be derived:

ln(L) ≈ −0.5n ln (σ2)− 0.5 ln(|C|) (14)

Once the parameters of the model are tuned the value at a new location x in the design space
can be predicted by the following formula:

f̂(x) = µ+ CtC−1(y − µ) (15)

C is the correlation vector of the random variables Y (x) at the new point and Y (x(i)) at sam-
pling locations:

C =


Corr(Y (x), Y (x(1)))
Corr(Y (x), Y (x(2)))

...
Corr(Y (x), Y (x(n)))

 (16)

Formula (15) is derived from the maximization of the augmented likelihood. Indeed, combining
C andC a augmented correlation matrix can be constructed C̃. In the same way, an augmented
output vector ỹ = [y, f̂(x)] is built. The log-likelihood function (11) is modified replacing C
and y by their augmented counter-parts and using the method of Theil to compute the inverse
of C̃ as described in [17]. The derivative of the augmented log-likelihood with respect to f̂ is
computed and set to 0:

0 = (f̂ − µ)
[ −1

σ2(1− CtC−1C)

]
+
[ CtC−1(y − Iµ)

σ2(1− CtC−1C)

]
(17)

Reorganizing (17) and using (13) leads to (15).

2.3 Surrogate-based optimization

2.3.1 Principle

This section is partly inspired by the reference article by Jones, [18]. In this paper, the author
details the advantages and the drawbacks of different class of surrogate models for optimiza-
tion purposes and particularly for finding the global optimum. The classical work-flow of the
surrogate-based optimization is presented on Figure 2:
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Figure 2: Surrogate-based optimization general work-flow.

As already detailed in the previous paragraph a DoE is first created, then the expensive func-
tion is evaluated for the sampling points, the surrogate is built and then exploited to find the
optimum. This optimum must be validated with respect to the expensive function and added to
the initial DoE. This process is iterated until convergence, i.e. the difference between two con-
secutive optimal designs is sufficiently small. In his paper, Jones shows that regressive models
may be insensitive to the addition of new points in the database. Therefore, if the optimum is
not well captured by the model there is very few chance that the addition of the ”true” value
at that point will change drastically the results and the optimization will converged in very few
iterations to inexact optimal design. Figure 3 shows how a polynomial regression model can
fail to find the global optimum of a function.
Concerning Radial Basis Functions, Jones demonstrates that as soon as a local minimum is
found, there is no further improvement expected. Indeed, as RBF are interpolating models
adding a sampling point improves, locally, the prediction. But if the minimum is in the neigh-
bourhood of a local optimal of the true function, as illustrated on Figure 4, adding the true local
optimum in the database will slightly modify the model in this region, therefore the convergence
will be reached quickly without capturing the global optimum. Therefore, RBF are suited to
capture local optimum with great fidelity but there is no guarantee to find the global optimum.
Besides, it is shown that if, very unlikely, the RBF is minimized at a sampling points no im-
provement is to be expected and the method is trapped on a point that may not be a global nor a
local optimum. To cope with this issue it is recommended to force the model gradient to match
with the ”true” function gradient by probing points in the vicinity of the predicted optimum and
adding them to the database. However, Jones shows that even this method can fail to find the
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Figure 3: How polynomial regression can fail to find an optimum. From [18]

Figure 4: Illustration of surrogate-based optimization using RBF, here a local optimum is captured. From [18]

global optimum.
As explained above, surrogate-based optimization methods using polynomial and RBF may fail
to find the global optimum because they only exploit the model i.e. they add new sampling
points only in regions near an optimum of the model without taking into account areas of the
design space that are less densely populated with sampling points and where an global optimum
may be hidden. Therefore, to increase the probability to find the global optimum, methods that
also explore the model should be used. It means that points should be added not only in regions
near the optimum but also in areas where the uncertainty in the model is high. Therefore, we
need to be able to quantify this uncertainty in the model. As explained in the previous para-
graph, the prediction at a new point is computed by maximization of the likelihood at that point.
If the sensitivity of the likelihood to the value of f̂ in that region is quite low the uncertainty
of the prediction will be high: another value of f̂ slightly different will give almost the same
likelihood value. On the contrary if the sensitivity is high, that is if the likelihood drops rapidly
for different values of f̂ in the vicinity of the best prediction, the confidence in that value will
be higher. Therefore, to estimate the uncertainty in the model we need not only the maximum
of likelihood i.e. the first derivative but also its double derivative with respect to f̂ . Taking (17),
differentiating and inverting to retrieve a minimization problem:

Error ≈ σ2(1− CtCC) (18)
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In [17, 18] it is shown that (18) can be augmented with an additional term to retrieve the Mean
Square error of the Kriging prediction denoted s:

s2(x) = σ2
[
(1− CtCC) +

(1− CtC−1C)2

I tC−1I

]
(19)

This error estimation can be used to computed an ”Expected Improvement” that is the expecta-
tion that the prediction at a new point xwill improve the current optimum of the model f̂opt. Let
I be the amount of improvement, Y (x) the random variable representing the value of the output
at the location x. Y is normally distributed around f̂(x) and the standard deviation is s2(x).
The Expected Improvement (EI) is expressed as the expectation of the likelihood of having the
improvement I at x:

E(I) = (f̂opt − f̂(x))Φ
( f̂opt − f̂(x)

s(x)

)
+ s(x)φ

( f̂opt − f̂(x)

s(x)

)
(20)

In (20) Φ(X) and φ(X) are respectively the the cumulative distribution and the density func-
tions of the normal law. In the frame of the optimization based on Kriging models and using
the EI, the objective function f̂ to be minimized is replaced by the maximization of the EI.
According to (20), it has the advantage to balance the exploitation of the model (Φ

(
f̂opt−f̂(x)

s(x)

)
term) and the exploration of regions with high uncertainty (s(x)φ

(
f̂opt−f̂(x)

s(x)

)
term).

The principle of the optimization based on expected improvement maximization is illustrated
on Figure 5, for this illustrative problem the test function (6x− 2)2 sin (12x− 4) is minimized.
This wise selection of the additional sampling points is a key characteristics of Gaussian pro-
cesses and make them particularly attractive to find the global optimum. For these reasons, in
this work it was decided to use this class of models to perform the optimization of the winglet
geometry and of the mission performances.

2.3.2 Search the surrogate models

Whatever the method used, there is a need to search directly the model or an associated function,
in the case of ”Expected Improvement” for example. In this study, surrogate models are used
to perform both single and multiple objectives optimization to minimize both the drag and the
impact on structure.
For single objective optimization the surrogate model or the associated function can be search
by a gradient free optimizer to find the global optimum, here the Differential Evolution (DE)
[19]. Like all evolutionary algorithms DE relies on a population X of P individuals: X ={
x(1), ...,x(P )

}
. Each individual is a N-components vector x(i) = (x

(i)
1 , ..., x

(i)
N ). At each

iteration the population is transformed by mutation and cross-over of its individuals to form
a new generation. For a given member x(i) of the population of the kth generation three other
members of the population are selected a 6= b 6= c 6= x(i) and mutate according to the following
formula to form a test vector xtest:

xtestj = aj + F (bj − cj) with j = 1, ..., N and F ∈]0; 2[ (21)

Then this vector is combined with x(i) to form the candidate vector xcandidate:

xcandidatej =

{
xtestj if rj ≤ R

x
(i)
j if rj > R

(22)
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Figure 5: Illustration of Kriging-based global optimization using Expected Improvement. In four iterations the
global optimum is found

In (22) r′js are randomly selected real in the interval ]0; 1[ and R ∈]0; 1[ is the recombination
factor fixed by the user, here it is set to 0.6.

Then the vector in the next generation will be xcandidate if it improves the objective function
with respect to x(i) otherwise x(i) is maintained in the population. The operation is reproduce
for every individuals and the generations are iterated until the maximum number of iterations is
reached or there is no more significant difference within the population. This algorithm can be
generalized for multi-objectives optimization [20] but as it was not implemented it was decided
to use an in-house tool that already had a multi-disciplinary capability using another method.
This method relies on the following steps: first the anchor points are searched: these points
correspond to the optimum of each objective without taking into account the others. From those
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point new points are selected on the tangent plan to the Pareto set (in the design space). These
points are not Pareto optimum but are used as starting point to find the nearest point on the
Pareto front. This is done using a steepest descent algorithm or a quasi-Newton descent. That
is to find a direction d that improves both objectives f i:

d · ∇f i ≤ 0 ∀i (23)

Therefore the problem to be solved is:

min
d

max
i
d · ∇f i (24)

For quasi-Newton method the Hessians of the objectives are taken into account:

min
d

max
i

(d · ∇f i + 0.5[d ·H i · d]) (25)

The process to find the Pareto front is illustrated on Figure 6. The black points are the two
anchor points and the blue points correspond sub-optimal designs selected on the tangent plan
to the Pareto set in the vicinity of an optimal design. This point is then used as starting location
to find the nearest optimal (red point) configuration with descent algorithm. On the figure the
Utopia and the Nadir points are also represented they correspond to the hypothetical point that
respectively minimize and maximize both objectives simultaneously.

Figure 6: Multi-objective optimization Pareto front discovery strategy, [21]
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3 MODELS AND PROBLEM DESCRIPTION
3.1 XRF1 Generic Model
As mentioned in the introduction the Airbus generic aircraft model XRF1 is considered for this
study. XRF1 is an Airbus provided industrial standard multi-disciplinary research testcase rep-
resenting a typical configuration for a long range wide body aircraft. The design point flying
conditions: Mach, Altitude, Lift Coefficient, will be referred in the rest of the document as
Mcruise, Altcruise and Clcruise respectively.
The baseline configuration of the XRF1 model does not have winglets (Fig. 7), this configura-

Figure 7: XRF1 baseline configuration

tion will be the reference for the evaluation of the benefits unless an other reference is explicitly
introduced.

3.2 Aerodynamic model
To properly evaluate the aerodynamic performances and particularly the drag, high-fidelity
RANS (Reynolds Average Navier-Stokes) simulations are performed with TAU solver (devel-
oped by DLR). For simplification purpose, only the right wing of the aircraft is studied, the
additional drag from the tail plane stabilizer is neglected when comparing two configurations
equipped with winglets. In the same way the drag and lift from the fuselage are supposed to
be constant and a weight is applied to the total lift and drag coefficients to account for these
contributions.
For the rest of this study and for each flight condition the simulations are performed targeting
the lift coefficient corresponding to the analyzed mass cases.
The fluid domain is an hemisphere whose radius equals 45 times the wing root chord and is
composed of around 5 millions nodes (Fig. 8) arranged in an unstructured grid.

Figure 8: CFD surface mesh of the wing for different winglet geometries resulting from mesh deformation.

The flow at the surface of the wing is considered fully turbulent and the boundary layer is
sufficiently refined to assure a dimensionless wall distance y+ < 1 everywhere on the surface.
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The second order k − ω Menter SST (Shear-Stress Transport) turbulence model is applied.
Tens of meshes will be necessary to evaluate the points of the sampling plan. As this is a
fastidious task it was decided to mesh a limited number of configurations and to use a mesh
deformation tool to deformed these reference meshes in order to generate the others. The cells of
the mesh will be mainly deformed when the winglet cant angle will vary between two different
geometries, therefore, we used five reference meshes with different cant angles while the other
geometric parameters are fixed to their mid-range values.

3.3 Structural model

Wing deformations under the aerodynamic loading must be correctly computed. Therefore, a
Global Finite Element model (GFEM) of the aircraft with 350 000 degrees of freedom is used
(Figure 9). The aircraft is equipped with carbon fiber composite wings and fuselage modelled
by 2D and 1D elements for skins and stringers(/frames) respectively. For the study, the winglets
are considered as infinitely rigid and are represented in the model by a mass node rigidly linked
to the main wing structure. The mass of the winglet account not only for the structural mass of
the device but also for an estimated weight of the actuation system. The structural solver used
is MSC-NASTRAN.

Figure 9: Global Finite Element model of XRF1.

3.4 Aeroelastic coupling

Performances and displacements can only be representative if the static aeroelastic solution is
computed. Therefore the CFD and CSM solvers must be coupled in order to transfer the aerody-
namic forces to the structure and resulting structural displacements to the fluid mesh. Therefore,
the six degrees of freedom (DoF) of the FEM nodes must be transferred to the three DoF of the
CFD surface mesh. Different interpolations methods exist to ensure this transfer, those pre-
sented hereafter were developed for FlowSimulator, the flow simulations environment used at
Airbus, and exposed in the reference article [22,23]. In the present study, only two methods are
used and will be explained more in details.
The first one is the ”Rigid body” interpolation. This method is used when only one structural
point (a mass nodes) is used to model a component, that is the case for example when engines
are simplified to a massic nodes or in our case for the winglets which are modelled with only one
structural node. If xfem = (x

(1)
fem, x

(2)
fem, x

(3)
fem) is the structural node, with the associated trans-

lations (DoF 1 to 3) and rotations (DoF 4 to 6) displacements t = (t(1), t(2), t(3), t(4), t(5), t(6)),
the CFD displacements tcfd,i of node xcfd are rigidly interpolated from t using the rigid inter-
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polation matrix Mrigid,i:

Mrigid,i =

 1 0 0 0 dzi −dyi
0 1 0 −dzi 0 −dxi
0 0 1 dyi −dxi 0

 (26)

In the previous equation dxi, dyi and dzi are equal to:

dxi = x
(1)
cfd,i − x(1)fem

dyi = x
(2)
cfd,i − x(2)fem

dzi = x
(3)
cfd,i − x(3)fem

(27)

Then the translation displacements of the CFD nodes are computed using the following matrix
operation:

tcfd,i = Mrigid,i · t (28)

The second one is the ”Beam coupling” interpolation. It is suited for elements whose struc-
tural nodes are aligned. In our case the mass nodes of the wing were used. Let Xfem =
{xfem,1, ..., xfem,n} be the aligned n structural nodes, T = [t1, ..., tn] the matrix of the structural
translations(DoF from 1 to 3) and rotations (DoF from 4 to 6), ti = (t

(1)
i , t

(2)
i , t

(3)
i , t

(4)
i , t

(5)
i , t

(6)
i ),

and Xcfd = {xcfd,1, ..., xcfd,m} the m >> n CDF mesh nodes. Two structural nodes, usually
the first xref1 and the last xref2 of the beam are used to form the reference ”beam”, the other
FEM and the CFD nodes are perpendicularly projected on the reference beam:

xproj−fem,i = xref1 + (xref2 − xref1)ηfem,i
xproj−cfd,i = xref1 + (xref2 − xref1)ηcfd,i
with η ∈ R

(29)

Then the displacements tproj,i of xproj−fem,i on the beam are computed using the interpolations
matrix Mint,i:

Mint,i =


1 0 0 0 dzi −dyi
0 1 0 −dzi 0 −dxi
0 0 1 dyi −dxi 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 (30)

In the previous equation dxi, dyi and dzi are equal to:

dxi = x
(1)
proj−fem,i − x

(1)
proj−fem,i

dyi = x
(2)
proj−fem,i − x

(2)
proj−fem,i

dzi = x
(3)
proj−fem,i − x

(3)
proj−fem,i

(31)

Therefore:
tproj,i = Mint,i · ti (32)

The displacements of the projected CFD nodes on the beam are then computed by linear inter-
polation of the displacements of the 2 nearest FEM projected nodes:

tproj−cfd,i = tproj,j +
tproj,j+1 − tproj,j
ηfem,j+1 − ηfem,j

× (ηcfd,i − ηfem,j) (33)
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The matrix Mrigid,i is then used to computed the CFD nodes displacements from those of their
projection on the beam. the only difference with respect to (26) is that dxi, dyi and dzi are
changed to:

dxi = x
(1)
cfd,i − x

(1)
proj−cfd,i

dyi = x
(2)
cfd,i − x

(2)
proj−cfd,i

dzi = x
(3)
cfd,i − x

(3)
proj−cfd,i

(34)

Finally the CFD translation displacements are computed by rigid interpolation of the displace-
ments of their projections on the beam:

tcfd,i = Mrigid,i · tproj−cfd,i (35)

The two couplings methods are illustrated on Figure 10. The wing CFD and FEM nodes are
coupled with ”Beam” interpolation methods, while winglet presents a rigid body coupling.

Figure 10: Example of beam and rigid body couplings on the XRF1 wing – Green dots represent the structural
nodes of the wing, green surface is the CFD surface to be coupled with – Blue cube is the winglet
structural nodes, blue surface is the CFD surface to be rigidly coupled with.

Regarding force transfer, the inverse of the interpolation matrix Mall that gather all the Mint,i

matrices can be used to computed the forces and moments Ffem to be applied on the structured
from the aerodynamic forces Fcfd:

Ffem = M t
all · Fcfd (36)

This method ensures the conservation of virtual work. Another method consists in computing
the structural forces and moments on a given FEM node from those of the nearest CFD nodes.
This method is refereed as ”Nearest Neighbour” transfer. It ensures the conservation of the
forces and moments. For a given structural point all xfem,i the CFD nodes whose the closest
structural point is xfem,i are gathered in the set NNi then the forces and moments (Lffem,i and
Lmfem,i respectively) are computed at xfem,i location from the aerodynamic forces Lfcfd,j:

Lffem,i =
∑
j∈NNi

Lfcfd,j

Lmfem,i =
∑
j∈NNi

(xcfd,j − xfem,i)× Lfcfd,j
(37)
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Once the surface displacements are computed, the volume mesh must be deformed. Radial
Basis Functions are used to interpolate the surface displacements. The centers of the RBF are
the surface mesh points and the displacements of the volume node xvol is given by:

tvol(x) =
m∑
i=1

αiφ(||x− xcfd,i||) (38)

The coefficients α are computed using the displacement at the basis points: tvol(xcfd,i) = tcfd,i.
The radial basis function used is the Wendland’s C0 function:

φ(||x||) =

{
(r − ||x||)2 : ||x|| ≤ r

0 : ||x|| > r
(39)

The parameter r ∈ R is selected by the user in our case the value 10 gives good results. The
mesh deformation is not propagated to the entire volumic cells only the nodes at a certain
distance Dzero−weight of the surface are affected. The deformation of the surface is fully applied
to the volume nodes in a radius of Dfull−weight then the influence of the surface deformation is
gradually decrease between Dfull−weight and Dzero−weight.

3.5 Optimization problem description

The aim of this study is to evaluate the efficiency of an active winglet to optimize the aircraft
performances. To do so, first a winglet will be optimized for the XRF1 at cruise conditions.
Then the cant angle of the optimal design will be change to minimize the fuel consumption of
the aircraft along a mission, the other design variables are frozen to their optimal value. The
Figure 11 shows the optimization process.

Figure 11: Overview of the optimization process

3.5.1 Winglet geometry optimization problem

As mentioned above, the XRF1 baseline wing is not equipped with winglets, thus the first part of
the study was dedicated to the planform optimization of a winglet for this configuration, taking
into account both aerodynamic performances and impact on the structure. The optimization is
performed for the design point flying conditions as it would be for a classical design approach.
The aircraft weight is fixed to a value representative of an average mid-cruise weight and the
targeted lift coefficient (Clcruise) is computed in consequence. The design variables are the
winglet cant (Ca), sweep (Sw) and tip twist (Tw) angles and the span (S) and tip chord (C)
lengths. Figure 12 shows how the winglet shape is modified as design variables change. At this
stage, an important remark should be made: the profiles of the winglet are not optimized, they
are generated from the last wing rib profile and scaled this is an acceptable approximation for
the targeted goals of the study.
The limits of the design space are detailed on table 1.

The optimization of the winglet must target the best aerodynamic performance that is the low-
est possible drag (as the Cl is fixed) but it also should take into account the impact on the
structure. Indeed, this study takes place in a retrofit context that prevents large modification of

16



IFASD-2019-098

Figure 12: Design variable description, Dot line represents the shape alteration as the design variables changes –
X = aircraft longitudinal axis, Y = aircraft lateral axis – Z = vertical axis (positive up)

Table 1: Design space limits

Design variable Range
Cant angle (deg) [-90 ; 90]

Sweep angle (deg) [30 ; 60]
Tip Twist angle (deg) [-5 ; 5]

Span (m) [2.0 ; 5.0]
Tip Chord (m) [0.4 ; 2.3]

the structure. As a results the optimal solution is a trade-off between drag and structural im-
pact minimization. As stresses are not computed, the impact on the structure will be evaluated
through the value of the wing root bending moment (WRBM). Besides, as the objective of the
active winglet is to control wing shape, an additional constraint is added: a given winglet con-
figuration must be able to alter the wing tip twist (junction wing/winglet) by an amount greater
than a threshold ∆Twisttarget when the can angle of the configuration varies from −90 deg to
+90 deg. The optimization problem is then formalized as follow:

min
x

F (x) = (Cd(x),WRBM(x))

with x = [Ca, Sw, Tw, S, C]

s.t.


Cl = Clcruise
M = Mcruise

Alt = Altcruise
|∆Twist| ≥ |∆Twisttarget|

(40)

3.5.2 Mission optimization problem

For this second step the winglet shape is frozen in the optimal planform determined in the previ-
ous part. Only the cant angle is now authorized to change during the optimization process.The
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mission is divided into several segments, for each segment i the fuel burnt is minimized and the
total fuel consumption is computed by integration. This optimization problem is formalized as
follow:

min
x

Fueli

with x = [Cai]

s.t.


Cl = Cli
M = Mi

Alt = Alti

(41)

Mission performance assessment methodology
In this study the performance assessment is performed for a given range and a given mission
profile (Speeds and Altitudes). The cruise is subdivided in N segments of length Rangecruise

N

while the climb is separated in segments of equals vertical distance dh. Figure 13 illustrates the
mission profile segmentation. In this study, the descent is not taken into account as it represents
a negligible part of the flight and of the fuel consumption (around 1%) for a long-range aircraft.

Figure 13: Mission segmentation - dot = inputs, arrows = output of the mission computation

As for the winglet shape optimization a CFD/CSM computations database is generated taking
into account the optimal design resulting from the shape optimization as described in previous
paragraph 3.5.1 with a variable cant angle, this model is used to evaluate the drag Di for each
segment. Besides a generic engine model, representative of a long-range aircraft engine is used
to compute the fuel flow and the thrust for the different flight phase.

Climb
For the climb part, the rating of the engine is fixed to the max-climb condition that is the fuel-
flow FFi and the thrust Thi are fixed for each segment. The initial aircraft weight of a segment
equals the final weight Wi of the previous one or the take-off weight for the first segment. Here,
for simplicity, the acceleration phases are not considered and the speed is constant on each
segment, then the equilibrium of the aircraft is given by:

Li = Wi × cos(γ) ≈ Wi (42)

Thi × cos(γ)−Di × cos(γ) = Li × sin(γ)↔ sin(γ) =
Thi −Di

Li
(43)

In the previous equations γ is the aerodynamic slope. The rate of climb RoCi is computed from
the True Air Speed (TAS) Vi:

RoCi = Vi × sin(γ) = Vi ×
Thi −Di

Wi

(44)
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Then the time dti spent on the segment is evaluated by taking into account the vertical distance
to be covered:

dti =
dh

RoCi
(45)

The fuel consumption on the segment can be deduced from the fuel flow value and the new
weight computed:

Wi+1 = Wi − FFi × dti (46)

Finally the ground distance dxi is computed:

dxi =

√(dh× Vi
RoCi

)2
− dh2 (47)

The mission is performed according to a predefined climb speed profile: below 10,000ft the
Calibrated Air Speed (CAS) is limited to 250kt, between 10,000ft and the crossover altitude
the CAS is fixed to 300kt and above the crossover altitude the climb is continued at Mach 0.78
until the first cruise altitude is reached. The atmospheric conditions used to computed the TAS
are consistent with the ICAO Standart Atmosphere (ISA). At the end of the climb phase, the
remaining cruise range (Rangecruise) is computed.

Cruise
Several cruise altitudes can be defined a priori and a portion of the cruise range is affected
to each of them. The portions of constant altitude are then subdivided in segments, for each
segment the aircraft equilibrium gives:

Li = Wi

Di = Thi
(48)

The drag is computed from surrogate models whose inputs are the altitude, the speed (Mach),
the aircraft weight and the winglet cant angle. The fuel flow is derived from the engine model:

FFi = f(Thi, Alti,Mi) (49)

The time spent on the segment i is computed from the TAS:

dti =
dxi
Vi

(50)

The fuel consumption and initial weight for the next segment is then deduced:

Wi+1 = Wi − dti × FFi (51)

4 RESULTS

4.1 Surrogate building and validation

As explained in the theoretical part, surrogate models were built to replace the CFD/CSM com-
putations in the optimization process. These models rely on a database of around 500 converged
CFD/CSM computations for different winglet configurations in cruise conditions. Each compu-
tation was launched on 96 processors and took approximately six hours, the full data-base was
generated in a bit less than one day (22 hours), then the exploitation of the model is very fast:
up to five minutes for multi-objective optimization. Surrogate models for drag, wing twist and
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wing root bending moment were built. However, to gain confidence in the results provided by
the surrogate-based optimization the models must be precise enough. The quality of the surro-
gates was evaluated through the cross-validation process as described in paragraph 2. The initial
DoE is divided in ten subsets, among those subsets five are selected to perform cross-validation
and the metrics (RMSE and R2) are computed as the means over those five subsets. The results
of the cross-validation for each model are presented on Table 2 and show the very good qual-
ity of the models, with low RMSE and high values of the coefficient R2. The mean error on
drag does not exceed 0.15 drag counts which is satisfactory since a precision of 1 drag-count is
targeted. Regarding wing twist and wing root bending moment the results are even better with
R2 > 0.99 and very low RMSE: for WRBM the error represents 0.05% of the WRBM of the
baseline wing and for twist the error falls to 0.01% of the baseline wing twist value.
Figure 14 shows the drag model evolution as function of winglet cant angle and winglet span

Table 2: Surrogate models quality assessment results from cross-validation – RMSE are in the unit of the models:
Drag count for Drag, Degree for Twist and N.m for WRBM.

Model RMSE R2

Drag 1.47e−05D.C 0.989
Twist 2.94e−04 deg 0.994
WRBM 4537N.m 0.993

while the other variables are fixed to their mid-range values.

Figure 14: Drag coefficient surrogate model evolution as function of winglet cant and span – other variables fixes
to mid-range values

4.2 Results and selection of the optimal shape

The surrogate models were used to perform the multi-objective optimization targeting to mini-
mize the drag in cruise conditions while minimizing the impact on loads assessed by the value
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of the wing root bending moment. Figure 15 shows the Pareto front resulting from the opti-
mization, it highlights the antagonism between the two objectives. The blue circle indicates the
selected configuration. This winglet enables a reduction of 4% of the total drag with respect to
the baseline while limiting the increase of wing root bending moment to an acceptable 2%. This
increase may necessitate structural reinforcements, but sizing margins can cover it. The charac-
teristics of the optimal design are detailed on Table 3. This optimal configuration results from
a surrogate prediction and must be validated using the ”true” function, computation shows a
relative difference between the prediction and the true function of 0.025% demonstrating again
the precision of the surrogate.

Figure 15: Pareto front of the multi-objective optimization - Relative Drag Coefficient and WRBM as objecives

Table 3: Design space limits

Design variable Optimal value
Cant angle (deg) -4.1
Sweep angle (deg) 30
Tip Twist angle (deg) 4.4
Span (m) 4.0
Tip Chord (m) 0.8

The optimal design presents a slightly negative cant angle, Table 3. It was demonstrated that
such winglets better perform than upward ones as the tip vortex core is rejected farther from
the symmetric plane increasing the apparent span. Besides due to the wing dihedral angle δ the
maximum projected span is reached when Ca = −δ [24]. Figure 14 shows that the drag raises
quickly when the cant angle increases. This is attributed to the reinforcement of the shock in
the region of the junction between the wing and the winglet. The region acts like a corner that
locally accelerates the flow and reinforces the shock. Besides the possible interaction between
the shock on the winglet and the shock on the wing strengthened the latter. In certain cases,
the shock is so strong that flow separation may occur that would increase the drag even more.
Considering loads, downward winglets are also advantageous: the wing root bending moment
due to the lateral aerodynamic force (in Y direction) acting on the winglet – when this one is
not horizontal – is more important for upward configurations due to an higher lever arm. All
this arguments advocate for slithly downward winglets as optimal solutions.
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4.3 Results mission optimization

4.3.1 Rigid computation

Many studies dealing with active winglets assess the performances of the device in cruise condi-
tions for the undeformed flight shape [12, 13] (i.e. not considering fluid/structure interactions).
Besides, the baseline is not necessarily optimized. In the present document, the first mission
optimization was performed for a constant cruise altitude (Altcruise). To assess the impact of
the choice of the baseline configuration a first analysis will be performed with a non-optimized
cant angle for example 50 deg, as in [12], while the other shape parameters (span, chord, twist,
sweep) are those detailed in table 3. The mission range is fixed to 4,000nm, which representa-
tive of a long-range flight.

Figure 16: Fuel consumption along the mission. Baseline with non-optimal cant angle: red line – Active winglet
configuration: blue line

Figure 17: Optimal winglet deflections along the mission

The baseline is compared to the active winglet whose cant angle is free to move from −90 deg
to +90 deg. Figure 16 shows the evolution of the fuel burnt mass during the flight, noticeable
benefits from the active winglet are highlighted. A relative gains of 4% is achieved on the final
weight for the active winglet configuration. The winglet deflection during the flight is shown on
Figure 17: the actuation range is around 4 deg which is rather low and advocates for a fixed de-
vice set at the average deflection value. The comparison of the drag coefficients along the flight
demonstrates that the active winglet enable to reduce the drag whatever the aircraft weight (fig.
18), the relative gains range from 4.75% to 2.75%.
The case with the optimal design as detailed in Table 3 was also analyzed, this design was ob-
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Figure 18: Drag Coefficient evolution along the flight.Baseline with non-optimal cant angle: red line – Active
winglet configuration: blue line

Figure 19: Fuel consumption along the mission. Baseline with optimal cant angle: red line – Active winglet
configuration: blue line

Figure 20: Drag coefficient evolution as function of the winglet cant angle for different mass cases from surrogate
model. Dots represent the minimum drag configuration

tained for flexible computations therefore it may not correspond to the exact optimum for rigid
case but may be in the neighbourhood of the latter. The results for the active winglet are the
same as the optimization is not affected by the baseline selection, however the benefits are dras-
tically lowered as anticipated. As shown on Figure 19, the fixed and the active configuration are
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almost identical in term of fuel consumption.
The drag evolution as function of the cant angle is plotted on Figure 20 (extracted from the
surrogate model)and shows a relatively flat region around the optimal cant angle explaining the
marginal gains when the optimal design is used as a reference and also the limited actuation
range.
These results highlight that the selection of the baseline is determinant and to properly assess the
efficiency of the active device an optimized fixed configuration should be used as a reference.

4.3.2 Flexible computations

As aircraft are flexible it is suited to take into account this parameter in the optimization of the
mission performances. Indeed the winglet setting has an impact on the lift distribution and as
a result on the wing deformation, particularly the twist of the wing will be affected. New sur-
rogate models based on CFD/CSM computation were built to compute the drag on the whole
flight domain. The same optimizations as those described in the previous paragraph 4.3.1 were
performed. Results are presented on Figure 21 to Figure 23 for the non-optimized baseline

Figure 21: Fuel consumption along the mission for flexible cases. Baseline with non-optimal cant angle: red line
– Active winglet configuration: blue line

Figure 22: Optimal winglet deflections along the mission for flexible case

case. Fuel consumption benefits are still observable when the winglet is actuated. However,
only 1% of gains are reach with respect to the baseline while 4% were reached for the rigid
case. The winglet actuation range is drastically increased to 50 deg but the effect is limited. The
step on the winglet deflection graph occurs when two successive weights surround the design
weight. As the weights are slightly different the deflections are not identical. Besides as shown
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Figure 23: Drag Coefficient evolution along the flight for flexible cases. Baseline with non-optimal cant angle: red
line – Active winglet configuration: blue line

on 26 there is very few drag evolution between −40 deg and 25 deg, the step may be consider
as a computation artifact and a continuous curve would have give almost the same result. The
relative drag difference ranges from -1.75% to 0% when the weight decreases (fig. 23). When
the optimal design is considered the gains are even more reduced and barely reach 0.1% (fig.
24), as for the rigid case. The impact of the winglet deflection on the wing twist are highlighted
on Figure 25. At the beginning of the flight, for heavy mass cases i.e. high Cl, the winglet is
deflected downward with respect to the optimal configuration, the consequence is an augmen-
tation of the local angles of attack and a slightly more external loading. The two curves cross
when the aircraft weight is near from the design weight (i.e. Cl = Clcruise). After that point, the
consequence of the actuation of the winglet is a lower wing twist to maintain, as far as possible,
on optimal loading.
The drag evolution as function of the winglet can angle for different mass cases (fig. 26) high-
lights that the introduction of the flexibility tends to flatten the drag curve and reduce the sensi-
tivity of the drag coefficient to the winglet cant angle. As a results the gains are negligible.

Figure 24: Fuel consumption along the mission for flexible cases. Baseline with optimal cant angle: red line –
Active winglet configuration: blue line

To understand the difference between the flexible and the rigid cases. One should consider the
induced drag formula:

Cdi =
Cl2

π × ARproj × e
(52)
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Figure 25: Wing Twist variation during the flight. Baseline with optimal cant angle: red line – Active winglet
configuration: blue line

Figure 26: Drag coefficient evolution as function of the winglet cant angle for different mass cases from surrogate
model. Dots represent the minimum drag configuration

In (52) the term ARproj stands for the projected Aspect Ratio and e is the Aerodynamic effi-
ciency factor that is 1 for the elliptic lift distribution. In the rigid case the predominant term
in the equation is the projected Aspect Ratio, as a results the drag will be optimal for the max-
imal ARproj i.e. for winglet cant angle slightly negative (taking the wing dihedral angle into
account). Indeed in this case the aerodynamic efficiency factor will be directly linked to the
wing aspect ratio as flat configurations will lead to more external lift distribution closer to the
ideal elliptic case, the local angles of attack remaining unchanged. For flexible cases, the wing
will be deformed under the aerodynamic loading, this deformation will modify the local angles
of attack and as a results will affect the lift distribution. As for rigid case the winglet deflection
will also impact the projected wing aspect ratio. Unfortunately, unlike rigid cases, these effects
are not in phase and may act in opposite directions: when the winglet is flat the wing twist will
be lower than for higher cant angle values, then the local angle of attack will be reduced and the
aerodynamic efficiency factor less advantageous. When the absolute value of winglet cant angle
increases it exists a combination ofARproj and e that gives an optimal configuration. Above this
value both parameters acts in the same direction but the sensitivity to induced drag is negative.
Figure 27 illustrates what have been explained above, the spanwise lift coefficient distribution
of two configurations of winglets (75 deg and 0 deg) are plotted for rigid and flexible compu-
tations. It is clear that for rigid computations the flat winglet leads the more external loading
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and there is a significant difference between the two configurations. For flexible computations,
due to wing deformation the difference is less pronounced and concentrated near the wing tip.
However, the flat winglet configuration still presents a slightly more advantageous loading (in
term of aerodynamic performance). This part shows that the flexibility alters significantly the

Figure 27: Illustrative spanwise lift coefficient distribution with two winglets configurations – red: 75deg, green:
0deg – For rigid (solid line) and flexible (dashed line) computations

results. Because of the wing deformation the aerodynamic efficiency coefficient and the aspect
ratio are not in phase when the cant angle evolves which tends to decrease the sensitivity of
the drag to the winglet position. Therefore, the efficiency of the active winglet is reduce and
becomes negligible.

4.3.3 ”Off-design” flexible computations

The previous statement should be slightly moderated as the computations were performed for
the design point altitude. Therefore, little evolution of drag are expected when varying the
winglet cant angle. Missions at different altitudes must be analyzed before any conclusion is
made. Because of air traffic control limitations, weather conditions and performances, it is very
unlikely that the aircraft will be operated at the design cruise altitude for the entire mission
and for every flights. Besides, keeping retrofit in mind, the results show that if an aircraft was
designed with a winglet a little sub-optimal e.g. 50 deg to respect airports constraints, the re-
course to an active winglet could bring 1% of fuel savings. A computation for an ”off-design”
condition corresponding to the lower-bound of the cruise altitude, Altoff−design < Altcruise,
was performed. The results presented on Figure 28 demonstrate fuel saving of around 0.4%
compared to the optimal baseline. This value is consistent with the expected gains when opti-
mizing an existing wing equipped with a winglet. However, the amount a fuel saved may not be
compensated by the additional costs of the actuation that are not taken into account in this, for
example the hydraulic or electric system weight (except actuator), maintenance, uncertainties
on the actuator weight.
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Figure 28: Fuel consumption along the mission for ”off-design” case. Baseline with optimal cant angle: red line –
Active winglet configuration: blue line

5 CONCLUSION

In this paper the efficiency of an active winglet concept is evaluated using high-fidelity CFD/CSM
computations. First a surrogate-based multi-objective optimization of the winglet shape is per-
formed taking into account both aerodynamic performances and impact on loads. The designed
winglet improves the performances of the baseline by 4%. Then a mission analysis was per-
formed to optimized the winglet deflection along a representative flight. For this study, both
rigid and flexible computations were realized.
It is demonstrated that the wing flexibility plays a key role in the assessment of the efficiency of
such a device. It is also shown that the choice of the reference configuration is essential and an
optimal design should be used to properly evaluate the additional gains due to the actuation of
the devise. In the presented cases: the benefits of the active winglet fall from 4% of block fuel
saving to 1% when comparing rigid and flexible cases with a non-optimal baseline configura-
tion. The gains drop again when considering an optimal design as the baseline. Active winglets
are more appealing for ”off-design” conditions, in this study a constant altitude mission per-
formed at a lower flight level than the design point shows incremental gains of 0.4% compared
to the optimal fixed design. This order of magnitude is consistent with the expectation when
improving a winglet design on an aircraft already equipped with such device. Here the interest
of the actuation of the winglet is limited if only the performance aspects are considered.
Future work will be dedicated to assess the impact of active winglet on loads and evaluate the
loads alleviation capability of such a device. Indeed, if the winglet is able to reduce the loads
for some specific points in the flight envelop additional gains would come out from a lighter
structure. The impact on flutter characteristics remain to be analyzed. The concept will be
tested on another aircraft wing model to check the generality of the conclusions and finally, the
process will be applied on a complete aircraft (and not only considering the wing) to assess
more precisely the drag from other parts of the aircraft.

6 REFERENCES

[1] Whitcomb, R. T. (1976). A design approach and selected wind-tunnel results at high
subsonic speeds for wing-tip mounted winglets. Tech. Rep. TN D-8260, NASA.

[2] Moy, G., Jokisch, C. E., Good, M. S., et al. (2017). Folding wing system. The Boeing
Company. US patent 2017/0349296A1.

28



IFASD-2019-098

[3] Vasista, S., Tong, L., and Wong, K. C. (2012). Realization of morphing wings: A multi-
disciplinary challenge. Journal of Aircraft, 49(1), 11–28.

[4] Barbarino, S., Bilgen, O., Ajaj, R. M., et al. (2011). A review of morphing aircraft. Journal
of Intelligent Material Systems and Structures, 22, 823–877.

[5] Nguyen, N. and Tal, E. (2015). A multi-objective flight control approach for performance
adaptive aeroelastic wing. 56th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics,
and Materials Conference, AIAA SciTech Forum.

[6] Nguyen, N., Kaul, U., Lebofsky, S., et al. (2015). Development of variable camber con-
tinuous trailing edge flap for performance adaptive aeroelastic wing. SAE 2015 AeroTech
Congress & Exhibition.

[7] Nguyen, N., Ting, E., Chaparro, D., et al. (2017). Mutli-objective flight control for
drag minimization and load alleviation of high-aspect ratio flexible wing aircraft. 58th
AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference,
AIAA SciTech Forum.

[8] FlexSys (2014). FlexFoil by FlexSys Uses Distributed Compliance to Help Achieve Sig-
nificant Fuel Savings and Noise Reduction. Press release.

[9] Peter, F. and Stumpf, E. (2018). The development of morphing aircraft benefit assessment.
Morphing WingTechnologies, 103–121.

[10] Concilio, A. and Lecce, L. (2018). Historical background and current scenario. Morphing
Wing Technologies, 3–84.

[11] Barriety, B. (2004). Aircraft with active control of the warping of its wings. Airbus France.
US patent 6827314B2.

[12] Cooper, J. E., Chekkal, I., Cheung, R., et al. (2015). Design of a morphing wingtip.
Journal of Aircraft, 52(5), 1394–1403.

[13] Wang, C., Khodaparast, H., Hamed, and Friswell, I., Michael (2015). Investigating the
benefits of morphing wing tip devices - a case study. International Forum on Aeroelasticity
and Structural Dynamics.

[14] Quiepo, V., Nestor, Haftka, T., Raphael, Shyy, W., et al. (2005). Surrogate-based analysis
and optimization. Progress in Aerospace Sciences, 41, 1–28.

[15] Jin, R., Chen, W., and Sudjianto, A. (2005). An efficient algorithm for construction opti-
mal design of computer experiments. Journal of Statistical Planning and Inference, (134),
268–287.

[16] Krige, D. (1951). A statistical approach to some basic mine valuation problems on the
witwatersrand. Journal of the Chemical Metallurgical & Mining Society of South Africa,
52(6), 119–139.

[17] Forrester, I., Alexander, Sobester, A., and Keane, J., Andy (2008). Engineering Design
via Surrogate Modelling - A practical Guide. United Kingdom: Wiley & sons.

[18] Jones, R., Donald (2001). A taxonomy of global optimization methods based on response
surfaces. Journal of Global Optimization, (21), 345–383.

29



IFASD-2019-098

[19] Storn, R. and Kenneth, P. (1997). Differential evolution – a simple and efficient heuristic
for global optimization over continuous spaces. Journal of Global Optimization, (11),
341–359.

[20] Verstraete, T., Muller, L., and Aissa, M. H. (2018). Multidisciplinary optimization of
turbomachinery components using differential evolution. In Introduction to Optimization
and Multidisciplinary Design, von Karman Institute Lecture Series: 2018-04.

[21] Datadvance (2017). GTopt: Multi-objective optimization. P7 Technical reference.

[22] Stickan, B., Bleecke, H., and Schulze, S. (2013). Nastran based static cfd-csm coupling in
flowsimulator. In N. Kroll, R. Radespiel, J. Burg, and K. Sorensen (Eds.), Computational
Flight Testing, vol. 123 of Notes on Numerical Fluid Mechanics and Multidisciplinary
Design. Springer Berlin Heidelberg, pp. 223–234.

[23] Stickan, B., Arne, R., Helm, S., et al. (2017). High-fidelity cfd-csm interaction in the in-
dustrial context. International Forum on Aeroelasticity and Structural Dynamics (IFASD).

[24] Bourdin, P. (2004). Numerical prediction of wing-tip effects on lift-induced drag. Inter-
national Council of The Aeronautical Sciences.

COPYRIGHT STATEMENT

The authors confirm that they, and/or their company or organization, hold copyright on all of
the original material included in this paper. The authors also confirm that they have obtained
permission, from the copyright holder of any third party material included in this paper, to
publish it as part of their paper. The authors confirm that they give permission, or have obtained
permission from the copyright holder of this paper, for the publication and distribution of this
paper as part of the IFASD-2019 proceedings or as individual off-prints from the proceedings.

30


