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Abstract: Model order reduction techniques can be employed to reduce the complexity of
high-order very flexible aircraft models, allowing their use for control design. In this paper, a
technique based on a local-bases approach is introduced to reduce the original nonlinear prob-
lem. Firstly, a piecewise-linear surrogate model is obtained through the interpolation of lin-
earized models. Then, the order of the surrogate model is reduced by projecting periodically its
dynamics onto an affine subspace. These affine subspaces are computed by balanced truncation
of linearized systems of the original model. Sample numerical results on a high-altitude long-
endurance aircraft show that the proposed technique generates accurate reduced order models
with a reduction of 90% of the dimension of the system.

1 INTRODUCTION

Models of very flexible aircraft can have hundreds or thousands of states. This poses significant
challenges for model-based control because the computational cost of using these models is
prohibitive. To obtain suitable control-oriented models, a possible solution is to exploit reduced
order models (ROMs). For examples of using ROMs in aeroelastic problem, see [1–4].

One of the most successful MOR approaches is the projection-based MOR [5,6], which is based
on approximating the state of the system by its projection onto some subspace defined by a
reduced order basis (ROB). Different methodologies have been developed to compute the ROB.
For instance, proper orthogonal decomposition (POD) [7] is based on projecting the dynamics
of the system into a basis formed by relevant modes of the system. These modes are identified
by means of the singular value decomposition (SVD) of a snapshot matrix. Another method is
the balanced truncation [8] which is popular in linear control design. This technique relies on
truncating those states of the system which are less observable and controllable.

When performing MOR of nonlinear models, the computational cost of evaluating the reduced
order model may scale with the dimensionality of the full order model thereby negating po-
tential savings in the computation times when using the ROM [9, 10]. The increase of ROM
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Figure 1: Schematic derivation of a reduced order model based on the reduction of a piecewise-linear model using
local-bases obtained by balanced truncation.

complexity can be mitigated by exploiting suitable approximations of the full order model. One
of the methods along these lines is based on the piecewise-linear approximation [11, 12]. It is
well-known that linear models provide an accurate description of nonlinear models in a neigh-
borhood of the linearization point. Therefore, if linearization points are adequately spaced and
an interpolation function is properly defined, then a piecewise-linear surrogate model of the
original nonlinear model can be generated through the interpolation of several linear models.

In [11] the piecewise-linear model is reduced using a single global Krylov projection. This
approach is not optimal in the sense that a certain projection may be adequate for some region
of the state-space but not globally [13]. A possible solution to this is to project the dynamics
onto different subspaces (local bases) as the system evolves in time [14]. Most works along
these lines in the literature [13–15] treat discrete-time system models and construct the local
ROBs based on POD of snapshots grouped into different sets.

In this paper, a ROM of very flexible aircraft is obtained by first constructing the piecewise-
linear surrogate model in continuous time and then reducing this model using local bases com-
puted by balanced truncation (see Figure 1). The resulting ROM is a hybrid system with con-
tinuous dynamics corresponding to the evolution within each individual ROB and discrete tran-
sitions happening when switching between bases. The continuity is preserved in the model
output despite switching the bases. The proposed approach is model-based and does not use the
snapshots.

The idea of applying balanced truncation to a linear switched system has been explored recently
in [16]. However, the system considered in this paper is not a linear switched system of the kind
treated in [16], but rather a piecewise-linear model that approximates a nonlinear system. This
impedes the direct application of the results in [16] and in [17, 18].
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2 PIECEWISE-LINEAR APPROXIMATION

The approach of exploiting piecewise-linear modeling to perform MOR of nonlinear models
can be traced back to [11]. The reasons to obtain in the first place a piecewise-linear model
from the original nonlinear full order model are as follows:

1. A common problem in MOR of general nonlinear systems is that the computational cost
of the ROM scales poorly with the order of the full order model [9,10,13] as the reduced
order dynamic equations involve the evaluation of high order terms. For a piecewise-
linear model, however, this problem can be avoided and the quasi-linear formulation of
the problem allows deriving reduced order equations in almost analytical closed form
while the interpolation weights are not expensive to compute.

2. In order to perform model order reduction, it is necessary to project the dynamic equations
of the system onto some subspace, and these dynamic equations should be in state-space
form. This procedure may not be straightforward to apply as the explicit form of the
equations may be hidden to the user in certain modeling environments, while piecewise-
linear approximation of the model can be generated numerically and circumvents this
issue.

A nonlinear model can be approximated by a linear model in the neighborhood of a linearization
point, and the nonlinear model can be approximated globally by the interpolation of linearized
models. By obtaining N linear models around the pointsM = {(xi, ui), i = 1, · · ·N}, it is
possible to approximate the original nonlinear model of order n with m inputs and p outputs by,

ẋ = f(x, u) ≈
N∑
i=1

wi(x, u)(Ki + Aix+Biu), (1)

y = g(x, u) ≈
N∑
i=1

wi(x, u)(Li + Cix+Diu), (2)

where the interpolation functions wi satisfy the conditions,

i=N∑
i=1

wi(x, u) = 1, (3)

wi(x, u) ≥ 0, i = 1, · · · , N, (4)

and the matrices Ki, Ai, Bi, Ci, Di are given by:

Ki = f(xi, ui)− Aixi −Biu
i, Ai =

∂f(x, u)

∂x

∣∣∣∣
(xi,ui)

, Bi =
∂f(x, u)

∂u

∣∣∣∣
(xi,ui)

,

Li = g(xi, ui)− Cixi −Diu
i, Ci =

∂g(x, u)

∂x

∣∣∣∣
(xi,ui)

, Di =
∂g(x, u)

∂u

∣∣∣∣
(xi,ui)

.

Clearly, the critical step when constructing the piecewise-linear model is the selection of the
set of linearization pointsM and of the interpolating functions wi(x, u). Two approaches are
described below to compute these weights.
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2.1 Interpolation weights based on distance
Reference [11] defines weights based on the distance,

di(x, u) =
∥∥x− xi∥∥

2
, (5)

m(x, u) = min
i
di(x, u), (6)

wi(x, u) =
e−βdi(x,u)/m(x,u)∑N
j=1 e

−βdj(x,u)/m(x,u)
, (7)

where β is a weighting parameter to be chosen. Applying this approach to our flexible aircraft
models did not provide satisfactory results because the models that were obtained were highly
unstable. Therefore, a different approach was pursued with functions di(x, u) in Equations
(6) and (7) replaced by simpler functions ζi(x, u) that depend on velocity, altitude and Mach
number, i.e., typical variables used in aircraft controller gain scheduling. Specific choices used
will be discussed later.

2.2 Interpolation weights based on neural network
A more general procedure for constructing the interpolating weights based on neural networks
has also been developed.

This procedure exploits a set S = {(ẋk, xk, uk) k = 1, · · · , Ns} of the higher fidelity model
response where the snapshots contain the values of the state derivative, state, and input values.
Next, a function ξ : Rn × Rm → Rq, z = ξ(x, u) that computes a feature vector z ∈ Rq is
defined. As an example, ξ may be defined as,

ξ(x, u) = [V (x), h(x)]T, (8)

where V (x) and h(x) are functions that return the velocity and altitude of the aircraft.

As a result of applying ξ to every linearization point (xi, ui) ∈M, a set of points L = {zi, i =
1, · · · , N s.t. zi = ξ(xi, ui)} is obtained and their Delaunay triangulation [19] is computed.
The purpose of introducing the function ξ(x, u) is to reduce the computational resources needed
when performing this triangulation. If there are no restrictions in computational power and
enough snapshots are collected, it may be possible to use ξ(x, u) = [xT, uT]T.

Next, for each snapshot (ẋk, xk, uk), k = 1, · · · , Ns the following steps are performed::

1. Set zk = ξ(xk, uk).
2. The points that define the enclosing simplex for zk of the Delaunay triangulation of L are

computed. These points correspond to the linearization points that surround the snapshot
(ẋk, xk, uk). For notation purposes, define a set Pk that contains the indeces of these
linearization points.

3. All the weights are set to zero except for the ones corresponding to linear models belong-
ing to Pk, which are determined by solving the following optimization problem,

min
wk

j , j ∈ Pk

‖ẋk −
∑
j∈Pk

wkj (Kj + Ajxk +Bjuk)‖2,

s.t.
∑
j∈Pk

wkj = 1, wkj ≥ 0 for all j ∈ Pk.
(9)

Finally, a function that returns the weights wi(x, u), i = 1, · · · , N. is fit using a feedforward
neural network. The neural network is trained based on the inputs (xk, uk), k = 1, · · · , Ns and
training targets wk, k = 1, · · · , Ns.
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3 LOCAL-BASES MODEL ORDER REDUCTION

To derive the equations of the ROM, consider the equations that define the projection xp of a
point x onto an affine subspace Sp that passes through an arbitrary point x0,

xp = x0 + V P (x− x0), (10)

P , (W TV )−1W T, (11)

where xp, x0, x ∈ Rn and V,W ∈ Rn×r. Note that Sp is defined by the triple (x0, V,W ) and
designates an affine subspace of dimension r which passes through x0 and is parallel to the
range of V . The residual of the projection is in the orthogonal complement of the range of W .
Rewriting (10), it follows that,

xp = V Px+ (I − V P )x0. (12)

Projection-based MOR is based on assuming that the state of the system evolves in a reduced
order subspace of the original state-space. In this case, the state of the system is approximated
by its projection into Sp. The reduced order state of the system is xr ∈ Rr and is given by,

xr = Px. (13)

Substituting Equation (13) into Equation (12) yields the following relationship between the full
order state of the system and its reduced order state,

xp = V xr + (I − V P )x0. (14)

The dynamics of the ROM corresponding to (1) are,

ẋr = Pẋ = Pf(x, u) = Pf(V xr + (I − V P )x0, u), (15)

y = g(x, u) = g(V xr + (I − V P )x0, u), (16)

xr(t = 0) = Px0, (17)

where x0 is the initial condition in the full order state-space.

Denoting δx = x−x0, it is clear from Equation (10) that the quantity that is being approximated
is actually δx,

δx ≈ V δxr, δxr = Pδx. (18)

A linear model in variable δx can be obtained by linearizing the full order nonlinear model
around (x0, u0). This linear model can be reduced using balanced truncation, obtaining suitable
matrices V and W for Equation (18) and thus for Equation (10). The resulting reduced order
model is expected to be valid locally, i.e., when (x, u) is near (x0, u0).

The local-bases MOR extends the above local approximation procedure by updating the ROM
at discrete-time instants tk, with t0 being the initial time. The following steps are repeated
recursively while using the ROM to simulate the system:
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1. Find the closest point (xc, uc) in M (the set of linearization points) with respect to the
state-input pair, (xtk , utk), of the system at the current update time instant tk. A suitable
metric for the distance should be defined. Typically, the function ζ(x, u) introduced in
Section 2.1 is an appropriate choice. The full order state xtk is reconstructed based on
x−rtk

(the reduced order state at time tk immediately before switching the subspace),

xtk = Vtk−1
x−rtk

+ (I − Vtk−1
Ptk−1

)xtk−1
, (19)

Ptk−1
= (W T

tk−1
Vtk−1

)−1W T
tk−1

, (20)

where the triple (xtk−1
, Vtk−1

,Wtk−1
) defines the subspace in which the state evolved dur-

ing the previous time interval [tk−1, tk]. For tk = t0, there is no previous time interval,
and Equation (19) is substituted by the relationship,

xt0 = x0, (21)

with x0 being the initial state of the system.
2. Compute Vtk ,Wtk with balanced truncation of the linear system corresponding to (xc, uc).
3. The affine subspace onto which dynamics are projected during the time interval [tk, tk+1]

is defined by the triple (xtk , Vtk ,Wtk), with xtk obtained from either Equation (19) or
(21). The equations of the reduced order model are obtained by particularizing Equations
(15)-(16) for the piecewise-linear model derived in Equations (1)-(2):

ẋr =
i=N∑
i=1

wi(Vtkxr + (I − VtkPtk)xtk , u)(Kr,i,tk + Ar,i,tkxr +Br,i,tku), (22)

y =
i=N∑
i=1

wi(Vtkxr + (I − VtkPtk)xtk , u)(Lr,i,tk + Cr,i,tkxr +Dr,i,tku), (23)

with

Kr,i,tk = PtkKi + PtkAi(I − VtkPtk)xtk , Ar,i,tk = PtkAiVtk , Br,i,tk = PtkBi,

Lr,i,tk = Li + Ci(I − VtkPtk)xtk , Cr,i,tk = CiVtk , Dr,i,tk = Di,

Ptk = (W T
tk
Vtk)

−1W T
tk
,

The dynamical system defined defined by Equations (22)-(23) is initialized at time t = tk
with the reduced order state corresponding to the projection of xtk onto the subspace
defined by (xtk , Vtk ,Wtk):

xr(t = tk) = Ptkxtk . (24)

Note that xr(t = tk) is the reduced order state of the system immediately after switching
the projection, hence it is possible to denote x+rtk = Ptkxtk .

4. The reduced order model is defined by Equations (22)-(24) and is used over the time
interval [tk, tk+1]. Then, at time tk+1, go back to Step 1 to update the projection subspace.
Figure 2 shows the schematic behavior of the algorithm.

The resulting reduced order model is a hybrid system with continuous dynamics corresponding
to the evolution within each individual reduced order basis, and discrete transitions happening
when switching between bases. Note that with this algorithm, the reduced order state instanta-
neously changes when switching the subspace, i.e. x−rtk 6= x+rtk

. However, the reconstructed full
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order state of the system xtk does not change when switching the subspace, as the projection
subspace chosen at time instant tk is forced to contain the reconstructed full order state xtk .
Moreover, the output of the system is not discontinuous when switching the subspace.

Indeed, the output of the system immediately before switching the subspace is,

y−tk =
i=N∑
i=1

wi(Vtk−1
x−rtk

+ (I − Vtk−1
Ptk−1

)xtk−1
, u)(Lr,i,tk−1

+ Cr,i,tk−1
x−rtk

+Dr,i,tk−1
u). (25)

Substituting xtk = Vtk−1
x−rtk

+ (I − Vtk−1
Ptk−1

)xtk−1
in Equation (25), it is possible to obtain

y−tk in terms of xtk :

y−tk =
i=N∑
i=1

wi(xtk , u)(Li + Cixtk +Diu). (26)

On the other hand, the output of the system immediately after switching the subspace is,

y+tk =
i=N∑
i=1

wi(Vtkx
+
rtk

+ (I − VtkPtk)xtk , u)(Lr,i,tk + Cr,i,tkx
+
rtk

+Dr,i,tku). (27)

Substituting xtk = Vtkx
+
rtk

+ (I − VtkPtk)xtk into Equation (27) tields an expression for y+tk in
terms of xtk :

y+tk =
i=N∑
i=1

wi(xtk , u)(Li + Cixtk +Diu). (28)

Thus y−tk = y+tk .

Finally, given a setM, many terms in Equations (22)-(23) can be pre-computed offline, except
for the term (I − VtkPtk)xtk . This term is computed online every time that the projection
subspace is switched. The size of the matrices in Equations (22) and (23) is independent of
the dimension of the high order model, so the computational cost of their evaluation does not
depend on the order of the original model.

Computing the term wi(Vtkxr + (I − VtkPtk)xtk , u) involves reconstructing the full order state.
Further computational savings could be obtained by freezing the weights wi during the interval
[tk, tk+1], i.e. replacing wi(x, u) by wi(xtk , utk), i = 1, · · · , N t ∈ [tk, tk+1]. This converts the
reduced order model into a switched affine model.

4 VERY FLEXIBLE AIRCRAFT MODEL IN UM/NAST

The University of Michigan Nonlinear Aeroelastic Simulation Toolbox (U/M NAST) has been
used to model the nonlinear very flexible aircraft system studied here. UM/NAST is a C++ soft-
ware package that uses geometrically nonlinear strain-based finite elements for the simulation
of aeroelastic aircraft. The development of UM/NAST has started in 1998 with the works of
Brown [20] and continued (see e.g., [21] [22]) culminating in the development of the code.

4.1 X-HALE model

Most of numerical results presented in this paper are obtained with the X-HALE RRV-6B ve-
hicle, a testbed to study nonlinear aeroelastic phenomena [23]. The operating velocities of this
aircraft lie in the range of 10 to 20 m/s. Its wingspan is 6 m, with an aspect ratio of 30.
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Figure 2: Schematic operation of the local-bases algorithm. The black line represents the trajectory of the state
of the system reconstructed from the reduced order state. The colored lines represent affine subspaces
obtained by balanced truncation of the linearized models. The projection subspace is switched at time
instants t1, t2, t3, t4. Note that the trajectory of the state of the system belongs to an affine subspace
obtained by shifting the affine subspace obtained by balanced truncation of the closest linearized model
when the subspace is switched. For instance, at time t2 the state is xt2 . The closest linearization point
is x2, so the trajectory during the interval [t2, t3] belongs to an affine subspace obtained by shifting the
green subspace so that it passes through x2. The green subspace is computed by balanced truncation of
the linearized model corresponding to x2.

The state vector of the very flexible aircraft in UM/NAST is expressed as,

x = [εT ε̇T βT ζT PT
B λT]T, (29)

where ε denotes the elastic states, ε̇ denotes their time derivatives, β is a vector of the angular and
linear velocities of the aircraft expressed in the body frame, ζ is the quaternion that describes
the orientation of the vehicle, PB is the aircraft center of mass position vector in the inertial
frame and λ is the vector of the inflow states. The model has 345 states.

Since model order reduction approximates the input-output behavior of the full order model,
the outcome is dependent on the selection of inputs and outputs. For the analysis in this report
the outputs of primary interest for maneuver load alleviation have been selected so that

y = [ky,l ky,r βT ζT]T, (30)

where ky,l and ky,r denote the out of plane bending of the left and right wing root, respectively.

Regarding the inputs, the original X-HALE model has 37 inputs. Of these 37 inputs, 2 cor-
respond to the spoilers, 30 to the elevator surfaces, and 5 to the propellers. For the sake of
simplicity, in this study the number of inputs is reduced to 5. This reduction is effected by con-
straining all the elevators to be deflected equally and the propellers to act anti-symmetrically.
Therefore, the effective reduced input vector will be:

u = [spl spr e P0 δP ]T, (31)

where spl and spr are the deflections of the left and right spoilers, respectively, e is the deflection
of the elevators, P0 is the thrust of the central propeller, and δP is the differential thrust.
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4.2 XRF1 model

The X-HALE model considered here has 345 states. Another model has been employed to
show the applicability of proposed model order reduction technique to higher order dimensional
models. In particular, the XRF1 aircraft model is used. The XRF1 model is an Airbus provided
research testcase to showcase the application of different technologies to a long range wide
body aircraft.

This model should be classified as a flexible aircraft model rather than very flexible due to its
standard aspect ratio. However, it is significantly more complex than X-HALE as the XRF1
model has 1013 states. Regarding the control effectors, the XRF1 model has nine: two engines
to produce thrust, two ailerons per wing, one elevator divided into a right and a left section,
and a rudder. In this study, the inner and outer ailerons of each wing are equally deflected, so
the effective number of inputs is seven. The output considered for model order reduction is the
same of Equation (30).

Figure 3: Plot of XRF1 model aircraft.

5 NUMERICAL RESULTS

The numerical results presented in this section apply mostly to the X-HALE model presented
previously. In this sense, subsections 5.1, 5.2, and 5.3 concern the X-HALE model, whereas
subsection 5.4 deals with the XRF1 model.

5.1 Linearization of UM/NAST X-HALE model

In general, it is not necessary that the same set of linear models is used in both the piecewise-
linear approximation and in the generation of the reduced order basis. For simplicity, in this
paper the same set of linear models is used for both purposes. The linear models correspond
to trim conditions for altitude 30 meters and velocities 13, 13.25,...19.75 and 20 m/s, yielding a
total of 29 linear models.

The methodology proposed to perform model order reduction relies heavily on the accuracy of
the linearizations of the original nonlinear system, as linear models are used in the generation
of both the piecewise-linear model and the reduced order bases. Therefore, it is necessary to
check how each of the linear models used matches with UM/NAST.

To do so, for every linear model small inputs are applied in each input channel. The time
response match between UM/NAST and the linear model is compared. Analyzing the results,
it is apparent that the linearized models match well the nonlinear solution in the immediate
neighborhood they were generated. For instance, Figure 4 shows the match between UM/NAST
and the linearized model for 14 m/s. In this maneuver, the aircraft is flying trimmed at 14 m/s.
Then, an elevator doublet of amplitude 1 deg with respect to the trim condition of 14 m/s is
applied.

9



IFASD-2019-095

The maneuver shown in Figure 4 excites fundamentally longitudinal dynamics of the system.
The mismatch in the lateral velocity, roll rate, and yaw rate output channels - that is, the lateral
dynamics outputs - is due to small nonlinear coupling effects between the longitudinal inputs
and the lateral outputs. This is highlighted in Figure 5, where the roll rate for different magni-
tudes of the doublet elevator is shown. It is clear that the linear model matches the nonlinear
solution up to a certain point, when nonlinear effects not captured by the linear model start to
predominate in the response. As the magnitude of the doublet increases, i.e. as the input moves
away from the linearized condition, the nonlinear effects act faster.

Similarly, it has been observed nonlinear coupling effects between lateral inputs and longitu-
dinal outputs. Nevertheless, the magnitude of these nonlinear effects is small and thus do not
affect the overall quality of the linear models when approximating the UM/NAST model.

Figure 4: Time response to an elevator doublet maneuver of 1 deg amplitude applied to the X-HALE model ini-
tially flying trimmed at 14 m/s. Solid blue line: UM/NAST model. Dashed red line: linear model
corresponding to velocity of 14 m/s.

Figure 5: Roll rate response to an elevator doublet maneuver of 0.1, 0.2 and 0.3 deg amplitudes applied to the
X-HALE model initially flying trimmed at 14 m/s. Solid blue line: UM/NAST model. Dashed red line:
linear model corresponding to velocity of 14 m/s.
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5.2 Piecewise-linear approximation of X-HALE model

In the previous section, it has been discussed that individual linear models capture the dynamics
of the nonlinear system in the neighborhood of the linearization point. Hence, these models
can be used to create a piecewise-linear model. The main advantage of the piecewise-linear
model over any individual linear model is that the piecewise-linear model is accurate across the
whole envelope of flight conditions considered, while the linear models are only valid near their
linearization point. The two interpolation schemes introduced in subsections 2.1 and 2.2 are
evaluated next.

5.2.1 Interpolation weights based on physical insight of the system

For the X-Hale aircraft,functions di(x, u) in Equations (6) and (7) are replaced by simpler func-
tions ζi(x, u) that depend on velocity, ζi(x, u) = ‖V (x)− V i‖2 , i = 1, · · · , N , where V (x)
denotes the velocity of the aircraft and V i is the trim velocity of the ith linear model.

The parameter β in Equation (7) is set to 20, which makes the interpolation functions of Equa-
tion (7) assign almost all of the weight to a particular linear model. This model is referred as the
dominant model at a particular instant of time. Moreover, the transition time when switching
from one dominant linear model to the next one is typically small due to the value assigned to
β. This characteristic makes the piecewise-linear model behave similarly to a switched system.

The match between UM/NAST, the piecewise-linear model, and a single linear model has been
evaluated for several test cases. The individual linear model chosen is the one corresponding
to 15 m/s, as 15 m/s is the velocity that lies in the middle of the aircraft velocity range. The
results show that the piecewise-linear model consistently achieves a closer match with respect
to UM/NAST than the 15 m/s linear model.

One example of such a test case is shown in Figure 6, where a thrust doublet of magnitude 300
RPM is applied to an aircraft flying trimmed at 14 m/s. The small mismatch in the lateral output
channels is due to the nonlinear coupling effects decribed above. As these phenomena are not
captured by the linear models, the piecewise-linear model does not reflect them too. Finally,
note that as the dominant model is switched, no instabilities appear in the piecewise-linear
model.

5.2.2 Interpolation weights based on neural network

The function ξ(x, u) was chosen as ξ(x, u) = V (x), where V (x) is the velocity of the aircraft.
The neural network architecture is a feedforward neural network with 2 hidden layers and 10
neurons per layer.

Simulations have been performed to compare the performance of the piecewise-linear model
using weights based on distance in Section 2.1, and using neural network based weights. Figure
7 compares the responses to an elevator doublet input of 2 deg of amplitude applied to an X-
HALE aircraft initially flying trimmed at 14 m/s. The results of Figure 7 along with several
other tests conducted for the X-HALE model show that both algorithms achieve similar results.

However, the neural network weighting functions may yield unstable piecewise-linear systems
if the set of the snapshots is not sufficiently rich. Another disadvantage of the neural network
based weights is that their evaluation is more expensive than the evaluation of the distance-based
weights. In the remainder of the paper the distance-based interpolation weights are used.
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Figure 6: Time response to a thrust doublet maneuver of 300 RPM amplitude applied to the X-HALE model
initially flying trimmed at 14 m/s. Solid blue line: UM/NAST model. Dashed red line: linear model
corresponding to velocity of 15 m/s. Dashed dotted yellow line: piecewise-linear model with distance-
based interpolating weights.

Figure 7: Time response to an elevator doublet maneuver of 2 deg amplitude applied to the X-HALE model ini-
tially flying trimmed at 14 m/s. Solid blue line: UM/NAST model. Dashed red line: piecewise-linear
model with distance-based interpolating weights. Dashed dotted yellow line: piecewise-linear model
with neural network based weights.
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5.3 Reduced order model using local bases of X-HALE model

As the next step, the piecewise-linear ROM (22)-(23) has been generated. The local basis used
to project the dynamics of the system is chosen to be updated every 0.5 seconds. An important
issue is the choice of the dimension of the ROM. Note that the proposed method does not
require the reduced order bases to have the same dimension, i.e. the matrices Vtk and Ptk may
have different size depending on the basis considered. For simplicity, in the following analysis
it assumed that all reduced order bases have the same dimension. The local-bases are obtained
through balanced truncation, which also provides an estimate of the error based on the retained
energy of the system, measured by the Hankel Singular Values of the associated linear system.
Figure 8 shows the Hankel Singular Values of the full order linear model corresponding to 14
m/s. The Hankel Singular Values of the other linear models follow a similar distribution to the
one in Figure 8. Most of the energy of the system is captured within 30 states, so this size is an
appropriate starting point to choose the dimension of the ROM.

Figure 8: Hankel singular values of the linear model corresponding to 14 m/s.

In order to compare the performance of the method described in this paper, a reduced order
model of size 30 has been obtained through balanced truncation of the linear model correspond-
ing to 15 m/s. The time response of UM/NAST, the reduced order piecewise-linear model, and
the reduced order linear model is plotted in Figures 9 - 12. Analyzing these figures it is evident
that the reduced order piecewise-linear model achieves superior results when compared to the
reduced order linear model.

The sensitivity of the accuracy of the reduced order model with respect to its dimension has
been evaluated. The root mean square error (RMSE) of the reduced order piecewise-linear
model with respect to the UM/NAST solution is computed as function of the dimension of the
reduced order model. The results shown in Figures 13 - 16 suggest that using a reduced order
model of size bigger than 40 does not yield substantially better accuracy. Note that the error
does not reach 0 as the the order increases. This is because there exists a residual error between
UM/NAST and the full order piecewise-linear model due to nonlinear effects not captured by
the linear models.
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Figure 9: Time response to an elevator doublet maneuver of amplitude 2 deg applied to the X-HALE model initially
flying trimmed at 14 m/s. Solid blue line: UM/NAST model (345 states). Dashed red line: reduced order
linear model (30 states) corresponding to velocity of 15 m/s. Dashed dotted yellow line: reduced order
piecewise-linear model with distance-based interpolation weights (30 states).

Figure 10: Time response to a thrust doublet maneuver of 300 RPM amplitude applied to the X-HALE model
initially flying trimmed at 14 m/s. Solid blue line: UM/NAST model (345 states). Dashed red line:
reduced order linear model (30 states) corresponding to velocity of 15 m/s. Dashed dotted yellow line:
reduced order piecewise-linear model with distance-based interpolation weights (30 states).
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Figure 11: Time response to an aileron doublet maneuver of 2 deg amplitude applied to the X-HALE model ini-
tially flying trimmed at 14 m/s. Solid blue line: UM/NAST model (345 states). Dashed red line:
reduced order linear model (30 states) corresponding to velocity of 15 m/s. Dashed dotted yellow line:
reduced order piecewise-linear model with distance-based interpolation weights (30 states).

Figure 12: Time response to a differential thrust doublet maneuver of 6 RPM amplitude applied to the X-HALE
model initially flying trimmed at 14 m/s. Solid blue line: UM/NAST model (345 states). Dashed red
line: reduced order linear model (30 states) corresponding to velocity of 15 m/s. Dashed dotted yellow
line: reduced order piecewise-linear model with distance-based interpolation weights (30 states).
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Figure 13: Root Mean Squared Error (RMSE) of the reduced order piecewise-linear model with distance-based
interpolation weights with respect to UM/NAST as function of the order of the ROM. The maneuver
is an elevator doublet of 2 deg amplitude applied to the X-HALE model initially flying trimmed at 14
m/s.

Figure 14: Root Mean Squared Error (RMSE) of the reduced order piecewise-linear model with distance-based
interpolation weights with respect to UM/NAST as function of the order of the ROM. The maneuver is
a thrust doublet maneuver of 300 RPM amplitude applied to the X-HALE model initially flying trimmed
at 14 m/s.
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Figure 15: Root Mean Squared Error (RMSE) of the reduced order piecewise-linear model with distance-based
interpolation weights with respect to UM/NAST as function of the order of the ROM. The maneuver is
an aileron doublet maneuver of 2 deg amplitude applied to the X-HALE model initially flying trimmed
at 14 m/s.

Figure 16: Root Mean Squared Error (RMSE) of the reduced order piecewise-linear model with distance-based
interpolation weights with respect to UM/NAST as function of the order of the ROM. The maneuver
is a differential thrust doublet maneuver of 6 RPM amplitude applied to the X-HALE model initially
flying trimmed at 14 m/s.
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5.4 Numerical results for XRF1 model

The XRF1 model is linearized around three altitudes and Mach numbers in transonic range in
increments of 0.01. The full order piecewise linear model is generated with β = 20, and the
functions ζi(x, u) are defined as,

ζi(x, u) =

∥∥∥∥∥
(
M(x)−M i

M?
,
h(x)− hi

h?

)T
∥∥∥∥∥
2

, (32)

where M is the Mach number of the aircraft, and h denotes its altitude in meters. The scaling
parameters M? and h? are chosen to be 0.005 and 625 respectively.

The quality of the linear models and the piecewise-linear model has been assessed using the
same procedure as the one explained for X-HALE, obtaining successful results. To showcase
the performance of the reduced order piecewise-linear model, a sample test case is shown in Fig-
ure 17. The reduced order piecewise-lienar model has 30 states. Time responses of UM/NAST
and of a reduced order linear model obtained with balanced truncation are also plotted. The
individual linear model is chosen to be the one corresponding to a representative cruise flight
condition. The results show that the reduced order piecewise-linear is superior with respect
standard balanced truncation of a single linear model.

Figure 17: Time response to a doublet elevator maneuver of 0.5 deg amplitude applied to the XRF1 model initially
flying trimmed at a representative cruise flight condition. Solid blue line: UM/NAST model (1013
states). Dashed red line: reduced order linear model (30 states) corresponding to a representative cruise
flight condition. Dashed dotted yellow line: reduced order piecewise-linear model with distance-based
interpolation weights (30 states).
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6 CONCLUSIONS

The development of a model order reduction technique for very flexible aircraft has been de-
scribed in this paper. Towards this end, a piecewise-linear surrogate model based on the interpo-
lation of linear models is derived from the original nonlinear model. Two interpolation schemes
have been proposed, namely one based on the definition of physical-relevant metrics to measure
distance, and other more general approach that exploits neural networks. Then, the dynamics
of the piecewise-linear model are projected onto a reduced order basis obtained by balanced
truncation of a linearized model. The projection basis is switched periodically, obtaining in the
end a hybrid system. The output of the system is continuous even when transitioning between
the different bases.

Numerical examples that illustrate the application of the technique are provided. Two models
have been reduced: the very flexible aircraft X-HALE, and the flexible aircraft XRF1. Both
models are developed in UM/NAST. The quality of the linearizations in UM/NAST, has been
assessed. Nonlinear coupling effects between longitudinal inputs/lateral outputs, and between
lateral inputs/longitudinal outputs have been observed. These terms are not captured by the
piecewise-linear model, but their impact in the overall dynamics of the system is small.

Regarding the piecewise-linear model, it achieves more accurate results than the individual
linear models as expected. The two interpolation schemes developed have provided successful
results. Although the neural network approach is more general and requires less physical insight
of the system, it has some disadvantages. In particular, it is more expensive computationally
and it requires careful selection of the snapshots used to train the neural network.

Finally, the reduced order piecewise-linear model outperforms classical reduced order models
obtained by balanced truncation of a single linear model. The trade off between the size and
accuracy of the reduced order model has been analyzed. The tests conducted show that 30-40
states are enough to capture the dynamics of the systems studied.
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