
International Forum on Aeroelasticity and Structural Dynamics
IFASD 2019

9-13 June 2019, Savannah, Georgia, USA

A FULL POTENTIAL STATIC AEROELASTIC SOLVER FOR
PRELIMINARY AIRCRAFT DESIGN

Adrien Crovato1, Romain Boman1, Huseyin Guner1, Vincent E. Terrapon1, Grigorios
Dimitriadis1, Hugo S. Almeida2, Alex P. Prado3, Carlos Breviglieri3, Pedro H. Cabral3,

Gustavo H. Silva4

1University of Liege
Liege, Belgium

{a.crovato, r.boman, h.guner, vincent.terrrapon, gdimitriadis}@uliege.be

2Embraer S.A. and Ph.D. student at ITA Instituto Tecnologico de Aeronautica
Sao Jose dos Campos, Brazil

hugo.almeida@embraer.com.br

3Embraer S.A.
Sao Jose dos Campos, Brazil

{alex.prado, carlos.breviglieri, pedro.cabral}@embraer.com.br

4DLR German Aerospace Center
Gottingen, Germany
gustavo.silva@dlr.de

Keywords: aeroelasticity, aerodynamics, transonic flow, full-potential, aircraft design

Abstract: There is a consensus in the aerospace research community that future aircraft will
be more flexible and their wings will be more highly loaded. While this development is likely to
increase aircraft efficiency, it poses several aeroelastic questions. Current aeroelastic tailoring
practice for early preliminary aircraft design relies on linear aerodynamic modeling, unable to
predict shocks. On the other hand, nonlinear solvers, although they provide a wide range of
functionality and are reliable, often consist in monolithic code structures and cannot be effi-
ciently coupled to external structural mechanics codes. They are therefore usually not readily
usable for coupled fluid-structure interaction computations. The objective of the present work
is to carry out aerodynamic and static aeroelastic computations in the context of preliminary
aircraft design. To this end, an open-source, fast and reliable, unstructured finite element, Full
Potential solver has been developed. Preliminary results are presented and show a significant
improvement over the classical linear potential method and are in good agreement with higher
fidelity nonlinear solvers.

1 INTRODUCTION

In the on-going effort to build more efficient aircraft, the minimization of the structural weight
and the maximization of the aerodynamic efficiency usually lead to the design of very flexible
and highly loaded composite wings. Aeroelastic analysis thus plays an increasingly important
role in preliminary aircraft design. In the early stages of the design process, the computational
cost of the methods is of uttermost importance and must be kept as low as possible. Engineers
thus usually rely on linear aerodynamic solvers. However, these solvers are unable to predict
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shockwaves, which play an important role in transonic aircraft design. In a study comparing
the different levels of fidelity used in aerodynamic modeling [1], the authors found that the
Full Potential equation model offers a good trade-off between accuracy and computational cost.
An open-source, fast and reliable, unstructured finite element Full Potential solver has been
subsequently developed, with the purpose of carrying out aerodynamic computations in the
context of preliminary aircraft design. Moreover, the solver has been designed so that it can be
easily coupled to external Computational Structural Mechanics codes in order to provide fast
static aeroelastic solutions.
First, the different equations and solvers used in the present work are briefly reviewed. Then,
the formulation and main features of the newly developed Full Potential finite element code is
presented. Finally, aerodynamic and static aeroelastic computations are performed. Results are
presented and future improvements are described.

2 METHODOLOGY

In the present work, three levels of fidelity, Euler, Full Potential and Linear Potential equations,
are used to perform aerodynamic computations over 3D wings. Moreover, these equations are
coupled to two sets of structural mechanics equations to perform aeroelastic computations. This
section presents the fluid and structural dynamics equations used in the present work, as well as
the different solvers used to solve these equations.

2.1 Fluid dynamics equations

The unsteady Euler equations are derived from the Navier-Stokes equations by assuming that
the flow is inviscid. They can be written as,

∂

∂t

 ρ
ρu
ρE

+∇ ·

 ρu
ρu⊗ u
ρEu + pu

 = 0, (1)

where ρ is the density, u is the velocity vector, p is the pressure and E is the total energy per
unit mass. The system of equations 1 needs to be closed with state equations,

E = cvT +
1

2
ρ|u|2,

p = ρRT,
(2)

where cv is the specific heat capacity at constant volume, T is the temperature and R is the ideal
gas constant. In the present work, Equation 1 are solved using the open-source finite-volume
solver SU2 [2,3]. In SU2, steady state is reached through time marching, i.e. the time dependent
terms are discretized and the solution is iterated until it does not change in time anymore.

The steady Full Potential equation assumes that the fluid is inviscid and the flow is steady,
irrotational and isentropic. The velocity thus derives from a potential φ : u = ∇φ. The
conservation of momentum is automatically satisfied and only the conservation of mass remains,

∇ · (ρ∇φ) = 0, (3)

where the fluid density ρ is given by the isentropic flow relationship,

ρ = ρ∞

[
1 +

γ − 1

2
M2
∞
(
1− |∇φ|2

)] 1
γ−1

, (4)
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where ρ∞ is the freestream fluid density, γ is the heat capacity ratio and M∞ is the freestream
Mach number. Since the flow is irrotational, it cannot generate aerodynamic loads. In order
to allow lift and drag prediction, the Kutta condition must be enforced. This supplementary
condition is based on the physical observation that a fluid must leave a sharp trailing edge
smoothly. It can be enforced mathematically by imposing that the magnitude of the velocities
on the upper and lower sides of the trailing edge of a wing are equal. In the present work,
Equation 3 is solved by Tranair [4], a finite element solver commonly developed by NASA
and Boeing, and by Flow [5], a new in-house finite element code that will be presented in the
next section.

The Full Potential equation can be linearized to yield the Linear Potential equation by assuming
that the density remains constant. The linear equation can then be transformed into an integral
equation by using Green’s third identity. As for the Full Potential, the Kutta condition must
also be enforced. In the present work, the integral Linear Potential equation is solved either
in its classical form by the doublet source panel method implemented in Panair [6], or in its
acoustic form by the doublet lattice method implemented in NASTRAN [7].

2.2 Structural dynamics equations

Neglecting internal damping, the equilibrium equations of a solid are obtained by balancing the
inertial and elastic forces in the solid with the external forces applied onto it. The equations can
be written as,

ρs
d2x

dt2
−∇ · σσσ = f , (5)

where ρs is the solid density, σσσ is the stress tensor, f are the external forces and x are the
displacements. In the present work, Equation 5 is solved either by Metafor [8], an in-house
nonlinear finite element code, or by the linear finite element method implemented in NASTRAN.
In order to reach a steady state in the static aeroelastic computations, the time dependent terms
are integrated using a quasi-static time integration procedure.

The displacements of the solid can be expressed in the modal space as,

x = Φq, (6)

where q are the modal coordinates of the solid and Φ is the mode matrix, containing the mode
shapes of the solid. By neglecting the time dependent terms, equation 5 can be further dis-
cretized into,

Kqq = −fq, (7)

where Kq is the modal stiffness matrix and fq is the vector of modal forces, obtained by multi-
plying the physical terms by the mode matrix. In the present work, the modal equation is solved
by an in-house simple modal solver [9].

3 FLOW SOLVER IMPLEMENTATION

This sections presents Flow, a new in-house finite element Full Potential code. Flow is de-
signed to obtain fast transonic results for aerodynamic and static aeroelastic computations in
the context of preliminary aircraft design.
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3.1 Basic formulation

The weak formulation of the Full Potential equation is obtained by multiplying Equation 3 by a
test function ψ and integrating by parts. This yields,

F =

∫
Ω

ρ∇φ · ∇ψ dV −
∫

Γ

ρ∇φ · nψ dS = 0, ∀ψ, (8)

where Γ is the boundary of the volume Ω, n is the normal to Γ pointing inwards and ρ∇φ is the
known mass-flux through the boundary.
The domain Ω is discretized into finite elements and Equation 8 is expressed on each element.
The potential is discretized on each element by interpolating the values at the nodes using linear
shape functions,

φ =
∑
i

Niφi, (9)

where Ni is the shape function and φi is the potential associated to node i of the element. The
contribution of each element is then assembled at the nodes (formed by the vertices of the
elements), and the resulting nonlinear system of equations is solved with the Newton-Raphson
method as,

F = 0⇒ ∂F

∂φ
∆φ+ F +O

(
(∆φ)2

)
= 0, (10)

where F is the function defined by Equation 8. Each step of the Newton algorithm produces a
linear system of equations solved for ∆φ using the MUMPS [11] direct solver. The amplitude
of ∆φ is then adapted thanks to a quadratic line search [10], in order to improve the robustness
and convergence characteristics of the method.

3.2 Implementation of the Kutta condition

The Kutta condition has been implemented in order to predict flows over lifting configurations.
The implementation is mainly based on the methodology derived by Nishida [12] and Galbraith
et al. [13].
As illustrated on Figure 1, a flat wake extending from the trailing edge of any lifting configu-
ration and aligned with its bisector is created. The unknown potential value attached to each
node on this wake is then duplicated, except at the trailing edge and at the free edge of the
wake, located downstream of the wingtip. In order to enforce continuity in the derivative of
the potential, i.e. the velocity, two supplementary boundary conditions must be enforced. This
procedure is similar to the implementation of periodic boundary conditions.

The first condition is the equality of the mass-flux on the upper and lower sides of the wake,∫
Γw

ρu∇φu · nu dS = −
∫

Γw

ρl∇φl · nl dS, (11)

where subscripts u and l refer to the upper and lower sides of the wake, respectively. Sub-
stituting Equation 8 in Equation 11 allows to replace the surface terms by volume terms. As
a consequence, mass-flux continuity can be imposed by adding a (lower) volume term to the
(upper) elements sharing a node on the wake, that is,∫

Ωl

ρ∇φ · ∇ψ dV +

∫
Ωu

ρ∇φ · ∇ψ dV = 0. (12)
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Figure 1: Illustration of the trailing wake configuration used in Flow.

Numerically, this can be implemented by adding upper wake rows to lower wake rows in the
Jacobian matrix. The upper wake rows are then reset to implement the second condition: the
zero-pressure jump, which simplifies to continuity in the velocity magnitude in the case of
potential flows. The condition can be written as,∫

Γ

(ψ + Ψ)[[|∇φ|2]] dS = 0, (13)

where the double square bracket indicates a jump between the quantities on the upper and lower
sides of the wake. In the case of 3D flows, the implementation has to be stabilized for example
with a Petrov-Galerkin formulation. The test functions are then complemented by,

Ψ =
1

2

h

u∞
(u∞ · ∇φ) , (14)

where u∞ is the freestream velocity vector, u∞ is its norm and h is a characteristic length, here
taken to be the square root of the element area. For 2D flows, Ψ can be set to zero.

3.3 Treatment of supersonic flow

The Full Potential equation is elliptic for subsonic flows and becomes hyperbolic when the
flow becomes supersonic. This change in the mathematical nature of the equation must be
reflected in the numerical scheme in order to prevent unphysical expansion shocks. In the
present work, transonic flow computations are stabilized with a density upwinding procedure
originally proposed by Hafez et al. [14] and Eberle [15]. The switching function µ is defined
as,

µ = µC max

(
0, 1− M2

C

M2

)
, (15)

where µC and MC are parameters that control the dissipation. The physical density is then
replaced by,

ρ̃ = ρ− µ
←−
δsρ∆s, (16)

where s is the local direction of the flow and ∆s is the local cell size. The streamline derivative
of the density multiplied by a measure of the cell length

←−
δsρ∆s is approximated by ρ−ρU, with

ρU being the density in the associated upwind element. For each element, an upwind element is
selected by identifying the adjacent element closest to the reverse streamline direction. In prac-
tice, the simulation is started with a large initial value of µC and a small value of MC to produce
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large amount of dissipation that roughly locate the shock location. During the course of the sim-
ulation, these parameters are adjusted to reduce dissipation so as to predict a sharp discontinuity
while ensuring stability. This procedure is similar to that implemented in Tranair.

The vortex generated at the wingtip trailing edge of 3D lifting configurations induces an in-
finite velocity. For high-speed flows, the singularity induces large Mach numbers which may
cause the method to diverge. To alleviate this issue, the density associated with large velocity
magnitudes is limited according to the following Padé approximation [13],

ρ =
ρcrit

1 +
M2
∞
ucrit
u∞

1+ γ−1
2

M2
∞

(
1−

u2
crit
u2∞

) ( u
ucrit
− 1
) , u > ucrit, (17)

where ucrit is the velocity corresponding to a user-specified critical Mach number, usually ∼√
5.

3.4 Integration

The Finite Element procedure described in the previous section is implemented in a C++ code
wrapped in Python through SWIG [16]. The wrapping allows to take advantage of both the high
computing efficiency of the C++ language and the flexibility of the Python language. More
specifically, the geometry is parametrized in a Python script, meshed with gmsh [17] and loaded
in the solver’s data structure. An external process can then be used to drive the computation for
coupled physics simulations or optimization. To this end, the solver has been interfaced with
CUPyDO [18, 19] and coupled to several structural mechanics solvers, such as Metafor and a
modal solver.

4 AERODYNAMIC COMPUTATIONS

This section presents aerodynamic results on two benchmark cases: the Onera M6 wing and the
Embraer Benchmark Wing. The results obtained by Flow are compared to Tranair in order
to validate the new solver. Both results are then compared, on one hand to results obtained by
solving the Euler equations using SU2 and, on the other hand, to the Panair solution of the
linear potential equation, that is routinely used in industrial preliminary aircraft design.

4.1 Onera M6

The Onera M6 wing is a low aspect ratio, swept and tapered wing. The wing was tested at
transonic conditions (α = 3.06◦, Mach 0.839) and is now widely used as a standard validation
case. A surface grid of 1000 rectangular surface panels is used for discretizing the Panair
model. The Tranair model is enclosed in a box whose boundaries are placed 2 chord lengths
away from the wing in the chordwise and normal directions, and a half-span length from the
wingtip in the spanwise direction. The final grid, built automatically by a solution-based adap-
tive procedure, consists of 500, 000 hexahedra with a minimum cell size of 1/200 of the chord
at the shock and leading edge. The Flow model is enclosed in a box whose boundary faces
are placed 3.5 chord lengths away from the wing in the chordwise and normal directions, and
1 span length away from the wingtip in the spanwise direction. The unstructured grid is built
using gmsh and counts 590, 000 cells, with a characteristic size of 1/200 and 1/100 of the local
chord at the leading edge and at the trailing edge, respectively. The SU2 model is also built with
gmsh based on an unstructured O-grid topology extending 50 root chords away from the wing.
The mesh has a characteristic cell size of 1/200 and 1/100 of the local chord at the leading edge
and at the trailing edge, respectively, for a total count of 510, 000 cells. A convergence study
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was performed on each grid. In each case, the selected mesh is the one for which the results did
not change significantly when the number of cells was increased.

Figure 2 shows the pressure distribution along the mean aerodynamic chord of the wing at an
angle of attack of 3.06◦ and a Mach number of 0.839. The results obtained with Flow are in
good agreement with the results obtained with Tranair. However, Flow predicts a shock
located upstream and a slightly different pressure recovery near the pressure peak at the leading
edge. Flow and Tranair Full Potential solutions compare well to SU2 Euler solution and
are able to correctly predict the transonic flow physics, contrary to Panair’s Linear Potential
solution.

0 0.2 0.4 0.6 0.8 1

-1.5

-1

-0.5

0

0.5

1

1.5

SU2
Tranair
Flow
Panair

Figure 2: Pressure distribution along the mean aerodynamic chord of the Onera M6 at α = 3◦, Mach 0.84, obtained
from Flow and compared to SU2, Tranair and Panair.

Figure 3(a) depicts the lift distribution along the span and shows an excellent agreement between
SU2, Tranair and Flow. The lift predicted by Panair’s linear solution is lower compared
to the lift obtained from the nonlinear solvers, but the distribution is similar. Figure 3(b) shows
the quarter-chord moment coefficient along the span. The results obtained from Flow are
in good agreement with those obtained from Tranair and Euler, and show a significant
improvement compared to Panair. The difference in moment magnitude between the different
solutions is due to the difference in shock location and pressure peak shape.

The mesh size and the computational time required to run the simulations are given in Table 1.
The serial runs were performed on a laptop fitted with an Intel i7-7700HQ processor (2.8 GHz,
8 threads) while the parallel runs were performed on a cluster equipped with Intel Xeon X5650
processors (2.7 GHz, 12 threads). Flow requires twice the amount of time taken by Tranair.
However, Flow has not been optimized yet. Several improvements such as, inner solver opti-
mization, solution based grid adaptation and compiler optimization will be investigated in the
future. Both Full Potential solvers are faster than SU2 by more than one order of magnitude
and slower than Panair by two orders of magnitude.

4.2 Embraer Benchmark Wing

The Embraer Benchmark Wing (EBW2) is a generic benchmark wing model representative of
an airliner wing. It has a double planform, large aspect ratio, and is a swept, twisted and tapered
wing. The wing has been simulated in established maneuver condition at Mach number 0.78,
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(a) Sectional lift coefficient
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(b) Sectional moment coefficient

Figure 3: Sectional aerodynamic coefficients distribution along the span of the Onera M6 at α = 3◦, Mach 0.84,
obtained from Flow and compared to SU2, Tranair and Panair.

Table 1: Mesh size and computational time required by SU2, Tranair, Flow and Panair for the Onera M6
benchmark case.

Solver n. cells n. threads time
SU2 510, 000 12 1400 s
Tranair 500, 000 1 800 s
Flow 590, 000 1 1600 s
Panair 1, 000 1 10 s

altitude of 21000 ft. For each calculation, the angle of attack is set such that the resulting lift
coefficient is CL = 0.53. The models for the different solvers are built in the same way as in
the Onera M6 case, but the grid sizes are different. The final grid used by Tranair consists of
500, 000 hexahedra. The mesh used by Flow counts 1 million tetrahedra, with a characteristic
size of 1/100 of the local chord at the leading and trailing edges. Finally, the SU2’s grid counts
1.1 million tetrahedra. As in the case of the Onera M6, these grid sizes were obtained by
performing a convergence study.

Figure 4 shows the pressure distribution along the mean aerodynamic chord of the wing. There
is good agreement between the nonlinear solvers, although the shocks predicted by Flow and
SU2 are weaker compared to those predicted by Tranair, as opposed to observations made
for the Onera M6 case. Despite the difference in shock prediction, the solution is improved
compared to Panair linear solution.

Figure 5 shows the lift and the quarter-chord moment coefficient distribution along the span,
respectively. Flow closely follows Tranair results and both solvers predict load distributions
similar to SU2. Contrary to the Onera M6 case, the wing lift is fixed and the shocks are weak.
The load distribution predicted by Panair is then comparable to those obtained using the
nonlinear solvers, except near the kink of the wing. The angles of attack predicted by the
different solvers are similar: SU2 and Tranair: −1.4◦, Flow: −1.3◦, and Panair: −1.1◦.

The mesh size and the computational time required to run the simulations are given in Table 2.
The serial runs were performed on a laptop fitted with an Intel i7-7700HQ processor (2.8 GHz,
8 threads) while the parallel runs were performed on a desktop station equipped with an Intel
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Figure 4: Pressure distribution along the mean aerodynamic chord of the EBW2 at CL = 0.53, Mach 0.78, ob-
tained from Flow and compared to SU2, Tranair and Panair.
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(a) Sectional lift coefficient
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Figure 5: Sectional aerodynamic coefficients distribution along the span of the EBW2 at CL = 0.53, Mach 0.78,
obtained from Flow and compared to SU2, Tranair and Panair.

i7-4930K processor (3.4 GHz, 12 threads). Compared to the Onera M6 case, Flow requires a
mesh that is twice as large, and is more than 2 orders of magnitude slower than Panair and
about 4 times slower than Tranair. However, it remains more than an order of magnitude
faster than SU2. Note that Flow also implements a shared memory parallelization. For this test
case, the simulation took 1000 s to complete on 4 threads.

Table 2: Mesh size and computational time required by SU2, Tranair, Flow and Panair for the EBW2 bench-
mark case.

Solver n. cells n. threads time
SU2 1, 100, 000 6 9000 s
Tranair 500, 000 1 800 s
Flow 1, 000, 000 1 3400 s
Panair 1400 1 10 s
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4.3 Discussion

The results obtained on the Onera M6 and on the EBW2 test cases show that Flow is able to
provide results close to those predicted by Tranair. Flow however lacks the efficiency of
Tranair and requires larger meshes for actual aircraft wings, leading to an increased compu-
tational cost. Different techniques are currently being investigated to optimize the code, such as
reducing the mesh size and the linear solver time. This section also illustrates that linear solvers,
such as Panair, are not able to capture the physics of transonic flows and lead to inaccurate
predictions of the load distributions, except when the shocks are weak. Although strong shocks
are not desirable in aircraft design, designing a wing that minimizes shockwaves requires to be
able to predict them, which can only be achieved with nonlinear solvers.

5 AEROELASTIC COMPUTATIONS

This section presents static aeroelastic simulations on two cases: The Agard 445 wing and the
Embraer Benchmark Wing 2. The coupling of the fluid and structural solvers is achieved using
CUPyDO. The results obtained from Flow are compared to those obtained by SU2 and either
to those reported in the literature or to those obtained by NASTRAN.

5.1 Agard 445

The Agard 445 wing is a low aspect ratio, swept and tapered wing. The wing is widely used
as a standard validation case for transonic flutter calculations. In the present work, the wing is
simulated at an angle of attack α = 1◦ and a Mach number of 0.80. Under such conditions, the
Freon-12 gas has a density of 0.094 kg/m3 and a velocity of 247 m/s [20, 21].
The numerical model used by Flow is built in the same way as before and the unstructured grid
counts 250, 000 tetrahedra, with a characteristic size of 1/200 and 1/100 of the local chord at
the leading and trailing edges, respectively. The SU2 model is built with gmsh in a multiblock
structured O-grid topology extending 25 root chords away from the wing. The mesh has 50,
20 and 30 hexahedra in the chordwise, normal and spanwise directions respectively, for a total
count of 250, 000 hexahedra. The structural model is built in Metafor and is based on the
weakened model 3 of the wing [20]. The mesh is built with gmsh and consists of 31, 2 and 17
hexahedral cells in the chordwise, normal and spanwise directions respectively.
The coupling is performed with the Block Gauss Seidel algorithm available in CUPyDO. Fluid
and solid variables are interpolated between fluid and structural nodes with Radial Basis Func-
tions, also implemented in CUPyDO. The tolerance for the FSI simulation is set to 10−3 mm,
which is 10−4 times the expected maximum displacement.

Table 3 gives the lift coefficient of the deformed shape of the wing as well as the vertical de-
flections at the wingtip’s leading and trailing edges of the Agard wing. The results are also
compared to those obtained by Goura [21]. There is good overall agreement between the dif-
ferent solvers and results previously reported in the literature. The lift coefficient predicted by
Flow differs by less than one lift count compared to the one predicted by SU2. Flow tends to
predict slightly smaller displacements, but a similar wingtip’s rotation, than Euler solvers.

The mesh size and the computational time required to run the simulations are given in Table 4.
Both computations were performed in serial on a desktop fitted with an Intel i7-4930K processor
(3.4 GHz, 12 threads) and converged in 7 FSI iterations. In this case, Flow is about one order
of magnitude faster than SU2.
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Table 3: Lift coefficient and wingtip vertical displacements at the leading and trailing edges of the Agard wing at
α = 1◦, Mach 0.8, obtained with SU2 and Flow and compared to Goura’s results [21].

Solver CL zLE (mm) zTE (mm)
Euler [21] - 11.2 12.7
SU2 0.0537 11.6 13.1
Flow 0.0544 10.6 12.0

Table 4: Mesh size and computational time required by SU2, and Flow for the Agard benchmark case.

Solver n. cells time
SU2 250, 000 8750 s
Flow 250, 000 970 s

5.2 Embraer Benchmark Wing

The Embraer Benchmark Wing maneuver case described in section 4.2 is analyzed in the con-
text of an FSI simulation. The objective is to predict the deformed shape of the wing subjected
to the maneuver described in section 4.2 and to recover the new angle of attack needed to sus-
tain the maneuver, as well as the new load distributions along the span. Note that the wing is
clamped at its root to represent its attachment to the fuselage. Such a boundary condition is
not realistic as the fuselage is not rigid. However, this setup is only used to compare the dif-
ferent solvers. The mesh used by the DLM in NASTRAN consists of 1474 quadrilateral surface
panels placed on the mean chord surface of the wing. The associated structural model is also
discretized in NASTRAN and consists of 50, 000 shell elements.
The meshes used by Flow and Euler are those described in section 4.2. The associated struc-
tural model is based on a modal representation of the structure obtained by a modal analysis
performed in NASTRAN. The mesh used by the modal solver consists of 2134 points distributed
on the surface of the wing. Note that these points are only used to create the mode matrix to
transfer quantities between the physical and modal spaces. The coupling between SU2 or Flow
and the modal solver is performed with the Block Gauss Seidel algorithm available in CUPyDO.
Fluid and solid variables are interpolated between fluid and structural nodes with Radial Basis
Functions, also implemented in CUPyDO. The tolerance for the FSI simulation is set to 10−4

times the expected maximum displacement.

Table 5 gives the new angle of attack α of the deformed shape of the wing as well as the vertical
deflections at the wingtip leading and trailing edges of the EBW2. Note that the displacements
are normalized with respect to the half-span of the wing. There is an excellent agreement be-
tween Flow and SU2. Both solvers predict roughly the same angle of attack and the difference
in the wingtip’s displacement are less than 3 percentage points. On the other hand, NASTRAN
predicts a higher angle of attack, overestimates the wingtip’s displacements and underestimates
the wingtip’s rotation. These differences are due to the difference in physics modeling and to
the fact that NASTRAN neglects the wing’s camber and thickness.

Table 5: New angle of attack and wingtip vertical displacements at the leading and trailing edges of the EBW2 at
CL = 0.53, Mach 0.78, obtained with SU2, Flow and NASTRAN.

Solver α (◦) zLE (%) zTE (%)
SU2 −0.4 7.23 8.13
Flow −0.3 7.06 7.83
NASTRAN 5.6 9.10 9.30
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Figure 6 shows the lift and the quarter-chord moment coefficient distribution along the span,
respectively. Flow closely follows SU2’s predictions. The offset between the two curves in the
sectional moment coefficient distribution is mostly due to the difference in shock strength. Lin-
ear results obtained using NASTRAN largely differ from results predicted by nonlinear solvers.
The different shape and magnitude of the sectional lift and moment coefficients predicted by
NASTRAN can be explained by two main factors. First, the camber is ignored and causes the
angle of attack to be higher and the center of pressure to move upstream. Second, NASTRAN
is not able to predict shockwaves, which modify the shape of the pressure distribution. These
differences in loads distributions compared to nonlinear solvers result in a different deformed
state.
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Figure 6: Sectional aerodynamic coefficients distribution along the span of the deformed EBW2 at CL = 0.53,
Mach 0.78, obtained from Flow and compared to SU2, and NASTRAN.

The mesh size and the computational time required to run the simulations are given in Table 6.
Computations were performed in serial on a desktop fitted with an Intel i7-4930K processor
(3.4 GHz, 12 threads). Using the automated angle of attack adjustment strategy implemented in
SU2 allowed the FSI process to converge twice as fast as when compared to Flow. Despite the
better convergence characteristics displayed when using SU2, the Flow computation was still
more than 5 times faster. On the other hand, NASTRAN computations are carried out on a much
smaller grid and are linear, making them more than two orders of magnitude faster.

Table 6: Mesh size and computational time required by SU2, and Flow, and NASTRAN for the EBW2 benchmark
case.

Solver n. cells time
SU2 1, 100, 000 19 h
Flow 1, 000, 000 2.5 h
NASTRAN 1474 25 s

5.3 Discussion

The results obtained on the Agard 445 wing with Flow closely match SU2’s predictions. More-
over in the case of the Embraer Benchmark Wing, Flow’s results are comparable to SU2’s
results and show a significant improvement compared to NASTRAN’s linear results. In order
to improve the linear results, adding the camber effect in NASTRAN will be investigated. The
higher-fidelity results come at the price of an increased runtime. Aside from the various tech-

12
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niques proposed in section 4.3 to reduce the computational time required by Flow, several
FSI strategies are also investigated. Such strategies include the use of a linear potential model
frequently corrected by the nonlinear Flow solver to reach higher-fidelity results while mini-
mizing the computational requirements.

6 CONCLUSION
As new aircraft structural weight is minimized to reduce their fuel consumption, they become
more and more subjected to aeroelastic effects. As a result, aeroelasticity is taken into account
sooner in the preliminary design stage, where obtaining fast solutions is crucial since the number
of configurations and load cases is large. In this context, a finite element Full Potential code was
developed to obtain fast and reliable transonic flow solutions for aerodynamic and aeroelastic
computations. The solver was validated against several state of the art solvers. Although the
present solver still lacks robustness and efficiency, preliminary results show an overall good
agreement with similar and higher fidelity solvers, and a significant improvement over lower
fidelity solvers.
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