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Abstract: Flutter is a dynamic phenomenon occurring on aircraft structures for particular 

flight points when structural and aerodynamic modes couple in an unstable way. This 

phenomenon is computed during design phases to predict the aeroelastic behaviour of the 

aircraft and prevent any instability in the flight domain. To solve this problem, aircraft 

manufacturers currently use algorithms pertaining to a family of methods labelled as the “p-k 

method”. These algorithms have been optimized for the flutter problem and provide quite 

accurate results but in the same time exhibit some flaws which can be prejudicial when one 

wants to fully automate the flutter analysis. New techniques to solve the non-linear eigenvalue 

problems such as the flutter problem have been developed recently. Based on the invariant 

pairs theory, they lead to more robust solutions in terms of unicity. A bloc Newton algorithm 

applying these techniques has been implemented, validated on standard flutter cases (both 

civilian and military aircraft) and tested on cases displaying convergence and unicity issues 

with the p-k method. The outputs present the expected behaviour despite a longer 

computational time. In order to keep computational times within industrial timeframe, a 

hybrid method, switching from p-k to block Newton “when required” has been developed. 

Thanks to this hybrid method implemented in Dassault Aviation in-house solver Elfini, 

standard flutter computations at Dassault Aviation benefit from the advantages of the 

invariant pairs theory. 

 

1 INTRODUCTION 

Flutter predictions are part of the design and certification process of a new aircraft. They need 

to be as accurate as possible in order to ensure structural safety and to limit the structural 

mass added to meet the certification criterion. Even though flutter has been studied since the 

early developments of aviation [1], it has become an important part of civilian aircraft design 

since the 1950s. This is due to the use of jet engines which led to higher aircraft speeds, the 

trend to design lighter hence more flexible aircraft and the development of computers, 

allowing a more efficient way to numerically solve the flutter problem. Several computational 

methods exist to predict the aeroelastic behaviour and the flutter speed. The most widely used 

is known as the p-k method. It has been developed in the 1960s specifically for the aircraft 

industry and is nowadays used by almost all aircraft manufacturers. 

 

The p-k method is known to be pretty accurate in terms of flutter predictions (it has been 

validated against numerous numerical data on many occasions) and has been optimised in 

order to produce results as fast as possible. It is now extensively used at Dassault Aviation 
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from pre-design to certification phases for the development of civilian and military aircraft 

[2]. In the past decades the number of flutter computations performed during the various 

phases of an aircraft development has been significantly increasing. This is due to the fact that 

civilian aircraft are getting bigger and more flexible which lead to a higher modal density at 

low frequencies. Besides for military aircraft, the diversity of under-wing external store 

configurations (cf. Figure 1), coupled to the number of fuel cases to consider give rise to a 

large number of combinations to study. The trend nowadays is to automate as much as 

possible flutter computations and their analyses to limit their cost. 

 

 
Figure 1: Diversity of the under-wing store configurations on a Rafale aircraft. 

 

However, the p-k method presents some flaws: a certain lack of accuracy in the predicted 

behaviour for modes with strong damping and/or low frequencies, merging of modes due to 

the inappropriate treatment of close eigenvalues, etc. The latter is the source of discrepancies 

far from the flutter point while the former may lead to the loss of flutter mechanisms during 

the more and more automated analyses, hence the need for “manual” intervention to treat the 

cases showing such behaviour. These interventions ensure that at the end of the analyses all 

the flutter mechanisms are accounted for but they reduce the benefit of the automation of the 

flutter computation post-treatment. This is one of the reasons why a computational method as 

robust as possible is needed.  
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After deriving the flutter equation (Section 2), describing the p-k method (Section 3) and 

detailing the reasons for the merging of modes (Section 4), this article presents a new 

approach based on block computations of invariant pairs to solve the flutter problem without 

the rise of merging modes (Section 5). The theory of invariant pairs has been established and 

developed at the end of the 2000s by mathematicians and has been used so far to solve several 

non-linear eigenvalue problems (crack propagation, fluid-solid vibrations or damped 

structural vibrations [3], PDE resolution, radio-frequency gun cavity [4]), but to the best of 

the authors knowledge, the work presented in this article constitutes the first application of 

this theory to an industrial case such as the flutter problem. 
 

This new method has been implemented in ELFINI, the in-house aero-structural solver 

platform at Dassault Aviation, after that some work to fit the flutter problem into the invariant 

pairs formalism was performed (Section 6). The algorithms have been validated against 

standard cases and also tested on cases displaying the default of “merging of modes” when 

solved by the p-k method. It is now currently used in aircrafts projects. 

 

2 THE NONLINEAR EIGENVALUE FLUTTER PROBLEM 

A flutter analysis is a dynamic stability analysis of a system taking into account the coupling 

between the structural forces (elastic and inertial) and the aerodynamic forces applied on this 

structure due to its deformation. The criterion to assess whether or not a system is stable is 

based on the damping of the modes computed during the flutter analysis. The modal 

parameters solution of a flutter problem (frequency, mass, shape and damping) vary with the 

modifications of the Mach number, dynamic pressure and speed due to a variation of flight 

point. By solving the flutter problem, one wants to get the evolution of the modal parameters 

along variations of the aerodynamic forces in order to detect the flight points for which the 

system becomes unstable. 

 

Starting from the Equation of Motion in the Laplace-domain applied to an aircraft model 

expressed on a modal basis, one can write: 

 

 [𝑝2𝑀 + 𝑝𝐶 + 𝐾]𝑥 = 𝐹𝑎𝑒𝑟𝑜(𝑝,𝑀𝑎𝑐ℎ, 𝑉, 𝑥) 
 

(1) 

With 𝑝 the complex Laplace variable, 𝑀, 𝐶 and 𝐾 the real mass, damping and stiffness 

matrices, 𝑥 the generalised coordinates of the modal basis and 𝐹𝑎𝑒𝑟𝑜 the complex aerodynamic 

forces (depending on the Mach number 𝑀𝑎𝑐ℎ and the aircraft speed 𝑉) due to the 

deformation of the structure. These forces can be expressed under a linearity assumption as: 

 

 
𝐹𝑎𝑒𝑟𝑜(𝑝,𝑀𝑎𝑐ℎ, 𝑉, 𝑥) =

𝜕𝐹𝑎𝑒𝑟𝑜
𝜕𝑥

𝑥 = 𝑞̅𝐺𝐴𝐹(𝑝,𝑀𝑎𝑐ℎ, 𝑉)𝑥 (2) 

 

Where 𝑞̅ is the dynamic pressure and 𝐺𝐴𝐹 is the matric of the Generalised Aerodynamic 

Forces for given 𝑝 and Mach number. The combination of (1) and (2), yields the flutter 

equation, where 𝑝 and 𝑥 are the unknown to be computed: 

 

 [𝑝2𝑀 + 𝑝𝐶 + 𝐾 − 𝑞̅𝐺𝐴𝐹(𝑝,𝑀𝑎𝑐ℎ, 𝑉)]𝑥 = 0 (3) 

 

The dependency of the GAF with the Laplace variable is expressed throughout the reduced 

frequency 𝑘 =
𝜔𝑐

𝑉
 (with 𝜔 being the pulsation, 𝑐 a characteristic length, and 𝑉 the aircraft 
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speed). This comes from the relation between 𝑝, 𝜔 and the damping 𝜉 and the assumption of 

low damping for the aircraft structure near flutter point: 

 

 𝑝 = 𝜔(𝑗 − 𝜉) 
 

(4) 

From (4) it comes that 𝑘 =
𝐼𝑚(𝑝)𝑐

𝑉
. Finally, for given aerodynamic conditions, the flutter 

equation can be written as: 

 

 𝑇(𝑝)𝑥 = 0 (5) 

 

Equation (5) has the canonical form of an eigenvalue problem as soon as the constraint 𝑥 ≠ 0 

is added. Furthermore, the dependency of the matrix operator 𝑇 with the Lapalce variable 𝑝 is 

non-linear allowing one to characterise the flutter problem as a NonLinear EigenValue 

Problem (NLEVP). This problem is nonlinear with respect to 𝑝 but it is linear with respect to 

𝑥 which is of paramount importance for the methods presented in this article. 

 

Without further assumptions on the GAF formulation, one can only state that they depend 

nonlinearly of 𝑝, hence the nonlinear characterisation. With a quasi-steady assumption or 

more generally a state-space expression for the GAF [5], the flutter problem would be a 

polynomial eigenvalue problem for which numerous solving methods already exist and for 

which the eigenvectors solution of the problem form an orthogonal basis. This is not the case 

for NLEVP, nothing ensures that two eigenvectors are orthogonal (see §1.1 of [6]). This 

implies for instance that all the solving techniques based on deflation are not relevant to solve 

the flutter problem. 

 

A NLEVP is solved iteratively by either successive methods (determination of the different 

eigenvalues-eigenvectors pairs one by one) or simultaneous ones (determination of all the 

eigenpairs solution at once). The iterative character of these methods means that at the end, 

only an approximation of the solution is obtained, by opposition to direct methods providing 

the exact solution. In order to get the evolution of the modal parameters with the aerodynamic 

loads, several flutter problems are solved at different flight conditions. For close flight 

conditions, the problems to solve are quite similar, therefore it is common to use the solution 

of one problem to initialise another one close enough. This set of problems is known as 

parametric nonlinear eigenvalue problem. 

 

3 THE P-K METHOD 

There are many flavours of the p-k method to solve the flutter problem. In this article, the one 

presented uses the inverse iteration method on a Taylor expansion. Assuming an 

approximation 𝑝0 of the eigenvalue solution 𝑝 is known, the idea is to determine Δ𝑝 in order 

that 𝑝 = 𝑝0 + Δ𝑝. If 𝑝 is an eigenvalue of the flutter problem (5), then there is a right 

eigenvector 𝑥 verifying (5) and a left eigenvector 𝑦 verifying 𝑦𝑇𝑇(𝑝) = 0. Left-multiplying 

(5) by 𝑦𝑇 yields: 

 

 𝑦𝑇𝑇(𝑝)𝑥 = 0 (6) 

 

This formulation is known at Dassault Aviation as the “Brévan formulation” of the p-k 

method [7] and its advantage lies in the fact that one is working with scalar values instead of 

vectors. 
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By applying a first order Taylor expansion to (6), and by making the assumptions that the 

variations in 𝑥 and 𝑦 are negligible compared to the ones in 𝑝 and that a method to compute 𝑥 

and 𝑦 for a given eigenvalue is at hand, one can write: 

 

 
𝑦𝑇𝑇(𝑝0 + Δ𝑝)𝑥 = 𝑦

𝑇 [𝑇(𝑝0) +
𝜕𝑇

𝜕𝑝
(𝑝0)Δ𝑝] 𝑥 = 0 (7) 

 

Hence: 

 

 
Δ𝑝 = − [𝑦𝑇

𝜕𝑇

𝜕𝑝
(𝑝0)𝑥]

−1

𝑦𝑇𝑇(𝑝0)𝑥 (8) 

 

By denoting the residual 𝑦𝑇𝑇(𝑝0)𝑥 = 𝑅, it is direct to see that if 𝑝 = 𝑝0, then 𝑅 = 0. The 

convergence criterion of this method can be placed on the residual as well as on the increment 

in the eigenvalue Δ𝑝. 

 

This allows to get the increment needed for the estimated eigenvalue to get closer to the 

solution. The remaining steps are to compute the eigenvectors associated to a given 

eigenvalue, this can be done thanks to the inverse iteration method described in [8]. The 

algorithm for a right eigenvector can be summed up as: 

 

Algorithm 1: Inverse Iteration Method 

1. Pick an initial vector 𝑣(0) such that ‖𝑣(0)‖ = 1 

For 𝑘 = 1,2, … 

2. Determine 𝑤 such that 𝑇(𝑝)𝑤 = 𝑣(𝑘−1) 

3. Define 𝑣(𝑘) = 𝑤/‖𝑤‖ 

Stop when ‖𝑣(𝑘) − 𝑣(𝑘−1)‖ < 𝜀 

 

The same kind of procedure is used to determine the left eigenvector. With Algorithm 1 in 

mind, it is possible to describe the algorithm allowing to compute the solution for given flight 

conditions and a given initial value of 𝑝0. 

 

Algorithm 2: Brévan’s p-k method (for one eigenvalue) 

1. Pick an estimate of the eigenvalue solution 𝑝0 

While convergence criterion is not met 

 2. Compute the eigenvectors associated to 𝑝𝑘 [Algorithm 1] 

 3. Set the residual to 𝑅 = (𝑦𝑘)
𝑇𝑇(𝑝𝑘)𝑥𝑘 

 4. Compute the increment Δ𝑝 according to (8) 

 5. Update 𝑝𝑘+1 = 𝑝𝑘 + Δ𝑝 

 6. Convergence test 

 

A close estimate of the solution at the first step for Algorithm 1 and Algorithm 2 reduces the 

number of iteration required to reach convergence. The solution found at the end of 

Algorithm 2 is only dependant on the initial guess 𝑝0, the matrices 𝑇(𝑝𝑘) and their 

derivatives. According to the properties of the inverse iteration method, Algorithm 2 

converges toward the eigenvalue 𝑝𝑗 such that ‖𝑝𝑗 − 𝑝0‖ ≤ ‖𝑝𝑖 − 𝑝0‖ for any eigenvalue 𝑝𝑖 of 

𝑇. 

 



IFASD-2019-072 

6 

Finally, the main algorithm to solve the entire parametric flutter problem and to get the modal 

behaviour along the various flight conditions considered is given below: 

 

Algorithm 3: p-k method for the entire flutter problem 

1. Compute the modal characteristics “on ground” (with 𝑞̅ = 0) 

For each mode of interest 

 For each flight point considered 

  2. Estimate Δ𝜔 and Δ𝜉 from previous flight point 

  3. Determine the pair (𝑝, 𝑥) solution at the flight point [Algorithm 2] 

  4. Extract modal frequency and damping from 𝑝 

  5. Detect flutter for this mode at this flight point 

 

 
Figure 2: Flutter diagram for 5 modes. 

 

The p-k method has been developed specifically to solve the flutter problem. It has been 

optimised for industrial purposes both in accuracy and computational time. This is why it is 

widely used among aircraft manufacturers. One way to visualise the output obtained by 

Algorithm 3 is to plot the frequency and the damping of the modes on a graph function of one 

aerodynamic parameter (such as dynamic pressure, true airspeed, etc.). An example of such 

visualisation is provided Figure 2 for a “simple” case with 5 modes. For industrial cases of 

civilian aircraft, hundreds of modes are usually computed. An example of such computation is 

given Figure 3. 
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Figure 3: Typical flutter diagram for a civilian aircraft. 

 

4 MERGING OF MODES IN THE P-K METHOD: ORIGIN, CONSEQUENCES AND 

DETECTION 

Due to the properties of the p-k method, it can happen that for given aerodynamic conditions, 

the algorithm finds twice the same eigenvalue: this is called merging of modes. For the next 

flight points considered after a merging of modes, the p-k method finds exactly the same 

solution for both merged modes, hence the loss of one mode after a certain point in the output 

of the computations. This might lead to some problems during the analysis of the results: 

 the lost mode might become unstable and the analysis is short of one flutter 

mechanism, 

 the lost mode merges onto a mode which becomes unstable at some point after the 

merge, the results then show two unstable mechanisms instead of one, 

 when comparing computational results to experimental data, the behaviour of one 

mode is missing. 

For all these reasons, it seems important to understand why modes can merge with the p-k 

method, how one can automatically detect such merge and if there are other options to make 

sure these merges do not happen. 

 

An example of a merging of modes is given Figure 4. After approximately 250 m/s, the red 

and the blue modes merge and one modal behaviour is missing on the diagram. 
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Figure 4: Flutter diagram of two merging modes. 

 

The origin of the merging of modes is linked to the fact that the p-k method is a successive 

method acting on each modal solution independently of the others. This means that no 

account of the already found modal solutions is taken while looking for a new modal solution. 

This flaw can be found in several successive methods. Figure 5 helps understand what 

happens in the p-k method. As mentioned in §3, p-k method finds the eigenvalue closest to 

the initial estimate provided. From the situation showed on the left of Figure 5, for both 

modes, p-k method finds the same eigenvalue (middle of Figure 5), whereas the expected 

outcome is shown on the right. Due to its successive resolution, nothing in the p-k method 

ensures that an eigenvalue is found only once for a given flutter problem. 

 

 
Figure 5: Schemes illustrating the merging of modes in the p-k method. 
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From a mathematical point of view, this situation can be characterised by looking at the 

algebraic multiplicity of the eigenvalues, denoted in this article by 𝑎𝑙𝑔𝑇(𝑝). By definition, 

this is the smallest integer 𝑗 such that 
𝑑𝑗

𝑑𝑥𝑗
det(𝑇(𝑝)) ≠ 0. The eigenvalues solutions of the 

flutter problem are in the vast majority of cases simple solution of the problem, meaning their 

multiplicity is 1. In the case of merged modes, the multiplicity then equals at least 2 for the 

eigenvalue which is incorrect. At most, a multiplicity of 2 can occur when two modes cross 

each other in frequency and damping simultaneously as shown Figure 6. This is one point on 

the flutter diagram and the probability for such an occurrence to match the discretisation of 

the aerodynamic parameters is very small. 

 

 
Figure 6: Algebraic multiplicity of the eigenvalues in the merging of modes (left) and the correct result (right). 

 

In order to automatically detect the merging of modes, the Modal Assurance Criterion (or 

MAC) can be used to track collinearity between the eigenvectors. The p-k method computes 

the eigenvectors solution based only on the eigenvalues (thanks to the inverse iteration 

method), hence if two modes merges, then they have the same eigenvectors. The MAC is 

defined by the following formula: 

 

 
𝑀𝐴𝐶 =

‖(𝑥, 𝑦)‖

√(𝑥, 𝑥)(𝑦, 𝑦)
= ‖cos(𝑥, 𝑦̂)‖ (9) 

 

Where (𝑥, 𝑦) denotes the hermitian product of the vectors 𝑥 and 𝑦. The MAC can be applied 

directly on the generalised eigenvectors or on their expression on the FE model. A threshold 

has to be defined on this criterion in order to detect the collinearities. For more robustness in 

the detection process, it is possible to add criterion on the similitudes between the eigenvalues 

if the eigenvectors are detected to be collinear. 

 

Using the MAC it is possible to detect merging of modes solved by the p-k method and then 

to adapt the computation strategy to try to resolve this aspect. In some cases, it can be done by 

changing a little bit the flight points (Mach, altitude, sweeping step in dynamic pressure, etc.) 

or the assumptions used to initialise the first guess from the previous solution. However, even 

for the cases for which such a strategy works, it adds a manual intervention which reduces 

greatly the efficiency of the automated process. 

 

5 THE INVARIANT PAIRS THEORY 

5.1 Some Definitions and Properties around the Invariant Pairs 

To introduce the invariant pairs theory (exposed and developed in [4], [6]), it is necessary to 

consider a particular expression of the problem (5). The NLEVP needs to be put in a 

formulation similar to: 
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[∑𝐴𝑗𝑓𝑗(𝑝)

𝑛

𝑗=1

] 𝑥 = 0 (10) 

 

In which 𝐴𝑗 are constant matrices and 𝑓𝑗 are holomorphic scalar functions. Let Λ ∈ ℂ𝑘×𝑘 be a 

matrix with eigenvalues in Ω ⊂ ℂ and 𝑋 ∈ ℂ𝑛×𝑘. The pair (𝑋, Λ) is called invariant pair of the 

problem (10) if and only if: 

 
∑𝐴𝑗𝑋𝑓𝑗(Λ)

𝑛

𝑗=1

= 0 (11) 

 

In this relation, 𝑓𝑗 are the extensions to the matrix case of the scalar 𝑓𝑗 in (10). For instance, 

given a set of eigenvalues (𝑝1, … , 𝑝𝑖) and eigenvectors (𝑥1, … , 𝑥𝑖) solutions of the NLEVP 

(10), the pair (𝑋, Λ) with 𝑋 = [𝑥1…𝑥𝑖] and Λ = [
𝑝1 0

⋱
0 𝑝𝑖

] is a solution of the problem 

(11). 

 

Let (𝑋, Λ) ∈ ℂ𝑛×𝑘 × ℂ𝑘×𝑘 be an invariant pair. (𝑋, Λ) is said to be minimal if there is an 

integer 𝑙 such that: 

 

 

𝑉𝑙(𝑋, Λ) = [

𝑋
𝑋Λ
…

𝑋Λ𝑙−1
]  (12) 

 

has full column rank. The smallest integer verifying this property is called minimality index 

of (𝑋, Λ). The minimality of a pair ensures that there is no null column in 𝑋. There are three 

important features about minimal invariant pairs: 

 For any invertible matrix 𝑍 ∈ ℂ𝑘×𝑘, (𝑋𝑍, 𝑍Λ𝑍−1) is also a minimal invariant pair 

solution of (11). This means that there is a basis in which Λ is diagonal. 

 The eigenvalues of Λ are also eigenvalues of the NLEVP (10). 

 If 𝑍 denotes the matrix of the eigenvectors of Λ, then 𝑋𝑍 is the matrix of the 

eigenvectors solution of (10) associated to the eigenvalues of Λ. 

 

Assuming that Λ has an eigenvalue of multiplicity 2 associated to the same eigenvector, then 

𝑉𝑙(𝑋, Λ) does not have full column rank, hence (𝑋, Λ) is not minimal. This demonstrates that 

the minimality of the invariant pair ensures that there is no merging of modes. 

 

Let 𝕋 and 𝕍 be two matrix operators defined as follows: 

 

 𝕋 ∶ ℂ𝑛×𝑘 × ℂ𝑘×𝑘 → ℂ𝑛×𝑘                   

                (𝑋, Λ) →∑𝐴𝑗𝑋𝑓𝑗(Λ)

𝑛

𝑗=1

𝕍 ∶  ℂ𝑛×𝑘 × ℂ𝑘×𝑘 → ℂ𝑘×𝑘                     
                      (𝑋, Λ) → 𝑊𝐻𝑉𝑙(𝑋, Λ) − 𝐼𝑘

 (13) 

 

With 𝑊 a normalisation matrix defined in (14) and 𝐼𝑘 the identity matrix of size 𝑘. 
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 𝑊 = 𝑉𝑙(𝑋, Λ)[𝑉𝑙(𝑋, Λ)
𝐻𝑉𝑙(𝑋, Λ)]

−1 (14) 

 

Using the definition in (13), it appears that finding a minimal invariant pair solution of (11), is 

the same as finding a couple (𝑋, Λ) ∈ ℂ𝑛×𝑘 × ℂ𝑘×𝑘 such that: 

 

 
𝔽(𝑋, Λ) = [

𝕋(𝑋, Λ)
𝕍(𝑋, Λ)

] = 0 (15) 

 

Once a solution of (15) has been obtained the eigenpairs solution of the NLEVP (10) are 

determined thanks to a diagonalisation of Λ and a base transformation of 𝑋. 

 

5.2 A Block Newton Method to Solve the Invariant Pairs Problem 

In [9], a block Newton method is presented to solve (15). The main steps are recalled in this 

article. Let (𝑋, Λ) be an estimate of the pair solution. To solve the problem one needs to 

determine (Δ𝑋, ΔΛ) in order that: 

 

 
{
𝕋(𝑋 + Δ𝑋, Λ + ΔΛ) = 0
𝕍(𝑋 + Δ𝑋, Λ + ΔΛ) = 0

 (16) 

 

By manipulating these equations, one can express through the Fréchet derivative of 𝕋 and 𝕍 

at (𝑋, Λ) toward (Δ𝑋, ΔΛ) a new system of matrix equations with the unknown (Δ𝑋, ΔΛ) in 

the left-hand side and only known parameters in the right-hand side. These relations hold after 

the small orders terms in Δ𝑋 and ΔΛ have been neglected (equivalent to the cut of the Taylor 

expansion in the p-k method): 

 

 
𝔻𝔽(Δ𝑋, ΔΛ) = [

𝔻𝕋(Δ𝑋, ΔΛ)
𝔻𝕍(Δ𝑋, ΔΛ)

] ≈ − [
𝕋(𝑋, Λ)

𝕍(𝑋, Λ)
] (17) 

 

With 𝔻𝔽(Δ𝑋, ΔΛ) denoting the Fréchet derivative of 𝔽 at (𝑋, Λ) in the direction of (Δ𝑋, ΔΛ) 
and so on for 𝔻𝕋 and 𝔻𝕍. From the first equation of (16) and the definition of the Fréchet 

derivative (see chapter 3 of [10]), it is possible to show that: 

 

 
𝔻𝕋(Δ𝑋, ΔΛ) = 𝕋(Δ𝑋, Λ) +∑𝐴𝑗𝑋𝔻𝑓𝑗(Λ, ΔΛ)

𝑛

𝑗=1

 (18) 

 

Where 𝔻𝑓𝑗(Λ, ΔΛ) is the standard notation for the Fréchet derivative of 𝑓𝑗 at Λ in the direction 

ΔΛ. Let 𝑊 from (14) be [

𝑊0

𝑊1

⋮
𝑊𝑙−1

] with 𝑊𝑖 ∈ ℂ
𝑛×𝑘. The same can be done for the second line of 

(16), yielding: 

 

 

𝔻𝕍(Δ𝑋, ΔΛ) = 𝑊0
𝐻Δ𝑋 +∑𝑊𝑖

𝐻 (Δ𝑋Λ𝑖 + 𝑋𝔻Λ𝑖(Λ, ΔΛ))

𝑙−1

𝑖=1

 (19) 

 

The computation of Δ𝑋 and ΔΛ out of (17), (18) and (19) is possible due to the fact that Λ is at 

least upper triangular and for the flutter problem it even is diagonal which make some of the 

steps a little simpler than the ones developed in [9]. The main idea is to project the equations 
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on the vector 𝑒1 = [1 0…0] of the vector base allowing solving for the first eigenpair. Then, 

one needs to update the right-hand side of the problem and to project it on the remaining 

vectors of the base. It is possible to show that the structure of this reduced problem is the 

same as the main one, hence an iterative process along all the directions of the base to 

determine completely Δ𝑋 and ΔΛ. Thanks to Λ being diagonal, one can even show that the 

update of the right-hand side is not necessary as opposed to the general case. 

 

For each column, after the projection, the problem to solve takes the following form 

(expressed for the first eigenpair): 

 

 

[
 
 
 
 
 𝑇(𝑝1) ∑𝐴𝑗𝑋[𝔻𝑓𝑗(Λ)]11

𝑛

𝑗=1

∑𝑊𝑖
𝐻𝑝1

𝑖

𝑙−1

𝑖=0

∑𝑊𝑖
𝐻𝑋[𝔻Λ𝑖(Λ)]

11

𝑙−1

𝑖=1 ]
 
 
 
 
 

[
Δ𝑥1
Δ𝑝1

] = − [
𝕋(𝑋, Λ)

𝕍(𝑋, Λ)
] 𝑒1 (20) 

 

With [𝔻𝑓𝑗(Λ)]11 defined by the matrix operator relation (the demonstration of this result is 

available in [9]): 

 

 
𝑓𝑗 ([

Λ 𝐼𝑘
0 𝑝1𝐼𝑘

]) = [
𝑓𝑗(Λ) [𝔻𝑓𝑗(Λ)]11
0 𝑓𝑗(𝑝1)𝐼𝑘

] (21) 

 

From an algorithmic point of view the resolution of (17) can be summarised as follows: 

 

Algorithm 4: Resolution of the matrix equations (17) 

For each column 𝑖 of Δ𝑋, ΔΛ 

 1. Building of Λ̃ = [
Λ 𝐼
0 Λ𝑖𝑖𝐼

] 

 2. Resolution of (20) 

Reassembly of the columns of Δ𝑋 and ΔΛ 

 

The algorithm for the block Newton method is then given below: 

 

Algorithm 5: Block Newton method for given flight conditions 

1. Choice of an initial pair (𝑋0, Λ0) 
Repeat 

 2. Minimality index computation 𝑙 for the current pair 

 3. Computation of the residual 𝑅𝑇 = −𝕋(𝑋𝑝, Λ𝑝) 

 4. Resolution of (𝔻𝕋(Δ𝑋, ΔΛ),𝔻𝕍(Δ𝑋, ΔΛ)) = (𝑅𝑇 , 0) [Algorithm 4] 

 5. Update 𝑋𝑝+1 = 𝑋𝑝 + Δ𝑋 and Λ𝑝+1 = Λ𝑝 + ΔΛ 

 6. QR-factorisation of 𝑉𝑙(𝑋𝑝+1, Λ𝑝+1) = 𝑊𝑅 

 7. Normalisation 𝑋𝑝+1 = 𝑋𝑝+1𝑅
−1 and Λ𝑝+1 = 𝑅Λ𝑝+1𝑅

−1 

 8. Diagonalisation of Λ𝑝+1to get the eigenvectors matrix 𝑍 

 9. Base transformation 𝑋𝑝+1 = 𝑋𝑝+1𝑍 and 𝑊 = 𝑊𝑍 

Until convergence is reached 
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6 APPLICATION TO THE FLUTTER PROBLEM 

6.1 Expression of the Flutter Problem into the Invariant Pairs Formalism 

The flutter equation is detailed equation (3) with the standard notations. To use the invariant 

pairs theory, one needs to identify the matrices and functions to rewrite this equation in the 

formalism of equation (10). 

 

For the structural terms, the identification is quite straightforward: 

 

 

{

𝐴1 = 𝑀,    𝑓1(𝑝) = 𝑝
2

𝐴2 = 𝐶,     𝑓2(𝑝) = 𝑝  

𝐴3 = 𝐾,     𝑓3(𝑝) = 1  

 (22) 

 

As seen in Section 5.1, the 𝑓𝑗 functions have to be holomorphic functions (it is the case for the 

functions in (22)) and it is necessary that a function of matrices can be derived from the scalar 

formulation. That second part is not a problem for the structural terms for which the matrix 

functions definition is as follows: 

 

 𝑓1: ℂ
𝑛×𝑛 → ℂ𝑛×𝑛

       𝑋 → 𝑋2

𝑓2: ℂ
𝑛×𝑛 → ℂ𝑛×𝑛 

       𝑋 → 𝑋  
𝑓3: ℂ

𝑛×𝑛 → ℂ𝑛×𝑛 
     𝑋 → 𝐼𝑛

 (23) 

 

The main difficulty arises from the aerodynamic terms. They have been computed at given 

Mach numbers and given reduced frequencies. Thus, some kind of interpolation has to be 

performed to get the GAF values for a specific Mach number and reduced frequency. For the 

sake of clarity, it is assumed that previous to a flutter computation at a given Mach number, 

the GAF are linearly interpolated as described in (24) (with 𝑀1 ≤ 𝑀𝑎𝑐ℎ < 𝑀2): 

 

 
𝐺𝐴𝐹(𝑘,𝑀𝑎𝑐ℎ) =

𝑀𝑎𝑐ℎ −𝑀1
𝑀2 −𝑀1

𝐺𝐴𝐹(𝑘,𝑀2) + (1 −
𝑀𝑎𝑐ℎ −𝑀1
𝑀2 −𝑀1

𝐺𝐴𝐹(𝑘,𝑀1)) (24) 

 

This assumption allows reducing the dependencies of the GAF matrices to solely the reduced 

frequency 𝑘. In the following, 𝐺𝐴𝐹(𝑘𝑖) denotes the GAF matrices interpolated at the Mach 

number of interest. The linear interpolation required to get the GAF values at the reduced 

frequency of interest 𝑘 (with 𝑘1 ≤ 𝑘 < 𝑘2) is given in (25), where the dependency of 𝑘 with 

the Laplace variable has been expressed. 

 

 

𝐺𝐴𝐹(𝑘) =

𝐼𝑚(𝑝)𝑐
𝑉 − 𝑘1

𝑘2 − 𝑘1
𝐺𝐴𝐹(𝑘2) + (1 −

𝐼𝑚(𝑝)𝑐
𝑉 − 𝑘1

𝑘2 − 11
)𝐺𝐴𝐹(𝑘1) (25) 

 

From (25), and by defining 𝐴𝑗 for 𝑗 from 4 to 𝑁𝑓 + 3 (𝑁𝑓 being the number of reduced 

frequencies available) such as 𝐴𝑗 = 𝐺𝐴𝐹(𝑘𝑗−3), one can identify the functions 𝑓𝑗 to adopt the 

invariant pairs formalism for the aerodynamic terms: 
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𝑓𝑗(𝑝) =

{
 
 
 
 
 
 

 
 
 
 
 
 1    𝑖𝑓  

𝐼𝑚(𝑝)𝑐

𝑉
≤ 𝑘1   𝑎𝑛𝑑 𝑗 = 4                                                                 

1    𝑖𝑓  
𝐼𝑚(𝑝)𝑐

𝑉
> 𝑘𝑁𝑓  𝑎𝑛𝑑 𝑗 = 𝑁𝑓 + 3                                                      

0    𝑖𝑓  4 < 𝑗 < 𝑁𝑓 + 3 𝑎𝑛𝑑 (
𝐼𝑚(𝑝)𝑐

𝑉
< 𝑘𝑗−4 𝑜𝑟

𝐼𝑚(𝑝)𝑐

𝑉
≥ 𝑘𝑗−2)

𝐼𝑚(𝑝)𝑐
𝑉 − 𝑘𝑗−4

𝑘𝑗−3 − 𝑘𝑗−4
       𝑖𝑓   𝑘𝑗−4 <

𝐼𝑚(𝑝)𝑐

𝑉
≤ 𝑘𝑗−3 𝑎𝑛𝑑 4 < 𝑗                  

1 −

𝐼𝑚(𝑝)𝑐
𝑉 − 𝑘𝑗−3

𝑘𝑗−2 − 𝑘𝑗−3
       𝑖𝑓   𝑘𝑗−3 <

𝐼𝑚(𝑝)𝑐

𝑉
≤ 𝑘𝑗−2  𝑎𝑛𝑑 𝑗 < 𝑁𝑓 + 3

 (26) 

 

These functions are continuous and piecewise differentiable. Figure 7 illustrates some of them 

for 𝑗 = 4 (middle), 𝑗 = 𝑁𝑓 + 3 (bottom) and a value of 𝑗 between 5 and 𝑁𝑓 + 2. 

 

 

 

 
Figure 7: Shapes of various 𝑓𝑗 functions associated to GAF terms. 

 

The definition of the matrix functions from these scalar functions is not obvious. To 

overcome this difficulty, one needs to look at the methods to compute matrix functions from 
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scalar functions. The retained method to do so is based on the Jordan normal form of a matrix 

and the property presented in [10]. Every matrix 𝑋 ∈ ℂ𝑛×𝑛 possess a Jordan normal form 𝐽: 
 

 

𝑍−1𝑋𝑍 = 𝐽 = [
𝐽1 0

⋱
0 𝐽𝑟

] (27) 

 

 

With 𝐽𝑘 the Jordan blocks: 

 

 

𝐽𝑘 = 𝐽𝑘(𝑝𝑘) =

[
 
 
 
𝑝𝑘 1 0

𝑝𝑘 ⋱

⋱ 1
0 𝑝𝑘]

 
 
 

∈ ℂ𝑚𝑘×𝑚𝑘 (28) 

 

This matrix is unique up to the order of Jordan blocks. Then, the property of interest for 

computing the matrix functions is as follows: 

 

 

𝑓(𝑋) = 𝑍𝑓(𝐽)𝑍−1 = 𝑍 [
𝑓(𝐽1) 0

⋱
0 𝑓(𝐽𝑟)

] 𝑍−1

𝑓(𝐽𝑘) =

[
 
 
 
 
 𝑓(𝑝𝑘) 𝑓′(𝑝𝑘) …

𝑓(𝑚𝑘−1)(𝑝𝑘)

(𝑚𝑘 − 1)!

𝑓(𝑝𝑘) ⋱ ⋮

⋱ 𝑓′(𝑝𝑘)

0 𝑓(𝑝𝑘) ]
 
 
 
 
  (29) 

 

Through the aerodynamic terms of the flutter equation, it appears that the invariant pairs 

formalism is rather constraining. This is one of the reason for which the application of this 

theory to complex cases (flutter of systems with FCS, non-linearities, etc.) can become 

tedious, hence slowing down its spread to industrial cases. Furthermore, the strategy based on 

the Jordan normal form developed above requires some properties on the scalar functions. 

The mathematic assumptions on this topic found in the literature are somewhat unequal from 

one source to another (see for instance the assumptions in [10] and the ones in [11], §11.1). 

For a more robust method to compute matrix functions from scalar functions, one might want 

to use the Parlett algorithm for matrix in the Schur block form. However, this strategy would 

require a more complex algorithm and imply a longer computational time. 

 

In some rare cases, the method presented in this article might not converge due to some 

approximations made on the differentiability of the functions 𝑓𝑗. The addition of new terms to 

model feedback, FCS or some other kind of external forces to the flutter equation brings along 

an increase in the number of 𝑓𝑗 functions, hence an increase in the risk to deal with non-

verified assumptions degrading the convergence of the process. 

 

6.2 Main Algorithm, Results and Performances 

To solve the flutter problem by means of the invariant pairs theory and in particular of the 

block Newton method, the main algorithm is given below. 
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Algorithm 6: Resolution of the flutter problem by block Newton method 

1. Computation of the modal characteristics “on ground” (with 𝑞̅ = 0) 

For each flight point considered 

 2. Determination of (𝑋0, Λ0) from previous points 

 3. Computation of (𝑋, Λ) solution at the current flight point [Algorithm 5] 

 4. Sorting of modes by ascending frequencies 

5. Sorting of modes over all the flight points 

6. Flutter detection 

 

This algorithm has been implemented in Elfini (in-house aero-structural solver platform at 

Dassault Aviation) and tested against several flutter cases displaying convergence problems, 

merging of modes and validation cases without any problem when solved with the p-k 

method. The cases considered range from small ones (2 modes) to industrial ones (up to 250 

modes). 

 

On cases without issue, the block Newton method finds the same results and diagrams as the 

p-k method. This observation allows validating the algorithms and their implementation in 

Elfini. As for the cases with issues, Figure 4 highlights the problem of merging modes when 

solving the flutter problem with the p-k method. This problem does not occur when using the 

block Newton method as shown Figure 8 (and Figure 9 for larger case). 

 

 
Figure 8: Flutter diagram computed with p-k method (red) and block Newton method (blue) on a small case. 
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Figure 9: Flutter diagram obtained with p-k method (red) and block Newton method (blue) on an industrial case. 

 

The main drawback of the block Newton method is its computational time which is longer 

than the p-k method one. A study on this aspect has been performed by increasing the number 

of modes computed and comparing the time between p-k method and block Newton method 

(Figure 10, the time of reference is the one obtained with the p-k to compute 10 modes). It 

appears that, as expected, the p-k method has a linear increase in the computational time with 

the number of modes computed. On the other hand, the block Newton method exhibits a 

quadratic or cubic increase. This highlights that this method might not be suitable for large 

cases in which numerous modes are computed. 
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Figure 10: Comparison of relative computational times between p-k (blue) and block Newton (red) methods. 

 

This flaw could be overcome by the use of more complex algorithms to solve the matrix 

system in the invariant pairs theory. Some of these algorithms are detailed in [6]. 

 

Another way to keep industrial computational times is to switch between p-k method and 

block Newton method along the various flight conditions to be computed. As long as no 

convergence issues or merging modes is detected, it is fine to use the p-k method and its low 

computational cost. Then, as soon as an issue is detected, the block Newton method can be 

used locally to solve only the non-converging or merging modes at a given flight point. 

Afterwards, for further flight points for which the modes are not close anymore, the p-k 

method is used again. This strategy produces a negligible increase in computational time. 

 

7 CONCLUSION AND PERSPECTIVES 

From the understanding of the reasons behind the merging of modes happening with the p-k 

method while solving the flutter problem, it has been possible to adapt a computational 

strategy based on the invariant pairs theory to avoid this issue. This new algorithm to solve 

the flutter problem has been implemented in Elfini, the in-house aero-structural solver 

platform at Dassault Aviation, and tested on several cases (both “academic” and industrial). It 

showed good promises to suppress the merging of modes despite an increased computational 

time. From this realisation, a hybrid solution has been derived in order to keep the 

computational time within industrial standard and still benefit from the features of the new 

algorithm regarding the problem at hand.  

 

This hybrid method is now the standard method used at Dassault Aviation to solve the flutter 

problem, both on civilian and military aircraft. It allows automating the post-processing of the 

flutter computation with a larger confidence in the results and a smaller need for “manual” 

intervention. 

 

Some improvements could be made to the developed method in order to help its convergence 

on complex cases (for instance the ones with feedback systems or FCS models). These 

improvements can be of two kinds, either on internal sub-algorithms (see the discussion 
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Section 6.1 on Jordan and Schur forms), or by implementing new method to solve the matrix 

system (method by extension, Arnoldi method, Jacobi-Davidson method, etc. as mentioned in 

[6] but requiring greater mathematical skills). Moreover, some developments regarding the 

formulation to use the invariant pairs theory on flutter problems might help to fully establish 

some mathematical proofs to sustain its accuracy and robustness. 
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