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Abstract: Higher aspect ratio, more flexible wings pose an aeroelastic design challenge for
future aircraft. These vehicles may encounter geometrically nonlinear effects and/or participa-
tion of rigid body degrees of freedom in their flutter modes. If geometrically nonlinear flutter
analyses are not included during the design process, the final configuration obtained may be
infeasible. This paper presents the inclusion of a beam-based nonlinear flutter constraint in a
multi-fidelity aircraft optimization framework in which the objective function is evaluated us-
ing high-fidelity FEM simulations. The flutter constraint is applied to the entire flight envelope
thereby ensuring a feasible design. The beam-based constraint is coupled with the high-fidelity
optimization problem using an equivalent beam condensation process. The gradients of the
condensation process are evaluated and verified. Finally, the assembled multi-fidelity problem
is evaluated for the initial optimization iteration.

NOMENCLATURE

AD Algorithmic Differentiation

BWB blended wing body

FEM finite element method

KS Kreisselmeier-Steinhauser

MDO multidisciplinary design optimization

RBe rigid body element

uCRM undeformed Common Research Model

UM/NAST University of Michigan’s Nonlinear Aeroelastic Simulation Toolbox

1 METHODOLOGY AND NUMERICAL METHODS

The multi-fidelity problem is defined in OpenMDAO and uses a high-fidelity solution to ob-
tain the objective function and high-fidelity constraints (such as a stress constraint). While
these offer valuable information for structural sizing, the computational expense of determining
dynamic aeroelastic constraints using the high-fidelity solution is prohibitive for optimization
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Figure 1: Diagram of the multi-fidelity optimization problem. The objective function and high-fidelity constraints
are evaluated by the high-fidelity solution, while the flutter constraint is evaluated by the beam model.

problems, especially when geometrical nonlinearities must be considered. As such, the flutter
constraint is evaluated using a geometrically nonlinear beam model (Figure 1). Beam proper-
ties for beam model are determined using an equivalent beam condensation [1], which has been
previously used to enable nonlinear aeroelastic analyses of transport aircraft [2]. Derivatives for
the gradient-based optimization are determined on the component level and the global Jacobian
is assembled automatically by OpenMDAO.

1.1 OpenMDAO
OpenMDAO [3] is an open source software framework designed to enable Multidisciplinary
Design Analysis and Optimization (MDAO), using gradient-based optimization. The frame-
work was written in Python and allows the integration of external software, e.g., C++ programs
using Cython. An OpenMDAO problem consists of Components that are assembled together to
define the global problem. This modular approach simplifies evaluating the problem gradients
to defining the gradient at the Component level, providing derivatives for the Component out-
puts with respect to its inputs. OpenMDAO uses the partials defined in this manner to assemble
the global Jacobians while utilizing problem sparsity for computational efficiency. Within this
work, we employ OpenMDAO as the coupling agent between the individual disciplines (each
box in Figure 1), taking advantage of the behind-the-scenes assembly of the global sensitivities.

1.2 TACS
The high-fidelity objective function of the multi-fidelity problem is defined and solved using
the TACS FEM code [4]. TACS uses MPI for parallel solution evaluations and has the ability
to provide an adjoint-based gradient for gradient-based optimization. It has been used for shell-
based optimization problems and topology optimization using solid elements. As such, TACS
is well suited for the proposed multi-fidelity problem.

1.3 UM/NAST
The University of Michigan’s Nonlinear Aeroelastic Simulation Toolbox (UM/NAST) [5–7] is
a framework to model coupled nonlinear aeroelastic and flight mechanics behavior of very flex-
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ible aircraft. It uses a strain-based, geometrically nonlinear beam formulation to solve structural
dynamic and aeroelastic problems and is capable of modeling slender, very flexible structures
accurately. Multiple aerodynamic models are available including strip theory with Peter’s fi-
nite state aerodynamics [8], method of segments [9], and UVLM with propeller effects [10,11].
Furthermore, the code is able to determine coupled nonlinear sensitivities [12] and can interface
with the Python-based OpenMDAO using a Cython wrapper.

1.4 Flutter Constraint
Jonsson et al. [13] provides a detailed discussion on different flutter constraint methodologies.
The flutter constraint used in this work was developed in [12]. The flutter damping values of the
aircraft for various flight conditions are constrained such that no instabilities occur. However,
to obtain a scalar flutter constraint, a double aggregation with Kreisselmeier-Steinhauser (KS)
functions is used, as proposed by Jonsson and Martins [14]:

KS (KS (Re (λi))) ≤ 0 (1)

As geometrically nonlinear flutter problems can depend on a large number of variables (angle
of attack, control surface deflections, etc.), an accurate flutter constraint is highly dependent
on how the flight envelope was sampled. Details on sampling strategies applied to the flutter
constraint—and potential pitfalls—have been investigated by Lupp and Cesnik [12].

2 EQUIVALENT BEAM CONDENSATION PROCESS
The beam condensation consists of two separate processes: a mass condensation and a stiffness
condensation. The mass condensation simplifies every element as a point mass and determines
the equivalent beam mass properties from these. The equivalent beam stiffness properties are
determined from FEM runs for linearly independent load cases. Gradients for the mass conden-
sation are determined analytically, while the stiffness sensitivities are determined using Algo-
rithmic Differentiation (AD).

2.1 Mass Condensation
The mass condensation uses the high-fidelity FEM model and reduces it to point masses—one
for every element (Figure 2). For an entire model, the high fidelity model must be subdivided
such that every beam node is associated with its neighboring high fidelity elements. This can
be achieved, for example, using a nearest neighbor approach. The mass of every element is
determined from the element area and density, assuming a constant element thickness:

mj = ρAt (2)

The element area is determined from the element corner points using Heron’s formula (using
two triangles for quadrilateral elements).The equivalent beam mass is then obtained from the
sum of the element masses associated with the beam section.

me =
N∑
j=1

mj (3)
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Figure 2: Relationship between a mass element and the beam reference node.

The center of gravity of the beam section (determined from the individual element masses) is:

xcg =

N∑
j=1

mjrxj

N∑
j=1

mj

(4)

ycg =

N∑
j=1

mjryj

N∑
j=1

mj

(5)

zcg =

N∑
j=1

mjrzj

N∑
j=1

mj

(6)

Finally, the inertia of the equivalent beam section (determined from the individual element
masses) is:
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Ixx =
N∑
j=1

mj

(
r2yj + r2zj

)
(7)

Ixy =
N∑
j=1

mjrxjryj (8)

Ixz =
N∑
j=1

mjrxjrzj (9)

(10)

Iyy =
N∑
j=1

mj

(
r2xj + r2zj

)
(11)

Iyz =
N∑
j=1

mjryjrzj (12)

Izz =
N∑
j=1

mj

(
r2xj + r2yj

)
(13)

2.2 Mass Condensation Gradients

Because the beam condensation is applied to a gradient-based optimization problem, efficiently
and accurately determining the gradients is paramount. As mentioned previously, the determi-
nation of the gradients is subdivided on the component level of the optimization problem. As
such, the gradients of the mass properties with respect to the component design variables (ele-
ment thicknesses and densities) are required. The formulae for the mass condensation process
are comparatively simple, so the gradients were obtained analytically. The derivatives of the
beam section mass w.r.t. element thickness element density are:

∂m

∂ti
=

N∑
j=1

∂mj

∂ti
=
∂mi

∂ti
(14)

∂m

∂ρi
=

N∑
j=1

∂mj

∂ρi
=
∂mi

∂ρi
(15)

It is worth noting that the gradients simplify to the derivative of the mass element w.r.t. its
inputs, with all other entries of the gradient vector equaling zero. This simplifies the derivatives
of the other mass properties and also results in a sparse Jacobian, which improves computational
efficiency.

The derivatives of the center of gravity are determined using the quotient rule:
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∂xcg
∂ti

=

∂mi

∂ti
rxi

N∑
j=1

mj − ∂mi

∂ti

N∑
j=1

mjrxj(
N∑
j=1

mj

)2 (16)

The element mass the equation for the center of gravity can be rearranged to obtain:

N∑
j=1

mjrxj = xcg

N∑
j=1

mj (17)

Using the Equation 17, the center of gravity gradients w.r.t. element thickness and density
simplify to:

∂xcg
∂t

=
∂mi

∂ti
(rxi − xcg)
me

(18)

∂ycg
∂t

=
∂mi

∂ti
(ryi − ycg)
me

(19)

∂zcg
∂t

=
∂mi

∂ti
(rzi − zcg)
me

(20)

∂xcg
∂ρi

=

∂mi

∂ρi
(rxi − xcg)
me

(21)

∂ycg
∂ρi

=

∂mi

∂ρi
(ryi − ycg)
me

(22)

∂zcg
∂ρi

=

∂mi

∂ρi
(rzi − zcg)
me

(23)

Finally, the derivatives of the inertia of the beam section w.r.t. the element thickness and density
are:
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∂Ixx
∂ti

=
∂mi

∂ti

(
r2yj + r2zj

)
(24)

∂Ixy
∂ti

=
∂mi

∂ti
rxjryj (25)

∂Ixz
∂ti

=
∂mi

∂ti
rxjrzj (26)

∂Iyy
∂ti

=
∂mi

∂ti

(
r2xj + r2zj

)
(27)

∂Iyz
∂ti

=
∂mi

∂ti
ryjrzj (28)

∂Izz
∂ti

=
∂mi

∂ti

(
r2xj + r2yj

)
(29)

∂Ixx
∂ρi

=
∂mi

∂ρi

(
r2yj + r2zj

)
(30)

∂Ixy
∂ρi

=
∂mi

∂ρi
rxjrzj (31)

∂Ixz
∂ρi

=
∂mi

∂ρi
rxjrzj (32)

∂Iyy
∂ρi

=
∂mi

∂ρi

(
r2xj + r2zj

)
(33)

∂Iyz
∂ρi

=
∂mi

∂ρi
ryj + rzj (34)

∂Izz
∂ρi

=
∂mi

∂ρi

(
r2xj + r2yj

)
(35)

2.3 Stiffness Condensation

The equivalent beam stiffness condensation used in this work was first proposed by Malcolm
and Laird [1] to accurately deduce beam properties of wind turbine blades for subsequent aeroe-
lastic analyses. The process has since been applied to aircraft structures [15, 16]. Furthermore,
Stodieck et al. [16] extended the Malcolm’s process to obtain gradients of the stiffness proper-
ties for equivalent beam condensations in optimization problems.

The stiffness condensation component within this work consists of two distinct processes (Fig-
ure 3): high-fidelity FEM runs to obtain equivalent beam displacements and the determination
of the stiffness properties (from the equivalent beam displacements previously determined).

The high-fidelity FEM simulations are conducted for six linearly independent load cases to
obtains six sets of beam displacements. In this work, these load cases are evaluated using
Nastran and the equivalent beam displacements recovered using rigid body elements (RBEs).
A set of six linearly independent load cases are:
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Figure 3: Block diagram of the complete stiffness condensation process including high-fidelity FEM solutions and
the ensuing determination of equivalent beam stiffnesses.

(
F t
)
1

=
{
Fx 0 0 0 0 0

}T (36)(
F t
)
2

=
{

0 Fy 0 0 0 0
}T (37)(

F t
)
3

=
{

0 0 Fz 0 0 0
}T (38)(

F t
)
4

=
{

0 0 0 Mx 0 0
}T (39)(

F t
)
5

=
{

0 0 0 0 My 0
}T (40)(

F t
)
6

=
{

0 0 0 0 0 Mz

}T (41)

The element stiffness matrix is evaluated from the internal forces f i, which result from the
applied tip loads (Figure 4), and the element strains:

f i =



f ix
f iy
f iz
mi
x

mi
y

mi
z


= [k] {ε} (42)

The element strains are defined in Equation 43 and can be rewritten in terms of displacements:
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Figure 4: Diagram of the coordinate frames and global and local load conventions (shown here for an applied tip
moment) of the stiffness condensation process.

ε =



εx
γy
γz
κx
κy
κz


(43)

=



∂ux
∂x
∂uy
∂x
∂uz
∂x
∂θx
∂x
∂θy
∂x
∂θz
∂x


+



0
−θz
θy
0
0
0


(44)

=



∂ux
∂x
∂uy
∂x
∂uz
∂x
∂θx
∂x
∂θy
∂x
∂θz
∂x


+

∫ x

0



0
−κz
κy
0
0
0


dx (45)

The element local displacement and local internal force vectors u and f are obtained by trans-
forming the global displacements U and F in to the local coordinate system:

u =



ux
uy
uz
θx
θy
θz


= [T ] {U} (46)
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f t = [T ]F t (47)

The element stiffness properties are determined by initially solving for the stiffness matrix in
the local frame. The local element stiffness matrix is obtained from:

f i = [K] {∆u} (48)

with

{∆u} =



uBx − uAx
uBy − uAy − lθAz
uBz − uAz + lθAy

θBx − θAx
θBy − θAy
θBz − θAz


= [k] {ε} (49)

Malcolm [1] derived the relationship between the local stiffness matrix K and the stiffness
matrix k in Lyapunov form, which can be solved for k−1 using Lyapunov’s method:

K−1Q−1 = k−1HQ−1 + Ek−1 (50)

with

E =


0 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 −1 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 (51)

H =



l 0 0 0 0 0
0 l 0 0 0 0
0 0 l 0 0 0
0 0 0 l 0 0

0 0 − l2

2
0 l 0

0 l2

2
0 0 0 l

 (52)

Q =



l2

2
0 0 0 0 0

0 l2

2
0 0 0 0

0 0 l2

2
0 0 0

0 0 0 l2

2
0 0

0 0 − l3

3
0 l2

2
0

0 l3

3
0 0 0 l2

2


(53)
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2.4 Stiffness Condensation Gradients

As with the equivalent beam mass condensation, the gradients of the stiffness condensation
with respect to its input variables are required for the optimization problem (Figure 3). While
the mass condensation gradients were determined analytically, the gradients of the stiffness
condensation component were determined using AD, while the gradients of the FEM solutions
needed for the condensation are obtained from the FEM solution itself. For this work Nastran’s
SOL 200 was used for this purpose. Based on previous studies of AD libraries [12], the C++
library CoDiPack [17] was chosen.

The stiffness condensation in this work was implemented using templates, permitting the func-
tion evaluation using standard C++ floating precision types without the overhead of operator
overloading AD. The evaluation of the gradient with respect to the equivalent beam displace-
ments is then evaluated using the CoDiPack types. It should be noted, that the stiffness matrix of
a given element only depends on the displacements of that element’s corner nodes and is inde-
pendent of any other nodes’ displacements. As a result, the Jacobian of the stiffness properties
is very sparse, yielding a more computationally efficient solution.

3 NUMERICAL STUDIES

Now that the beam condensation process and the formulation of its derivatives have been intro-
duced, the mass and stiffness condensation components must be verified. The mass condensa-
tion is tested using a simple plate example, for which analytical mass properties are obtained,
while the stiffness condensation is tested and compared to a simple beam model with known
stiffness properties. The gradients of both the mass and stiffness condensation processes are
verified against reference results obtained using the complex step method. The verification of
the individual components in this manner offers confidence in the accuracy of the assembled
problem, as the assembly of the global Jacobian is conducted by OpenMDAO. This equates to
the application of the chain rule using verified derivatives and as such, the global gradients will
be accurate as long as the component gradients have been verified.

After verifying the component gradients, an assembled optimization problem (mass minimiza-
tion) is investigated using a very flexible transport aircraft configuration. The objective function
and constraint values are reported for the first optimization iteration along with the global gra-
dients of the flutter constraint with respect to a subset of the design variables.

Mass Condensation

The mass condensation component is verified using a simple plate configuration (Figure 5). The
plate properties are listed in Table 1. The component results are compared to analytical values
for mass, inertia, and center of gravity position (Table 1). The values obtained from the mass
condensation match the analytical values to machine precision.

Next, the accuracy of the gradient values obtained by the mass condensation component are
quantified. To this end, a single mass element of the plate is perturbed using an imaginary
disturbance ih. The gradient reference gradient is then determined using the complex step
method:

g (x) ≈ Im (f [x+ ih)]

h
(54)
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beam node

mass element

Figure 5: Plate example for testing the mass condensation process and verification of mass condensation gradients.

Table 1: Plate properties of the verification test case as well as component and analytical reference results for the
mass condensation.

Value Reference Value
Plate Length, m 1.0 –
Plate Width, m 0.2 –
Plate Thickness, m 0.01 –
Plate Density, kg/m3 2700.0 –
Verification Results
Mass, kg 5.39999999999999 5.4
xcg, m 0.10000000000000006 0.1
ycg, m 0.5000000000000003 0.5
zcg, m 0.0 0.0

Because the step size h is chosen at machine precision (10−16), the derivative obtained using
the complex step method is accurate to machine precision. The gradient results from the mass
component and the corresponding reference results are listed in Table 2. The gradient obtained
from the mass condensation component matches the complex step results to machine precision.
As a result, the mass property gradients are accurate to machine precision.

Stiffness Condensation

Similar to the mass condensation component, the stiffness condensation component must be
verified before use in the assembled problem. A simple beam configuration is used as a test
case. The stiffness condensation component then utilizes the beam displacements to determine
the equivalent beam stiffness properties. As the source data is obtained from a beam, reference
stiffness data is available for comparison. The stiffness property gradients are verified similar
to the mass condensation. An imaginary perturbation to the displacments of a beam node are
applied and the reference derivatives are determined using complex step (Figure 6).

Equation 55 shows the result from the stiffness property verification. Clearly, the stiffness prop-
erty function values, while less accurate than the mass condensation, are sufficiently accurate
for the multi-fidelity problem. The stiffness property gradients, on the other hand are accurate

12
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Table 2: Comparison of the mass condensation component gradients with respect to mass element thickness with
reference results using the complex step method.

Component Complex Step
∂m
∂t

7.105263157894723 7.105263157894723
∂Ixx
∂t

3.07533897069543 3.07533897069543
∂Iyy
∂t

0.039967105263157825 0.039967105263157825
∂Izz
∂t

3.1153060759585878 3.1153060759585878
∂xcg
∂t

-0.03289473684210529 -0.03289473684210529
∂ycg
∂t

0.20775623268697985 0.20775623268697985
∂zcg
∂t

0.0 0.0

Figure 6: Stiffness condensation verification test case.

to machine precision compared to the reference data. This is because the AD method used to
determine the component derivatives is accurate to machine precision (w.r.t. its inputs, the beam
displacements). The discrepancy in accuracy between the function and gradient values can be
explained that the function value is being compared to an external reference value. The gradi-
ent, by contrast, is compared to a reference value which depends on the function input variables.
This explains the close correlation between the gradient values despite the larger difference in
the function value.

kNAST1 =


1.2615× 109 1.8566× 10−5 −0.0866 3.1114
1.8566× 10−5 9.6953× 106 −0.4323 0.0194
−0.0866 −0.4323 7.5533× 106 1.6162× 10−3

3.1114 0.0194 1.6162× 10−3 121.7089× 106

 (55)

(
∂K22

∂t

)
component

= 6.28593421152476× 10−4 (56)(
∂K22

∂t

)
reference

= 6.28593421152476× 10−4 (57)

3.1 uCRM 13.5 Configuration
The undeformed Common Research Model (uCRM) 13.5 (Figure 7) configuration is a very
flexible transport aircraft configuration designed by the MDO Lab at the University of Michigan
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Figure 7: Two side view of the uCRM 13.5 showing the planform, jig shape and 1-g trim shape.

[18]. The model was designed using high-fidelity optimization without a flutter constraint and
experiences large deformations. Therefore, it offers a compelling case study for applying the
geometrically nonlinear flutter constraint within the multi-fidelity optimization problem. The
original uCRM configuration contained orthotropic elements to model stiffeners. To simplify
the optimization problem, the wing skins were modeled as isotropic material.

A UM/NAST beam model of the uCRM wing was created. The beam nodes were placed at the
rib locations, at the center of the wing box so that the beam reference axis remains close to the
wing shear axis (Figure 8). Aerodynamics are modeled using strip theory with Peters’ finite
state aerodynamics.

3.2 Assembled Multi-Fidelity Problem

After having verified the individual components of the multi-fidelity problem, the entire op-
timization problem is assembled. The multi-fidelity optimization problem is formulated as a
mass minimization with respect to wing skin thicknesses and subject to stress constraints from
high fidelity FEM solutions. Additionally, a lower fidelity flutter constraint is imposed, such
that no flutter occurs within the flight envelope, as previously described. Instead of a high-
fidelity aerostructural solution, a uniform load is applied across the span. The block diagram of
the optimization process is shown in Figure 1. The optimization problem is formulated as:

minimize: mstruc

with respect to: x = [ti]
T

subject to:
KS (σMises) ≤ σyield

KS (KS (λi)) ≤ 0

(58)

A single optimization iteration is conducted and the resulting function and gradient values re-
ported. Additionally, a runtime comparison between the objective function and flutter constraint
evaluation conducted. While this is not an equal comparison—the objective function consists of
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Figure 8: Beam node location for the UM/NAST uCRM 13.5 model.

linear static simulation that is faster than a nonlinear high-fidelity flutter solution–it does serve
as a lower bound of the possible speedup when using the multi-fidelity approach.

Single Optimization Iteration

A single optimization iteration is evaluated to illustrate the interaction of the individual com-
ponents in the multi-fidelity problem. Figure 9 shows the wing loading and deformation for
the first optimization iteration. The objective function values and global gradient of the flutter
constraint are listed in Table 3.

Runtime Comparison

The ability to save wall time during the flutter constraint evaluation poses a potentially sig-
nificant advantage of the multi-fidelity problem over an optimization problem evaluated solely

Figure 9: Bending deformation of the uCRM wing box for the initial iteration.
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Table 3: Solution values for the first optimization iteration.

Value
Wing Mass, kg 17446.4035
Stress Constraint 0.997823861
Flutter Constraint 0.57
Flutter Constraint Gradient 0.00004513

Table 4: Comparison of the wall time required for an objective function evaluation and for the evaluation of the
flutter constraint.

Wall Time, s
Objective 38.6
Flutter Constraint 18.2

using high-fidelity methods. To quantify this, the wall time of the objective function was cap-
tured without further condensation processes or constraints. Next, the condensation processes
and the flutter constraint were evaluated without the high-fidelity objective function or high-
fidelity constraints. Obviously, the constraints and objective function are evaluated together at
every optimization iteration. However, seperating out the respective evaluations is necessary to
obtain accurate wall time results. A series of ten evaluations were run and the times averaged
(Table 4).

The high-fidelity objective function evaluation requires more than twice the wall time as the
flutter constraint evaluation (incl. the condensation processes). While adding additional flutter
search points and evaluating them in series would result in additional wall time, the parallel
evaluation of the search points would result in a similar wall time to the one reported here
(provided there are enough CPU threads available). Furthermore, it is noteworthy that this
comparison truly is a lower bound of the speedup obtained by using a lower-fidelity flutter con-
straint. The static solution used in the objective function is linear and computationally cheaper
than evaluating a nonlinear flutter constraint.

4 CONCLUDING REMARKS

This paper presented a multi-fidelity approach to including nonlinear flutter constraints into
high-fidelity MDO problems. Equivalent beam mass and stiffness condensation processes were
developed from previously existing work and the derivatives for these components were ob-
tained. The gradients determined within the equivalent beam condensation processes are highly
sparse, resulting in reduced computational expense. The function and gradient values of the
condensation processes were verified and the gradient data was shown to be accurate to ma-
chine precision. After verifying the equivalent beam condensation process, the assembled prob-
lem was investigated. A single optimization iteration was conducted and the global gradient
data was reported. Finally, the run time of the low-fidelity constraint was compared to the high
fidelity solution to quantify the computational advantage of the multi-fidelity approach.

However, including flutter constraints, even linear ones, poses computational challenges. In-
cluding a flutter constraint which accounts for geometrically nonlinear effects further increases
the computational cost significantly. As such, multi-fidelity problems in which the geometri-
cally nonlinear flutter problem is accounted for using a lower-fidelity model may turn a compu-
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tationally infeasible problem into a feasible one. Moreover, as the flutter constraint presented
here requires less wall time than the objective function evaluation, it is conceivable that the
flutter constraint could be evaluated in parallel to the objective function (provided sufficient
CPU threads). As a result, it is possible to include geometrically nonlinear flutter constraints
into high-fidelity MDO problems at similar computational cost to existing high-fidelity steady
problems.
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