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Abstract: The current paper examines the aeroservoelastic stability problem from both the 

perspective of the Flight Controls Engineer and the Flutter Engineer and shows that both are 

solving the same problem. The advantages and disadvantages of each strategy are described 

along with recommendations for usage in an aircraft design environment.  

 

 

1 INTRODUCTION 

Aeroservoelastic (ASE) analysis builds upon the interaction of flexible aircraft and unsteady 

aerodynamic forces (aeroelastic analyses), by adding the influence from the aircraft flight 

control system. As aircraft become more flexible and flight controls operate at higher 

bandwidths, the possibility of adverse feedback, leading to instability becomes more likely 

and requires ASE stability analyses during the design phase. 

 

Aeroelastic systems are typically modeled as systems of 2
nd

 order differential equations. 

These systems provide representations of spatial distributions of mass, stiffness, damping and 

aerodynamic forces. Converting these systems into a state space form allows a conceptually 

straightforward method for determining system stability via extraction and examination of the 

so-called ‘A’ or system matrix eigenvalues. For system stability, all of the eigenvalues must 

lie in the left half of the complex plane. The behavior of the aeroelastic system can be 

augmented and modified by including the effects of feedback controllers. This process simply 

extends the state space formulation to include the state space matrices of the controller. The 

stability assessment can then be extended to include the effects of the controller(s). Various 

analytical, numerical and test procedures exist to predict the aeroservoelastic stability of 

aircraft [1–4]. 

 

In the following, two different approaches will be discussed to establish the stability of an 

aeroservoelastic system. Broken loop frequency response analysis and closed loop flutter 

analysis are two primary techniques one can utilize to assess the ASE stability of the system. 
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This paper also shows the mathematical equivalence between broken loop frequency response 

analysis and the closed loop flutter analysis. 

 

Traditional flutter analysis typically involves iterative eigenvalue procedures such as PK-

method, K-method, KE-method and the G-method which have been widely utilized in the 

industry to solve the classic aeroelastic equations of motion.  The iterative nature of the 

eigenvalue formulation is due to unsteady aerodynamic forces being represented as tables of 

complex values as a function of reduced frequency. Such methods generate complex 

eigenvalues and the aeroelastic stability is analyzed using dynamic pressure dependent modal 

frequency and damping curves (VGF plots). To analyze the ASE stability via closed loop 

flutter analysis, the controller dynamics (control law) are typically represented in state-space 

matrix form or cascaded second order systems and the iterative methods (such as PK-method) 

can be extended to include the controller dynamics into the aeroelastic equations of motion. In 

addition to flexible modes, the control law degrees of freedom are introduced into the 

aeroelastic equations making the problem even more complicated to track and identify the 

resulting complex eigenvalues. 

 

The frequency domain analysis approach is more of control-centric view of the ASE stability 

problem. This approach utilizes broken loop frequency domain analysis to determine closed 

loop stability based on the open loop transfer function [5]. The closed loop stability 

assessment is primarily based on the phase and gain margin study of the frequency response 

functions emanating from the aircraft aeroelastic response and the control law transfer 

functions. For a given flight point, this method directly shows the closed loop stability [2] and 

additionally indicates the robustness of the closed loop system by depicting the gain and 

phase margins. One of the primary advantages of this approach is that it allows the analyst to 

assess the ASE stability and robustness for all aeroelastic modes at the same time. This would 

be equivalent to a very large number of closed loop flutter runs. The method also provides an 

efficient way to assess the various control law configurations by merely interchanging the 

controller frequency response functions (FRFs). 

 

This paper describes the two approaches used in predicting aeroservoelastic stability: 

 

1. Closed loop PK flutter analysis – flutter perspective 

2. Broken loop frequency response analysis – controls perspective 

 

The paper then presents several examples to illustrate the equivalence between the two 

methods. The first example considers a simple cantilevered plate model with a trailing edge 

control surface. The second example considers a more complex model representing a generic 

business jet (although for simplicity only a half-model is considered). In both cases, a simple 

control law is provided to modify the control surface deflection as a function of tip position or 

acceleration. This control law can be modified to examine the cause and effect. The paper 

demonstrates that the aeroservoelastic stability can be assessed using both methods.   

 

Section 2 describes the two methods and their mathematical equivalence. Section 3, Section 4 

and Section 5 detail the example aeroelastic models and their respective closed loop stability 

analyses. Each example shows aeroservoelastic stability using both methods with 

modifications to the respective control law. Section 6 presents the concluding remarks along 

with some details regarding merits and demerits of each approach. Note that the parameters of 

the sample problems presented in this paper are arbitrary and are intended to demonstrate the 

validity of the process. 
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2 AEROSERVOELASTIC STABILITY 

This section presents the two techniques used in assessing the aeroservoelastic stability. An 

extension to the PK flutter analysis to include the controller dynamics is described first, 

followed by the broken loop frequency response analysis. 

 

2.1 Closed Loop Flutter Analysis 

A common technique which is widely used involves transforming the controller dynamics 

into a series of second order cascaded models which can then directly be integrated into the 

aeroelastic equations of motion [6]. The technique presented here shows a slightly different 

approach where the controller dynamics can be used directly in state space form without 

transforming into a system of cascaded second order transfer functions. 

 

Consider the aeroelastic equations of motion in the Laplace domain [7], 

 

 
[𝑀ℎℎ𝑠2 + (𝐵ℎℎ −

1

4
𝜌𝑐̅𝑉

𝑄ℎℎ
𝐼

𝑘
⁄ ) 𝑠 + (𝐾ℎℎ −

1

2
𝜌𝑉2𝑄ℎℎ

𝑅 )] {𝑞ℎ(𝑠)}

= 𝐹ℎ𝛿(𝑠) 

(1) 

      

where 𝑀ℎℎ, 𝐵ℎℎ and 𝐾ℎℎ are generalized mass, damping and stiffness matrices. 𝑄ℎℎ(𝑚, 𝑘) =
 𝑄ℎℎ

𝑅 + 𝑖𝑄ℎℎ
𝐼  represents the unsteady aerodynamic force matrix which is dependent on Mach 

number  𝑚  and reduced frequency 𝑘. The vector 𝑞ℎ denotes the generalized degrees of 

freedom and Fℎ𝛿(𝑠) represents the control mode coupling which can be expressed by the 

following equation: 

 

 

𝐹ℎ𝛿(𝑠) = (−
1

2
𝜌𝑉2𝑄ℎ𝛿

𝑅 ) 𝑞𝑐(𝑠) + 𝑠 (−
1

4
𝜌𝑐̅𝑉

𝑄ℎ𝛿
𝐼

𝑘
⁄ ) 𝑞𝑐(𝑠)

− 𝑠2𝑀ℎ𝛿𝑞𝑐(𝑠) 

 

(2) 

where 𝑄ℎ𝛿(𝑚, 𝑘) =   𝑄ℎ𝛿
𝑅 + 𝑖𝑄ℎ𝛿

𝐼   denotes the control surface aerodynamic coupling,  

Mℎ𝛿  represents the control surface inertial coupling. The underlying assumptions required in 

arriving at Equations 1 and 2 can be reviewed in [7]. 

 

Equations 1 and 2 can be recast into state space form in the following way, 

 

 
�̇�𝑝 = 𝐴𝑝𝑥𝑝 + 𝐵𝑝𝑢𝑝 

𝑦𝑝 = 𝐶𝑝𝑥𝑝 + 𝐷𝑝𝑢𝑝 
(3) 

 

where the state space matrices A𝑝 and B𝑝 can be given by, 

 

 
𝐴𝑝 = [

0 𝐼

−𝑀ℎℎ
−1 (𝐾ℎℎ −

1

2
𝜌𝑉2𝑄ℎℎ

𝑅 ) −𝑀ℎℎ
−1 (𝐵ℎℎ −

1

4
𝜌𝑐̅𝑉

𝑄ℎℎ
𝐼

𝑘
⁄ )] 

 

(4) 

 𝐵𝑝 = [

0 0 0

𝑀ℎℎ
−1 (

1

2
𝜌𝑉2𝑄ℎ𝛿

𝑅 ) 𝑀ℎℎ
−1 (

1

4
𝜌𝑐̅𝑉

𝑄ℎ𝛿
𝐼

𝑘
⁄ ) −𝑀ℎℎ

−1𝑀ℎ𝛿
] (5) 
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and the state vector  𝑥𝑝 consists of displacements and velocities of generalized degrees of 

freedom [𝑞ℎ
𝑑𝑖𝑠𝑝

 𝑞ℎ
𝑣𝑒𝑙]T.  A typical sensor response 𝑦𝑝 can be formulated as the following, 

 

 𝑦𝑝 = [
𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛
𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦

𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛

] (6) 

 

𝑦𝑝 can be either a translation or angular quantity. Corresponding to the above definition of the 

sensor output, matrices C𝑝 and D𝑝 take the following form, 

 

 
𝐶𝑝 = [

𝛷𝑠𝑒𝑛𝑠𝑜𝑟
𝑇 0

0 𝛷𝑠𝑒𝑛𝑠𝑜𝑟
𝑇

   [0 𝛷𝑠𝑒𝑛𝑠𝑜𝑟
𝑇 ]𝐴𝑝

] 

 

(7) 

 

 𝐷𝑝 = [

0 0
0 0

[0 𝛷𝑠𝑒𝑛𝑠𝑜𝑟
𝑇 ]𝐵𝑝   

] (8) 

 

Next, the controller dynamics including the actuator dynamics can be represented by the 

following equations. The input to the control law is the sensor response 𝑦𝑝  and the output 

typically denotes the control surface position, 

 

 

 
�̇�𝑐 = 𝐴𝑐𝑥𝑐 + 𝐵𝑐𝑢𝑐 

𝑦𝑐 = 𝐶𝑐𝑥𝑐 + 𝐷𝑐𝑢𝑐 
(9) 

 

With the control law in the feedback loop, the inputs 𝑢𝑐 = 𝑦𝑝 and 𝑢𝑝 = 𝑦𝑐  and the closed loop 

state matrix can be given by the following equation: 

 

 {
�̇�𝑝

�̇�𝑐
} = [

𝐴𝑝 + 𝐵𝑝𝐹
−1𝐷𝑐𝐶𝑝 𝐵𝑝𝐹−1𝐶𝑐

𝐵𝑐𝐶𝑝 + 𝐵𝑐𝐷𝑝𝐹−1𝐷𝑐𝐶𝑝 𝐴𝑐 + 𝐵𝑐𝐷𝑝𝐹−1𝐶𝑐
] {

𝑥𝑝

𝑥𝑐
} (10) 

 

where, F = I − D𝑐D𝑝. Next, for a specific flight condition, the algorithm proceeds to compute 

the eigenvalues of the closed loop state matrix iteratively on the reduced frequency 𝑘 and the 

solution is reached when the 𝑘 value is within a very small tolerance to one of the 

eigenvalues. Note that the system order is now increased by the size of the controller plant 

matrix A𝑐.  

 

Another common approach to solving the closed loop flutter problem is to use rational 

functional approximation for the unsteady aerodynamics [8–12]. Methods such as Roger’s 

approximation [10], Matrix Pade approximation [11] or Karpel’s minimum state method [12] 

can be implemented to transform the discrete 𝑘  dependent aerodynamic force into a 

continuous one. This approximation can then be transformed back into the time domain where 

the unsteady aerodynamics is represented by the lag states. Irrespective of the technique, the 

aeroelastic equations can be expressed in the form shown by Equation 3 although the matrices 

A𝑝 and B𝑝 are formulated differently as compared to Equations 4 and 5. Note that the state 

matrix A𝑝 is not dependent on the reduced frequency 𝑘. In this case, the state vector 
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  𝑥𝑝 consists of displacements and velocities of generalized degrees of freedom as well as the 

aerodynamic lag states  [𝑞ℎ
𝑑𝑖𝑠𝑝

 𝑞ℎ
𝑣𝑒𝑙 𝑞𝑎]

T. The stability of the closed loop system can be 

predicted by directly solving the eigenvalues of the closed loop state matrix (as given by 

Equation 9) without any iterative process.  

 

2.2 Broken Loop Frequency Response Analysis 

This approach is more of a controls centric view of examining the aeroservoelastic stability. 

In control engineering, the stability margins of a feedback closed loop system can be 

predicted by the open loop system frequency response function (FRF). Gain and phase margin 

analysis is ubiquitous in controls engineering and the stability margins indicate the response 

characteristics robustness of the stability of the closed loop system. Consider the linear 

aeroelastic plant dynamics governed by Equation 3. The open loop transfer function  𝐺𝑝(𝑠) 

can be written as, 

 

 𝐺𝑝(𝑠) =  𝐶𝑝(𝑠𝐼 − 𝐴𝑝)
−1

𝐵𝑝 + 𝐷𝑝 (11) 

 

The control law transfer function can also be expressed similar to Equation (9) in the 

following form, 

 

 𝐺𝑐(𝑠) =  𝐶𝑐(𝑠𝐼 − 𝐴𝑐)
−1𝐵𝑐 + 𝐷𝑐 (12) 

 

For clarity, 𝐺𝑝(𝑠) refers to an open loop system throughout the document. Consider a generic 

single loop aeroservoelastic system, where 𝐺𝑝(𝑠) denotes the plant dynamics, 

𝐺𝑐(𝑠) represents the controller dynamics and a simple gain feedback as shown in Figure 1, 

 

 

 
Figure 1: Generic closed loop aeroelastic system 

 

In the above figure,  𝛿𝑖 denotes the control surface input, 𝑦𝑝(𝑠) denotes sensor output 

and 𝛿𝑐 denotes the control surface output. For a specific altitude and Mach number, the open 

loop plant response 𝐺𝑝(𝑠) and the control law frequency response 𝐺𝑐(𝑠)  are known 

quantities. The closed loop system transfer function from the control input to the control 

output can be written as, 
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𝛿𝑐(𝑠)

𝛿𝑖(𝑠)
=

𝐺𝑐(𝑠)𝐺𝑝(𝑠)

𝐼 + 𝐺𝑐(𝑠)𝐺𝑝(𝑠)
 (13) 

 

To assess the closed loop system stability, a broken loop system is considered as indicated by 

the red dashed lines in Figure 1. The broken loop transfer function can be written as,  

 

 

 
𝛿𝑐(𝑠)

𝑒(𝑠)
= 𝐺𝑐(𝑠)𝐺𝑝(𝑠) (14) 

 

The closed loop system stability is determined by the poles of the closed loop transfer 

function indicated by Equation 13 and checking if any pole exists on the right half of the 

complex plane. Equivalently, the closed loop stability can be assessed with the phase and gain 

margins of a broken loop transfer function indicated by Equation 14. Gain and phase margins 

reveal the magnitude of additional gain or phase that can be allowed in the feedback before 

the closed loop system becomes unstable [5]. 

 

 

Figure 2: Broken loop system with unit gain feedback 

 

3 SIMPLE TWO DOF PLATE MODEL 

3.1 Model Description 

The example problem consists of a simple rectangular unswept wing [13, 14]. The wing is 

rigid, but has two rotational springs at the root to provide flapping (θ) and pitch (α) degrees of 

freedom (see Figure 3). Model details can be found in the references.  

 

 

Figure 3: Simple two degree of freedom system 
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This two degree of freedom system uses quasi-steady aerodynamics, which is deemed 

sufficient for the illustrative purposes of this problem. The equations of motion can be shown 

to be: 

 

 𝑀�̈� + 𝜌𝑉𝐵𝐴�̇� + (𝜌𝑉2𝐾𝐴 + 𝐾𝑆)𝑞 = 𝜌𝑉2𝐾𝐶𝛽 (15) 

 

where, 𝑞 = [𝜃 𝛼]T , 𝑀 is the inertia matrix, 𝐵𝐴 is the aerodynamic damping matrix, 

𝐾𝐴 defines the aerodynamic stiffness matrix, 𝐾𝑆 is the structural stiffness matrix and 

𝐾𝐶  represents the control surface aerodynamic stiffness matrix. 

 

  𝑀 =  [
𝐼𝜃 𝐼𝜃𝛼

𝐼𝜃𝛼 𝐼𝛼
] (16) 

 

  𝐵𝐴 = 

[
 
 
 

𝑐𝑠3𝑎𝑤

6
0

−𝑒𝑐2𝑠2𝑎𝑤

4

−𝑐3𝑠

8
𝑀�̇�]

 
 
 

 
(17) 

 

 

  𝐾𝐴 =

[
 
 
 0

𝑐𝑠2𝑎𝑤

4

0
−𝑒𝑐2𝑠𝑎𝑤

2 ]
 
 
 

 
(18) 

 

 

  𝐾𝑠 = [
𝐾𝜃 0
0 𝐾𝛼

] = [
(2𝜋𝑓𝜃)2𝐼𝜃 0

0 (2𝜋𝑓𝛼)2𝐼𝛼
] 

(19) 

 

 

 

  𝐾𝑐 = [
−𝑐𝑠2𝑎𝑐

4

𝑐2𝑠𝑏𝑐

2
]
T

 
(20) 

 

 

 

 The wing chord is denoted by c, the wing span by s, 𝑎𝑤 defines the wing lift curve slope, 

𝑒 represents non-dimensional eccentricity between aerodynamic and flexural axes, 

𝑀�̇� denotes the aerodynamic pitch damping term, 𝑎𝑐  defines the control surface lift curve 

slope and 𝑏𝑐 denotes the control surface pitching moment curve slope. An aerodynamic 

control surface is also provided to enable feedback and control the system dynamics. There is 

no inertial feedback associated with this control surface. The parameters for this study are 

provided in the following table: 

 
Table 1: Simple Two DOF Model Parameters 

Semi-span, s 7.5 m Pitch damping coefficient, 𝑀�̇� -1.2 

Chord, c 2.0 m Air density 1.225 kg/m
3 

Flexural axis location 0.48c Mass / unit area 100 kg/ m
2
 

Mass axis location 0.50c Wing lift curve slope 6.2832/rad 

Uncoupled flapping frequency 5.0 Hz CS lift slope, ac 2.487 

Uncoupled torsion frequency 10.0 Hz CS moment slope, bc -0.540 
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A simple control law is implemented, which utilizes displacement feedback of the flapping 

and pitch degrees of freedom to command the control surface deflection as follows: 

 

 
𝛽 = 𝐾𝑑⌊𝑠0 −𝑐 2⁄ ⌋𝑞 

 

(21) 

 

The open loop flutter speed is 154.35 m/s as seen in Figure 4. 

 

 

Figure 4: Open loop flutter solution 

 

The closed loop system is implemented and broken loop analysis is accomplished by breaking 

the loop to the control surface input. At 100 m/s, the broken loop analysis shows that the 

closed loop system is stable and indicates the stability margin of ~11.1 dB. Figure 5 shows the 

root locus plot while the same information is displayed in a Bode plot (Figure 6).  

 

 

Figure 5: Broken loop root locus plot 
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Figure 6: Broken loop frequency response analysis – Bode diagram 

 

The stability margin computed via the broken loop analysis shows that the closed loop 

aeroelastic system is stable up to 11.1 dB at this flight condition (100 m/s). The stability 

check can be performed by changing the feedback gain value to 11.1 dB (or K = 3.6) and then 

performing a closed loop flutter analysis which results in the flutter velocity being 100 m/s 

(Figure 7) as predicted by the broken loop FRF approach. 

  

 

Figure 7: Closed loop flutter analysis with gain = 3.6 
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4 CANTILEVERD PLATE MODEL 

4.1 Model Description 

The example consists of a flat plate finite element model with a control surface attached to the 

trailing edge. The control surface rotational stiffness is modeled using CBUSH elements 

which can be modified to achieve a required frequency. The plate’s main surface is 

cantilevered at the root modeled using the Nastran SPC entries. The two main primary modes 

of interest are the control surface rotation mode (~12 Hz) and the first bending mode with 

some control surface rotation (~56 Hz) shown in Figure 8 and Figure 9 respectively. 

 

 

 

Figure 8: Control surface rotation mode ~ 9 Hz 

 

 

Figure 9: First bending mode with control surface rotation ~ 56Hz 

 

The unsteady aerodynamics is modeled using the doublet-lattice method. Uncontrolled 

(without a control system) flutter analysis at Mach 0.450 shows coupling of the two modes 

resulting in an unstable mode at approximately 56.8 keas. PK-method is employed to solve 

the aeroelastic equations and the resulting frequency-damping (VGF) curves are shown in 

Figure 10. 

 

The frequency response functions are generated with the control surface position as the input 

and output being the positive z-displacement at the sensor grid 24 (wing tip). The subsequent 

sections present the stability analysis via 1) broken loop frequency response approach and 2) 

closed loop flutter analysis approach for three closed loop configurations. For all the 

configurations, sensor definition (24Z+) is unchanged. 
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Figure 10: Open loop VGF plot at Mach 0.450 

 

To generate the open loop frequency response, state-space formulation of the aeroelastic 

model was utilized which was derived using Roger’s method. The number of lag roots was set 

to 8 and the inertial coupling was omitted from the analysis. To generate the aeroelastic 

frequency response functions, rational function approximation of the unsteady aerodynamics 

is not necessary but it is done so here in this work for convenience purposes. 

 

For every configuration, the following steps are executed: 

1. A control law is designed at the open loop flutter speed  

2. The same control law is applied at a different flight condition or dynamic pressure 

3. Broken loop frequency response from control input to control output is generated 

4. Stability margins are computed 

5. For gain margin, the control law is modified by multiplying the gain margin 

6. For phase margin, approximate Pade filter is designed to introduce the delay 

7. Closed loop PK flutter analysis is run with the modified control law 

8. Instability is shown to occur at the flight condition selected in Step 2. 

 

4.2 Configuration # 1 

The control law transfer function from sensor position 24Z+ to control surface output is given 

by the following equation: 

 

  𝐺𝑐(𝑠) =
0.01𝑠2 + 10𝑠 + 1

𝑠2 + 2𝑠 + 1
 (22) 
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The details of this configuration are presented in the following table: 

 
Table 2: Cantilevered Beam Example – Configuration 1 

Broken Loop 

Frequency Response 

Mach 0.450 at 51.4 keas 

GM = 5.07 dB at 31.2 Hz 

Closed Loop Flutter 

Analysis 

Mach 0.450 - PK Method  

Control Law Gain Scaled by 5.07 dB 

Flutter Speed ~ 51.8 keas at 31.4 Hz 

 

Figure 11 shows the broken loop frequency response plot at 51.4 keas. The plot also indicates 

the gain margin ~ 5.07 dB in the closed loop system. The control law is modified by scaling 

the scaling the control law (Equation 22) by the resulting gain margin. This gain scaled 

control law is then implemented in the closed flutter analysis via the PK method (Figure 12).  

 

The flutter crossing now occurs at 51.8 keas which is approximately 0.8% higher than the 

expected value (51.4 keas). This numerical difference occurs due to the way the broken loop 

frequency response is computed in comparison to the way the flutter analysis was performed. 

The open loop response is computed using state space formulation (Roger’s rational function 

approximation) whereas the closed loop flutter was performed via the iterative PK method. 

 

 

 

Figure 11: Broken loop stability at Mach 0.450 and 51.4 keas 
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Figure 12: Closed Loop Flutter VGF plot at K = 5.06 dB showing instability at ~ 51.8 keas 

 

4.3 Configuration # 2 

The controller dynamics for this configuration is given by the following equation: 

 

  𝐺𝑐(𝑠) =
0.01𝑠2 + 𝑠 + 1

𝑠3 + 2𝑠2 + 𝑠 + 1
 (23) 

 

The configuration parameters are presented in the following table: 

 
Table 3: Cantilevered plate example – Configuration 2 

Broken Loop 

Frequency Response 

Mach 0.450 at 30.3 keas 

GM = 72.7 dB at 17.6 Hz 

Closed Loop Flutter 

Analysis 

Mach 0.450 - PK Method 

Control Law Gain Scaled by 72.7 dB 

Flutter Speed ~ 30.3 keas at 17.6 Hz 

 

Figure 13 shows the broken loop frequency response plot at 30.3 keas. The plot also indicates 

the gain margin ~ 72.7 dB in the closed loop system. The control law is modified by scaling 

the scaling the control law (Equation 23) by the resulting gain margin. This gain scaled 

control law is then implemented in the closed flutter analysis via the PK method (Figure 14). 

The flutter crossing now occurs at ~30.27 keas and the numerical difference is negligible in 

this case. 
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Figure 13: Broken loop stability at Mach 0.450 and 30.3 keas 

 

 

Figure 14: Closed Loop Flutter VGF plot at K = 72.7 dB showing instability at ~ 30.3 keas 
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4.4 Configuration # 3 

The control law for this configuration is given by the following transfer function: 

 

 𝐺𝑐(𝑠) =
0.05𝑠3 + 0.5𝑠2 + 0.005𝑠 + 0.5

0.1𝑠3 + 𝑠2 + 2𝑠 + 10
 (24) 

 

The configuration parameters are presented in the following table: 

 
Table 4: Cantilevered plate example – Configuration 3 

Broken Loop 

Frequency Response 

Mach 0.450 at 38.5 keas 

PM = -11.8º at 51.2 Hz 

Closed Loop Flutter 

Analysis 

Mach 0.450 - PK Method 

Pade Filter 𝐺𝑝𝑎𝑑𝑒(𝑠) (Equation 25) for Phase Margin 

Control Law Multiplied by Pade Filter 

Flutter Speed ~ 37.8 keas (Figure 17) 

 

Figure 15 shows the broken loop frequency response indicating a minimum phase margin of 

negative 11.8º at 51.2 Hz.  

 

 

Figure 15: Broken loop stability at Mach 0.450 and 38.5 keas 

 

The second order Pade approximation which provides the required phase shift at 51.2 Hz is 

given by Equation 25 and the frequency response curve corresponding to this transfer 

function is shown in Figure 16, 

 

  𝐺𝑝𝑎𝑑𝑒(𝑠) =
𝑠2 + 9400𝑠 + 2.945𝑒7

𝑠2 − 9400𝑠 + 2.945𝑒7
 (25) 

 

The modified control law used in the closed loop flutter analysis is the following, 
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 𝐺𝑐_𝑚𝑜𝑑(𝑠) = 𝐺𝑝𝑎𝑑𝑒(𝑠)𝐺𝑐(𝑠) (26) 

 

 

Figure 16: Pade filter frequency response indicating the required phase shift 

 

 

Figure 17: VGF plot for the phase shifted control law showing instability at ~ 38 keas 
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5 GENERIC BUSINESS JET MODEL 

A more complex model both structurally and aerodynamically is considered in this section 

relative to the cantilevered plate model described in the previous section. The primary motive 

to consider this model is to demonstrate that irrespective of the model complexity, the broken 

loop frequency response stability analysis and the closed loop flutter analysis mathematically 

predict the same closed loop instability. 

 

5.1 Model Description 

This business jet example uses the aircraft symmetry about y-z plane to model only the 

starboard side. The wing is a composite structure and is modeled using NASTRAN’s 

CQUAD4 elements. The fuselage is modeled as a beam (stick model) using a series of CBAR 

elements. The wing-fuselage interface is modeled via spring elements (CELAS). Rigid body 

constraints are applied along the fuselage to make the model respond only in the longitudinal 

direction. The mass is modeled as discrete concentrated elements along the wing, fuselage, 

vertical tail and horizontal tail. For the horizontal tail, only the inertial and aerodynamic 

effects are included and for the vertical tail only the inertial effects are included. Figure 18 

shows the NASTRAN finite element model.  

 

 

Figure 18: General Business Jet NASTRAN FEM  

 

Similar to the previous model, the unsteady aerodynamics are modeled using the doublet 

lattice method. The aerodynamic model is shown in Figure 19. The control law commands 

only the aileron and for the aeroservoelastic analysis, only the aerodynamic coupling is 

included. The aileron inertial coupling is neglected. The model used in this section is a 

modified version of the example model documented in [15].  

 

The open loop frequency response functions are generated with the control surface position as 

the input and output being the positive z-acceleration at the sensor grid located at the wing tip.  

For all the following configurations, the sensor definition is unchanged. To generate the open 

loop frequency response, state-space formulation of the aeroelastic model was utilized which 

was derived using Roger’s method. The number of aerodynamic lag roots was set to 8. For 

every configuration the steps as shown in section 3.1 are executed. In addition, for this model, 

closed loop flutter analysis was also solved via the state space method. 
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Figure 19: General Business Jet Doublet Lattice Model 

 

 

5.2 Configuration # 1 

The input to the control law is the wing tip acceleration (+z) and the output is the aileron 

deflection. The control law is given by the following transfer function: 

 

    𝐺𝑐(𝑠) =
5.0𝑒−5𝑠 + 0.0025

𝑠2 + 20𝑠 + 500
 (27) 

 

The details of this configuration are presented in the following table: 

 
Table 5: General Business Jet Example – Configuration 1 

Broken Loop 

Frequency Response 

Mach 0.900 at 543.06 keas (+5000 ft) 

GM = 75.902 at 12.98 Hz 

Closed Loop Flutter 

Analysis 

Mach 0.900 – State Space Method via Roger’s Fit 

Mach 0.900 – Closed Loop PK method 

Control Law Scaled by 75.902 dB 

Flutter Crossing Occurs at 543.06 keas 

 

Figure 20 shows the broken loop frequency response plot at 543.06 keas indicating a gain 

margin of ~ 75.9 dB in the closed loop system. The control law is modified by scaling the 

scaling the control law (Equation 27) by the resulting gain margin. This gain scaled control 

law is then implemented in the closed flutter analysis via the state space method (Figure 21) 

and also the PK method (Figure 22).  
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Figure 20: Broken loop frequency response stability analysis at Mach 0.9 - 543.06 keas 

 

 

 

Figure 21: VGF plot via state space method –12.98 Hz at 543.06 keas  

 

The flutter crossing occurs at exactly the same speed 543.06 keas in the case of the state space 

method due to the fact that both methods (the broken loop frequency response generation) use 

the same rational function approximation (Roger’s fit) for the unsteady aerodynamics. For the 

PK method, the difference in the flutter speed is less than 1% compared to the state space 

approach. This numerical difference is due to iterative nature of the PK method and the fact 
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that the aerodynamic forces are fit using rational function approximation for the plant FRF. 

VGF plots resulting from the state space method and the closed loop PK method are shown in 

Figure 21 and Figure 22 respectively.   

 

 

Figure 22: VGF plot via PK method – 13.00 Hz at 538.4 keas  

 

 

5.3 Configuration # 2 

Except the control law, all the parameters including the sensor definition are exactly the same 

as the previous configuration. The control law is given by the following transfer function: 

 

    𝐺𝑐(𝑠) =
0.01𝑠2 + 0.065𝑠 + 0.01

𝑠3 + 10𝑠2 + 50𝑠 + 100
 (28) 

 

The details of this configuration are presented in the following table: 

 
Table 6: General Business Jet Example – Configuration 2 

Broken Loop 

Frequency Response 

Mach 0.900 at 673.62 keas (-7000 ft) 

GM = 25.9 at 13.20 Hz 

Closed Loop Flutter 

Analysis 

Mach 0.900 – State Space Method via Roger’s Fit 

Mach 0.900 – Closed Loop PK method 

Control Law Scaled by 25.9 dB 

Flutter Crossing at 673.61 keas (State Space Method) 

Flutter Crossing at 678.73 keas (PK Method) 

 

Figure 23 shows the broken loop frequency response plot at 673.62 keas indicating a 

minimum gain margin of ~ 25.9 dB at 13.2 Hz. The control law is modified by scaling the 

scaling the control law (Equation 28) by the resulting gain margin. This gain scaled control 
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law is then implemented in the closed flutter analysis via the state space method (Figure 24) 

and also the PK method (Figure 25).  

 

 

Figure 23: Broken loop frequency response stability analysis at Mach 0.9 – 673.61 keas 

 

 

Figure 24: VGF plot via state space method –13.2 Hz at 673.61 keas  
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Figure 25: VGF plot via PK method – 13.21 Hz at 678.73 keas  

 

The flutter crossing occurs at 673.61 keas in the case of the state space method. For the PK 

method, the difference in the flutter speed is less than 1% compared to the state space 

approach, similar to what was presented in the previous sections.   

 

6 SUMMARY 

Two methods of assessing the aeroservoelastic stability problem are presented in this paper 1) 

Closed loop flutter analysis and 2) Broken loop frequency response stability analysis. The 

gain and phase margins predicted by the broken loop approach can be inferred as the measure 

of the robustness of the aeroservoelastic system. Three aeroelastic example systems have been 

considered with increasing complexity, starting from a two degree of freedom system to a 

large aircraft model. Irrespective of model complexity, the two methods have shown that the 

dynamic pressure at which the aeroservoelastic instability occurs did not differ between the 

methods. 

 

Both methods can be easily applied to Single-Input-Single-Output (SISO) systems and in fact 

the terms gain and phase margin were originally intended to be applicable to SISO systems. 

With advances in the control law design, MIMO systems are inevitable and applying the 

broken loop approach to MIMO systems requires determination of “where to break the loop”. 

Various approaches exist on how to deal with breaking MIMO control law loops, for 

example, opening one specific loop while other loops closed or opening all the loops at the 

same time. Nonetheless, the broken loop frequency response stability analysis can be applied 

to the MIMO systems. 

 

Efficiency and flexibility are the two primary advantages of the broken loop frequency 

approach over the closed loop flutter analysis. “Efficiency” comes from the fact that the 

broken loop analysis utilizes the aeroelastic frequency response functions in which the 

dynamics of the complex aeroelastic system are captured and simply multiplied by the 

specific loop of the control law frequency response. Further, a number of established control 
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centric techniques exist, such as root locus, Bode or Nyquist, to assess the stability of the 

closed loop system. Closed loop flutter algorithms typically require adding a large number of 

control law degrees of freedom to the already existing flexible modes thereby demanding 

extensive eigenvalue sorting and tracking. “Flexibility” comes from the fact that the broken 

loop analysis approach can easily integrate various control law configurations or loops and 

allows for rapid assessment of the closed loop stability. In addition, the broken loop approach 

reveals the stability margin of all of the aeroelastic modes at a given flight condition, 

something that closed loop flutter analysis does not provide. 

 

One of the major drawbacks of the closed loop flutter analysis is the amount of computational 

runs required to analyze various gain and phase variations introduced into the control law to 

establish closed loop stability. Even if a discrete set of gains, for example, 𝐾1 < 𝐾2 < 𝐾𝑗 … <

𝐾𝑁 are introduced into the control law and the flutter analysis does not show any crossing or 

instability, this does not guarantee the stability for all the gains 𝐾𝑖 where 𝐾𝑗 < 𝐾𝑖 < 𝐾𝑗+1. 

This misinterpretation could possibly lead to unstable aeroservoelastic system when analyzing 

the system for robustness through closed loop flutter analysis. 

 

In comparison to the broken loop approach, one advantage of the closed loop flutter analysis 

is that it can present the effect of the control law on the flutter mode frequency and damping 

similar to an open loop VGF curve due to the fact that the method tracks eigenvalue of the 

closed loop system as a function of dynamic pressure. 
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