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Abstract: An analysis of the flight dynamics of flexible aircraft having high-aspect-ratio wings
shows that, even if the elastic deformations are not large enough to incur structural-dynamic
geometrical nonlinearities, important aerodynamic effects can arise that are geometrically non-
linear in essence. For instance, the dihedral effect of the deformed wing is usually significantly
different from that of the undeformed one, leading to unacceptable inaccuracies when analyzing
the aircraft response to side gusts. Classical approaches to the aeroelastic modeling of flexible
aircraft, using geometrically-linear finite elements, the vortex- or doublet-lattice methods, and
linear or surface spline interpolation techniques, are unable to represent aerodynamic geomet-
rical nonlinearities, because all the aeroelastic model matrices are calculated a priori for the
undeformed aircraft and remain unchanged in the analysis. However, numerical experimenta-
tion indicates that, if small deformations occur, then the aerodynamic geometrical nonlinearities
can be approximately modeled with an on-line update of the spline matrices to take into account
the instantaneous deformed normal directions, without the need to perform the much costlier
aerodynamic mesh deformation. This paper aims at the derivation of the equations for the mod-
ified generalized aerodynamic forces and at the validation of the proposed method in both static
and dynamic conditions.

1 INTRODUCTION

Formulations for the flight dynamics of flexible aircraft based on the simplifying assumption
of small deformations have long been available and frequently been used. Quasi-static analysis
techniques as proposed by Rodden and Love [1] and implemented in MSC Nastran [2] are
among the main uses of geometrically-linear aeroelastic finite-element method (FEM) models.

The simplifying assumption can also be considered in dynamically-coupled formulations, in
which n elastic degrees of freedom (DOFs) are included to model the structural dynamics,
and the number of flight-dynamic equations of motion (EOMs) increases from the classical
six-degree-of-freedom (6-DOF), rigid-body system to a 6+n-DOF system. In this case, one
of the greatest advantages of the assumption of small deformations is the possibility of using
modal superposition with a small quantity of normal modes retained in the model [3–5], leading
to significantly lower computational cost of numerical simulations than when compared with
geometrically-nonlinear models.
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Slightly-flexible aircraft flight-dynamic models based on small deformations have also been
subjected to experimental validation. Silvestre and Luckner [6] e.g. demonstrated the applica-
bility of a dynamically-coupled, linearized mean-axis formulation [5] for flight control law and
aircraft design, based on favorable comparisons between simulation and flight-test data obtained
with a prototype of the utility aircraft Stemme S15.

Recently, Guimarães Neto et al. [7, 8] assessed the range of validity of the assumption of small
deformations in modeling the structural dynamics of flexible aircraft. Both a geometrically-
linear (GL) and a geometrically-nonlinear (GN) formulation were used to obtain results for
equilibrium conditions, linearized aircraft dynamics, and in nonlinear time-marching simula-
tions. In the GN case, the aerodynamic mesh used in the vortex-lattice method (VLM) [9] was
consistently updated with the aircraft deformation, with the aerodynamic normal forces then
behaving as follower forces.

One of the main findings of the works was that, although the structural-dynamic model remains
valid for deformations in bending that displace the wing tip by up to 12% of the wing semi-
span, the aerodynamic model is more strongly influenced, leading to non-negligible differences
in the results for smaller wing tip vertical displacements, on the order of 5% of the wing semi-
span [7, 8].

However, updating the aerodynamic mesh in every instant of the simulation is a costly process,
because it implies the need to recalculate the aerodynamic influence coefficient (AIC) matrix
of the VLM, which might take more than one second of computing time for models with typ-
ically more than one thousand boxes (panels). The process becomes impracticable when it
comes to models using unsteady aerodynamics, e.g., the doublet-lattice method (DLM) [10]
and rational-function approximations (RFAs) [11], because, before the RFAs are calculated, the
AIC matrices would need to be obtained for several different values of reduced frequency, a
process that can take a few minutes of computing time.

Therefore, the alternative of keeping the AIC matrices and their RFAs constant seems very
attractive for practical applications. Fortunately, numerical experimentation shows that, in the
range of validity of small deformations in the structural-dynamic model, the AIC matrix of the
VLM is almost constant. This can be understood because it is known that the major influence on
a box is provided by the adjacent boxes [9], and the local geometry is not significantly affected
by small deformations.

In this paper, an approximate methodology for modeling aerodynamic geometrical nonlineari-
ties in aircraft with high-aspect-ratio wings is proposed. The methodology is based on updat-
ing not the aerodynamic mesh, but only the normal directions in which the normalwashes and
aerodynamic forces are calculated for each box of the VLM or the DLM models. Additional
terms caused by the noncoincidence of the deformed aerodynamic mesh and the undeformed
structural-dynamic mesh are also taken into account.

The methodology implies the modification of the linear or surface spline matrices that are typi-
cally used in the interconnection between the aerodynamic and the structural-dynamic models.
The use of spline interpolation is widespread in linear aeroelasticity mainly due to its relative
simplicity and to its availability in commercial software like MSC Nastran [2].

The modified splines allow not only recalculating the generalized aerodynamic forces (GAFs)
for the elastic DOFs considered in the analysis but, using the FEM model linear rigid-body
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modes, they also allow recalculating the rigid-body aerodynamic stability and control deriva-
tives, which will then take into account the corrected normal directions for all the boxes of the
VLM or DLM model.

In this paper, the six-meter-span configuration of the remotely-piloted X-HALE [12] aircraft
will be analyzed. In Ref. [8], one of the findings was that this configuration is in the transition
of small to large elastic deformations, with the latter frequently occurring in maneuvers. How-
ever, this aircraft almost always has significant aerodynamic geometrical nonlinearities present,
leading to different responses when the aerodynamic mesh is updated or not.

The proposed technique will be demonstrated in several steps. The geometrically-nonlinear
model will be used with and without updating the AIC matrix of the aerodynamic model, to
show that the update is not necessary in a moderately-flexible aircraft. Then, equilibrium condi-
tions will be calculated and flight simulations performed with the GN and the GL formulations,
the latter both with and without the application of the proposed technique. To demonstrate the
validity of the methodology, the stiffness of the aircraft structure is varied.

2 EQUATIONS OF MOTION

The geometrically-linear (GL) and the geometrically-nonlinear (GN) formulations used in this
paper were described in Refs. [7,8]. The GL formulation is based on Ref. [3]. There, the 6 + n
EOMs for the flexible aircraft were derived using Lagrange’s equations, and they read:

mV̇b +mω̃bVb −ms̃CG,bω̇b −mω̃bs̃CG,bωb
+m˜̇ωbDCG,buG + 2mω̃bDCG,bu̇G (1)

+mω̃bω̃bDCG,buG +mDCG,büG = mgb + Fb + ∆Fb,

JO,bω̇b + ω̃bJO,bωb +ms̃CG,b

(
V̇b + ω̃bVb

)
+mD̃CG,buG

(
V̇b + ω̃bVb

)
+∆J′O,bω̇b + ω̃b∆J′O,bωb + ∆J̇′O,bωb (2)

+ṀωGu̇G + MωGüG + ω̃bMωGu̇G

= ms̃CG,bgb +mD̃CG,buGgb + MO,b + ∆MO,b,

MGGüG + BGGu̇G + KGGuG

+mDCG,b
T
(
V̇b + ω̃bVb

)
+ MωG

T ω̇b

+2ṀT
ωGωb −

1

2

n∑
g=1

en,gωb
T ∂∆JO,b

∂ug
ωb (3)

= mDCG,b
Tgb + QG.

In Eqs. (1)-(3), ωb =
[
p q r

]T is the angular velocity vector of the body reference frame
(BRF) with respect to the inertial reference frame (IRF); Vb =

[
u v w

]T is the velocity vec-

tor of the body axis system origin O with respect to the IRF; the skew-symmetric operator, (̃•) or
skew (•), denotes the matrix-form of the vector cross product; m is the aircraft total mass; sCG,b
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refers to the CG position vector in the undeformed (unstrained) condition; dCG,b = DCG,buG
stands for the change in sCG,b due to structural deformation; JO,b is the inertia matrix about
O, with respect to the body axes; ∆J′O,b is the change in the inertia matrix due to structural
deformation; MGG, BGG, and KGG are the FEM model mass, damping and stiffness matrices,
respectively; Fb and MO,b are the net force and moment vectors, respectively, associated with
the rigid airframe; ∆Fb and ∆MO,b are the net incremental force and moment vectors, respec-
tively, due to elastic motion; gb is the gravity vector expressed in the body axes; QG is the
column matrix of generalized aerodynamic and propulsive forces; at last, MωG is the inertial
coupling matrix between the rotational rigid-body and the elastic DOFs. The total number of
elastic DOFs is n. The notation eN,i represents a column matrix equal to the ith column of the
identity matrix of size N , IN . All time derivatives are taken in the BRF and no aircraft mass
variation is considered.

A structural-dynamic FEM model of the aircraft with lumped properties of inertia is considered
available. The n elastic DOFs of the aircraft structure constitute the displacement vector uG ={
u1 u2 · · · un

}T . The transformation matrix Cb0 from the inertial axes to the body axes is
obtained by a classical sequence (3-2-1) of Euler rotations, ψ, θ and φ [13].

The body axes are dually-constrained axes (DCA) [3]. In the DCA, the origin S of the structural
axes (the support point, with no elastic displacement) is a material point (and structural node)
that can be noncoincident with the origin O of the body axes. Details of the constraint equa-
tions for the DCA can be found in Refs. [3, 7]. Any structural node can have its displacements
assumed null in the formulation, and the origin O keeps its position constant with respect to
the undeformed aircraft (first constraint) and the structural node S is the point where the unde-
formed and the deformed airframes coincide at any time instant (second constraint).

2.1 Basic aerodynamic model
In this paper, the aerodynamic loads are calculated with the use of the VLM [9], which provides
the following linear system of equations:

A−1∆Cp = w, (4)

where w ∈ RNP is the vector of non-dimensional normalwashes at the NP panel (box) control
points; ∆Cp ∈ RNP is the vector of panel pressure coefficient differences; and A ∈ RNP×NP

is the AIC (aerodynamic influence coefficient) matrix. The VLM AIC matrix depends on the
geometry and discretization of the aerodynamic lifting surfaces in the model. Dependence on
the Mach number, M , is neglected in this paper.

The body frame of reference used to calculate the aerodynamic loads is defined as an aerody-
namic reference frame (ARF) [3]. Its inertial angular rates are written in the ARF coordinate
system as pa, qa, and ra, and its inertial velocity has the components ua, va, and wa in the same
system [3]. The rigid-body motion of the aircraft then contributes to the generalized aerody-
namic forces (GAFs) in the elastic DOFs in terms of pa, qa, ra, ua, va, wa, control surface
deflections and other possible rigid-body variables. The elastic deformation of the structure
with respect to the ARF, given by uG/A, contributes to the incremental GAFs. The total GAFs
are then given by [3]:

QG = q̄GAG
TSAP (∆Cp,u + ∆Cp,e) , (5)

where q̄ is the dynamic pressure; GAG ∈ RNA×n is the matrix that interpolates elastic displace-
ments from the structural nodes to the centroids of the VLM boxes (aerodynamic grid points);
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SAP ∈ RNA×NP transforms panel pressure coefficient differences to forces and moments at
the aerodynamic grid points, and is usually called an integration matrix; ∆Cp,u is the vector
of panel pressure coefficient differences related to the rigid-body state and control variables;
and ∆Cp,e is the vector of panel incremental pressure coefficient differences, due to the elastic
DOFs, given by [3]:

∆Cp,e = A
(
DPA,0GAGuG/A + (bw/Va) DPA,1GAGu̇G/A

)
, (6)

where DPA,0,DPA,1 ∈ RNP×NA are the differentiation matrices that allow the calculation of
control point normalwashes at three quarters of the boxes’ mean chords from the displacements
at the aerodynamic grid points, respectively; bw is the reference wing semi-chord; and NA =
2NP is the total number of aerodynamic degrees of freedom (each panel has two DOFs, plunge
and pitch). The displacement vector uG/A differs from uG in that the former is calculated with
respect to the ARF, whereas the latter is with respect to the BRF [3]. The integration and
differentiation matrices in Eqs. (5)-(6) can be found in Ref. [7].

In this paper, the ARF is modeled with attached axes [3], and their origin A coincides with or
is rigidly connected to a material point C that remains fixed when elastic deformation occurs.
References [3, 7] present the equations for the aerodynamic loads based on the ARF DOFs. In-
duced drag effects due to both the rigid-body motion and the elastic deformations are included,
calculated with the methodology of Ref. [14].

2.2 Geometrically-linear beam finite elements

The adopted geometrically-linear beam finite element in three dimensions has two nodes and
twelve DOFs. The element shape functions are given by:

ue (xe, ye, ze) = a0 + a1xe −
∂we
∂xe

ze −
∂ve
∂xe

ye, (7)

ve (xe, ye, ze) =
3∑
i=0

bixe
i −Θe (xe, ye, ze) ze, (8)

we (xe, ye, ze) =
3∑
i=0

cixe
i + Θe (xe, ye, ze) ye, (9)

where ue (xe, ye, ze) is the axial displacement and ve (xe, ye, ze) and we (xe, ye, ze) are the edge-
wise and flatwise displacements’ shape functions, respectively. The set becomes complete with
the twist angle shape function:

Θe (xe, ye, ze) = d0 + d1xe. (10)

The twelve DOFs of the beam element are: at xe = ye = ze = 0: ue = ue1, ve = ve1, we = we1,
Θe = φe1,

∂we
∂xe

= −θe1, ∂ve
∂xe

= ψe1; at xe = Le, ye = ze = 0: ue = ue2, ve = ve2, we = we2,
Θe = φe2, ∂we

∂xe
= −θe2, and ∂ve

∂xe
= ψe2, where Le is the element length. Strains are given by:

εx =
∂ue
xe

, (11)

εy = −νεx, (12)

εz = −νεx, (13)
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γxy =
∂ve
xe

+
∂ue
ye

, (14)

γxz =
∂we
xe

+
∂ue
ze
, (15)

γyz =
∂we
ye

+
∂ve
ze
, (16)

where ν is the material Poisson’s ratio. Using Voigt’s notation, the element strains may be col-
lected in a six-dimensional column matrix, ε =

{
εx εy εz γxy γxz γyz

}T , which is itself
a linear function of the twelve element DOFs. Stresses can be calculated with consideration of
the isotropic linear elastic material stiffness matrix, C, presented in Ref. [7], so that:

σ = Cε. (17)

The element stiffness matrix Kee is such that the element strain energy satisfies:

Ue =
1

2

∫∫∫
element

σTεdV =
1

2
ue

TKeeue, (18)

with ue =
{
ue1 ve1 we1 φe1 θe1 ψe1 ue2 ve2 we2 φe2 θe2 ψe2

}T . The final equa-
tion for the stiffness matrix is presented in Ref. [7] and is omitted here for brevity.

Although a consistent mass matrix can also be obtained for the beam element, the flight-
dynamic formulation is not prepared to deal with consistent masses, due to resulting inertial
coupling between the two element nodes. Rather, a lumped-mass matrix is generated by trans-
ferring to each node half of the mass of the element, as well as the first and second moments of
inertia and the products of inertia due to each half.

2.3 Geometrically-nonlinear formulation

In this paper, the strain-based geometrically-nonlinear (GN) formulation is based on Refs. [15–
18]. A toolbox named ITA/AeroFlex was developed with this formulation, using MATLAB R©
[19]. The formulation considers the following fundamental kinematic relationship that relates
the displacements h(s, t) at a point along the beam to the strains ε(s, t):

∂h

∂s
(s, t) = K(s, t)h(s, t) , (19)

K(s, t) =


0 1 + εx(s, t) 0 0
0 0 κz(s, t) −κy(s, t)
0 −κz(s, t) 0 κx(s, t)
0 κy(s, t) −κx(s, t) 0

 , (20)

where εx(s, t) is the extensional strain, and κx(s, t), κy(s, t) and κz(s, t) are the curvatures at
point s and time t.

The flexible structure is split into elements and the strains are assumed to be spatially-constant
but time-dependent along each element, so that Eq. (19) has an analytical solution:

h(s, t) = eK(s−s0)h0(t) , (21)
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where h0(t) is the displacement of a fixed node at s = s0. The matrix exponential eK(s−s0) has
a closed-form expression, as presented in Ref. [16].

In the ITA/AeroFlex computer program, flexible elements with three nodes were implemented,
as well as rigid elements with time-independent, null strain. Such rigid elements are used to
model rigid components and do not introduce new states within the model.

Using Eq. (21), it is possible to compute the displacement vector for each structural node as a
function of the strains:

h(t) = h (ε(t)) . (22)

The time derivative of the displacement vector due to both the strain rates ε̇ and the rigid-body
motion β (linear and angular velocity components) is given by:

ḣ(t) = Jhεε̇(t) + Jhbβ(t) , (23)

where Jhε(ε(t)) is a Jacobian matrix that relates the element strains to nodal displacements and
Jhb is the equivalent but for the rigid-body motion.

The kinetic energy is computed as:

T =
1

2
ḣTMḣ , (24)

whereM is the structure mass matrix, computed assuming a linear variation of the nodal speeds
between the nodes. The kinetic energy can be rewritten as a function of the strain rates and
rigid-body velocities using Eq. (23):

T =
1

2

[
ε̇ β

] [MFF MFB

MBF MBB

] [
ε̇
β

]
, (25)

where:

MFF = JThεMJhε , MFB = JThεMJhb ,

MBF = JThbMJhε , MBB = JThbMJhb .
(26)

The elastic strain energy is given by:

U =
1

2
εTKε , (27)

where K is a block-diagonal matrix, composed of the stiffness matrices of each element, Ke:

Ke =


k11 k12 k13 k14
k21 k22 k23 k24
k31 k32 k33 k34
k41 k42 k43 k44

 . (28)

From the Euler-Lagrange equations, the equations of motion are computed as:[
MFF MFB

MBF MBB

] [
ε̈

β̇

]
+

[
CFF CFB
CBF CBB

] [
ε̇
β

]
+

[
K
0

]
ε =

[
RF

RB

]
, (29)
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The matrices CFF , CBF , CFB and CBB include the gyroscopic terms (due to rotation of the
rigid body and of the structural elements) and the structural damping term. In this paper, the
structural damping matrix is assumed proportional to the stiffness matrix: CFF = αK.

RF and RB are the generalized forces that are applied to the airplane. They are obtained from
the aerodynamic, gravitational and propulsive forces applied to each node of the structure:[

RF

RB

]
=

[
JTpε
JTpb

]
F pt +

[
JTθε
JTθb

]
Mpt (30)

+

[
JTpε
JTpb

]
BFF dist +

[
JTθε
JTθb

]
BFMdist +

[
JTpε
JTpb

]
N~g.

The Jacobian matrices Jpε and Jθε represent the relationship between structural strains (ε) and
nodal displacements and rotations. Jpb and Jθb represent the relationship between rigid-body
DOFs and nodal displacements and rotations. The Jacobian matrices are nonlinear functions of
the strain vector ε. Closed-form expressions for the Jacobians are presented in Ref. [16].

The aerodynamic loads in the GN formulation are also calculated with a VLM [9] model. How-
ever, differently from the GL case, the aerodynamic mesh is updated in the GN formulation to
match the deformation of the lifting surfaces in bending.

3 ENHANCED AERODYNAMIC MODEL

This paper aims at the development and numerical test of an enhanced aerodynamic model for
the GL formulation that allows it to take into account geometrically-nonlinear aerodynamic
effects. It is important to distinguish structural geometrical nonlinearities from aerodynamic
geometrical nonlinearities. Structural geometrical nonlinearities refer to how large deforma-
tions affect the deformed shape of the structure, as well as its stiffness and inertia properties.
Aerodynamic geometrical nonlinearities refer to how even small deformations can affect the
aerodynamics of an aircraft in a nonlinear form. For example, the basic aerodynamic model
described in Section 2.1 is unable to capture the effects of wing dihedral change due to wing
bending, because the VLM mesh is always that of the undeformed aircraft in this basic model.

To illustrate an aerodynamic geometrical nonlinearity, the six-meter-span X-HALE aircraft
[7, 8, 12], henceforth named ‘XH6’, is shown in its undeformed and deformed shapes in Figs.
1 and 2, respectively. Particularly, the VLM mesh is shown in both cases, having it been up-
dated in the latter. The deformed case is for trimmed level flight at 17 m/s, 700 m altitude in
the ISA (International Standard Atmosphere). The structural deformation was calculated with
the GN structural-dynamic model exactly as implemented in Ref. [8]. The wing tip vertical
displacement is 12.6% of the wing semi-span. Therefore, in this case, the assumption of small
deformations is not violated from the viewpoint of the structural-dynamic model.

Table 1 shows how the aerodynamic side force and rolling moment coefficients’ derivatives
with respect to the sideslip angle, CYβ and Clβ , respectively, are affected by the deformation
of the aerodynamic mesh. The lift coefficient derivative with respect to the angle of attack,
CLα , is listed as well. At last, also listed are the Frobenius norms of the AIC matrices for both
cases. The mesh deformation results in a configuration with higher dihedral angle, significantly
affecting the lateral-directional stability derivatives and reducing the lift coefficient that the
configuration generates for the same angle of attack. However, it is also demonstrated that the
AIC matrix is practically unaffected by the mesh deformation.
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Figure 1: X-HALE six-meter-span configuration VLM mesh in the undeformed condition. Control surfaces in
orange.

Figure 2: X-HALE six-meter-span configuration updated VLM mesh corresponding to the deformed airframe at
V = 17 m/s.

Table 1: Aerodynamic characteristics of the X-HALE undeformed and deformed VLM meshes.

VLM Mesh CYβ [1/rad] Clβ [1/rad] CLα [1/rad] ||A||F
Undeformed (Fig. 1) 0.0459 −0.114 6.59 46.446

Deformed (Fig. 2) 0.270 −0.346 6.35 46.467

This example demonstrates that aerodynamic geometrical nonlinearities can occur at levels of
structural deformations for which the assumption of small deformations is still valid. Therefore,
an enhancement can be made to the aerodynamic model used in the GL formulation to take into
account geometrically-nonlinear aerodynamic effects. More interestingly, Table 1 suggests that
updating the AIC matrix is potentially unnecessary. The reason for this is that the stronger
mutual influences occur among adjacent boxes. Therefore, if the aerodynamic mesh is not
absurdly coarse, the local geometry is only very slightly affected by small or even by moderate
deformations.

The correction of the normal directions of the boxes, resulting in the aerodynamic normal forces
behaving as follower forces, is the first enhancement that is needed to allow the aerodynamic
model to capture nonlinear effects like shown in Table 1. This can be done with the modification
of the spline matrices, as described in the following subsection.

9
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3.1 Modification of the spline matrices
The procedure will be exemplified for infinite-plate surface splines [2, 20]. The surface spline
problem is that of determining deflections h(x, y) when h is known for a discrete set of Ns

points, hs = h(xs, ys). The surface spline equation is given by:

h(x, y) = a0 + a1x+ a2y +
Ns∑
s=1

PsKs(x, y), (31)

with Ks(x, y) = cr2s log(r2s); r2s = (x− xs)2 + (y − ys)2; c an arbitrary constant; and Ps a
scalar varying for each (xs, ys), satisfying the conditions:

Ns∑
s=1

Ps =
Ns∑
s=1

xsPs =
Ns∑
s=1

ysPs = 0. (32)

Equations (31) and (32) can then be applied to the Ns known solutions hs = h(xs, ys). As a
result, the following matrix equation can be formed:

0 0 0 1 · · · 1
0 0 0 x1 · · · xNs
0 0 0 y1 · · · yNs
1 x1 y1 0 · · · KNs(x1, y1)
...

...
...

... . . . ...
1 xNs yNs K1(xNs , yNs) · · · 0





a0
a1
a2
P1
...

PNs


=



0
0
0
h1
...
hNs


,

Csplinep = h. (33)

The Cspline matrix is symmetric and is non-singular unless one of the Ns points coincides with
another or unless all the points are contained in a single straight line. The coordinate system
considered for (x, y) is a coordinate system s in which the xy plane (the spline plane) lies in
the plane of the lifting surface, the x axis is parallel to the x axis of the coordinate system m in
which the VLM/DLM mesh is defined, and the z axis is such that ẑs · ẑm ≥ 0.

Each known displacement hi normal to the spline plane can be expressed in the following
manner:

hi = eT3,3CsbUt,i,GuG. (34)

The known displacements are those of a selected set of Ns structural nodes. The matrix Csb

transforms from the body coordinate system to the spline coordinate system. The Boolean ma-
trix Ut,i,G recovers from the structural displacement vector uG the translational displacements
of the ith spline node.

The enhanced methodology described in this paper then proposes an on-line update of the Csb

matrices in flight simulations of flexible aircraft. With the deformation of the lifting surface, the
local dihedral angle changes, and so does the y and z directions of the spline coordinate system
s. It is implicit in this methodology that each strip of VLM/DLM boxes (panels) in a lifting
surface shall then have its own spline, because the dihedral of any individual strip will change
in the deformed aircraft.

The procedure that was just described for a surface spline can be analogously implemented for
a linear spline as well. Generally, aeroelastic models of aircraft will have both types of splines.
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3.2 Corrected rigid-body aerodynamics

Once the spline matrix is updated, but the aerodynamic model geometry is not, a technique to
calculate the rigid-body aerodynamic loads needs to be developed. Otherwise, nonlinear effects
like those contained in Table 1 will not be represented in the rigid-body DOFs EOMs, Eqs. (1)
and (2).

Because the FEM model stiffness matrix KGG is for the unrestrained aircraft, it is possible to
obtain six rigid-body modes from it, as in Ref. [3]. Then, let the rigid-body mode matrix about
the origin of the ARF, A, be represented by Ψr,A. If QG is the vector of GAFs in the elastic
DOFs, given by an equation similar to Eq. (5), but with the original undeformed spline matrix
GAG replaced by modified one, Gdef

AG, then the GAFs in the rigid-body DOFs can be calculated
by the equation:

QRB = ΨT
r,AQG = q̄ΨT

r,AGdef
AG

T
SAP (∆Cp,u + ∆Cp,e) . (35)

The first three components of QRB are the corrected forces in the three body axes directions,
whereas the other three components are the corrected moments about A in the three body axes
directions.

3.3 Further enhancement of the aerodynamic model

The correction of the spline planes to match the deformed dihedral of the lifting surface makes
possible both the correction of the amplitudes of the normalwashes at the boxes, through the
use of the modified spline matrix Gdef

AG in Eq. (6), and the correction of the GAFs amplitudes in
both the rigid-body DOFs and the elastic DOFs, as seen in Eq. (35).

However, one important effect is not yet captured solely by the spline modification. If the
lifting surfaces have their planes updated in the spline construction, it is implicit that they do
not anymore coincide with the undeformed structural-dynamic model. Because the undeformed
structural-dynamic model continues to be valid throughout the flight simulation using the GL
formulation, the mismatch between the spline planes and the corresponding structural nodes
needs to be taken into account. Particularly, the aerodynamic normal force acting at the quarter-
chord point at half the box span produces a bending moment at the structural nodes used in the
corresponding spline definition, because of the relative displacement between the spline plane
and the original structural node position. These additional nonlinear generalized forces can be
calculated as follows:

∆Qx = q̄UT
r,x

(
diag

(
Ut,yuG/A

)
UT
t,z − diag

(
Ut,zuG/A

)
UT
t,y

)
Gdef
AG

T
SAP∆Cp, (36)

∆Qy = q̄UT
r,y

(
diag

(
Ut,zuG/A

)
UT
t,x − diag

(
Ut,xuG/A

)
UT
t,z

)
Gdef
AG

T
SAP∆Cp, (37)

∆Qz = q̄UT
r,z

(
diag

(
Ut,xuG/A

)
UT
t,y − diag

(
Ut,yuG/A

)
UT
t,x

)
Gdef
AG

T
SAP∆Cp, (38)

where ∆Qx, ∆Qy, and ∆Qz are the incremental GAFs due to moments about xb, yb, and zb,
respectively, produced by the lifting surface deformation; Ut,x, Ut,y, and Ut,z are the Boolean
matrices that select from the displacement vector uG the translational displacements in the xb,
yb, and zb body axes, respectively; Ur,x, Ur,y, and Ur,z are the Boolean matrices that select from
uG the rotational displacements about xb, yb, and zb, respectively; ∆Cp = ∆Cp,u + ∆Cp,e;
and diag is the operator that creates a diagonal matrix from a column matrix.
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In summary, in the final enhanced aerodynamic model, the total GAFs are given by:

Qenhanced
G = q̄EnG

def
AG

T
SAP (∆Cp,u + ∆Cp,e) , (39)

En = In + UT
r,x

(
diag

(
Ut,yuG/A

)
UT
t,z − diag

(
Ut,zuG/A

)
UT
t,y

)
+UT

r,y

(
diag

(
Ut,zuG/A

)
UT
t,x − diag

(
Ut,xuG/A

)
UT
t,z

)
+UT

r,z

(
diag

(
Ut,xuG/A

)
UT
t,y − diag

(
Ut,yuG/A

)
UT
t,x

)
, (40)

∆Cp,e = A
(
DPA,0G

def
AGuG/A + (bw/Va) DPA,1G

def
AGu̇G/A

)
, (41)

and the GAFs in the rigid-body DOFs are:

Qenhanced
RB = ΨT

r,AQenhanced
G . (42)

The modified GAFs in the rigid-body DOFs given by Eq. (42) automatically include the mo-
ments that exist due to the fact that the moment arms vary with the deformation of the aircraft.

4 NUMERICAL MODEL

The X-HALE aircraft in its six-meter-span (‘XH6’) configuration is analyzed in this paper. The
XH6 configuration contains six wing sections with span of 1.0 m and chord of 0.2 m each,
as well as five pods at the connections between wing sections. The aircraft electric motors,
landing gears, electronics and sensors are installed at the pods. Booms are connected to the
pods and, at the tip of each boom, a horizontal tail is mounted. The four side tails are all-
moving control surfaces that can be used for both longitudinal and lateral-directional control,
and are then termed elevons. The central tail has a flipping-up capability that alters the aircraft
flying qualities as desired in operation. For ground clearance during take-off, the central tail has
approximately 33% less span in its right (bottom) part than in the left (top) part. Anyway, the
configuration analyzed in this paper has the central tail in the horizontal position. The wing-tip
sections have a dihedral angle of 10◦. The wing is built with an incidence of 5◦.

The numerical model of the nominal aircraft considers exactly the same stiffness properties
previously adopted in Refs. [7, 8], and these properties are used in both the GL and the GN
formulations. All aircraft components except the wing are assumed rigid. The distributed mass
properties of the aircraft components are also identical to those presented in Table 1 of Ref. [7].
The concentrated inertias match those listed in Table 7 of Ref. [12].

4.1 GL and GN models

The objective of this paper is to apply and verify the enhanced aerodynamic model in the GL
formulation. For the verification, the GL results will be compared with those obtained with the
GN formulation. Hence, it is necessary to ensure that the GL and GN numerical models are
adequate for a fair comparison of results.

In the GN formulation, because all structural DOFs are kept in the EOMs, the resulting dynami-
cal system has hundreds of states and its ordinary differential equations (ODEs) are stiff. It was
found via numerical tests that the most commonly used ODE solvers, like the fixed-stepsize
fourth-order Runge-Kutta or the adaptive-stepsize Dormand-Prince methods, were unable to
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solve the equations. Instead, the generalized-α algorithm [16, 21, 22] was found able to solve
them. Currently, in ITA/AeroFlex, the nonlinear balance equation of this implicit algorithm is
solved at each time step with the trust-region dogleg algorithm implemented in the MATLAB R©
‘fsolve’ function. A reduction in the number of structural DOFs is then mandatory to make the
simulations less costly.

Having this in mind, it was found in Ref. [8] that using 4 elements per wing section in the GN
model and 8 elements in the GL yields no more than 3.5% difference between them with respect
to modal frequencies less than 20 Hz. This refinement is coarser than the one used previously
in Ref. [7], where the authors were concerned almost only with accuracy of the models in static
conditions, with model size having less computational impact because ODEs were not to be
solved. There, convergence analyses led to 10 elements per wing section in the GN formulation
and 20 in the GL. With either of the choices described in this paragraph, the wing has the same
quantity of nodes in both the GN and the GL models. Moreover, a time step of 10 milliseconds
is used in numerically solving the ODEs in this paper, rendering differences in higher-frequency
modes progressively less important the farther they are from 20 Hz.

The VLM mesh is the same for both formulations and, for the same reasons as the aforemen-
tioned ones, is coarser than the one adopted in Ref. [7]. For simplicity, it was built to match
the spanwise divisions of the wing sections in the GN structural-dynamic model, that is, it com-
prises 4 uniformly distributed boxes spanwise per wing section. Chordwise, 4 boxes are used in
the wing, also uniformly distributed. The tails are divided into 2 boxes chordwise and 2 boxes
spanwise. No vertical surface representing each pod is included in the aerodynamic model, also
for simplicity. The VLM mesh is exactly as shown before in Fig. 1.

The wing incidence of 5◦ and the wing reflexed EMX07 airfoil [12] camber are approximately
represented by invariant normalwash vectors, given by the local effective camber line inclination
at 75% of each box chord.

In the GN formulation, the VLM mesh is updated with structural deformation, such that the
wing and tails’ boxes’ side edges are displaced by exactly the same amount as the structural
node with which they coincide spanwise. Whether the AIC matrix is updated or not will be
made clear in each of the analyzed cases.

The displacements and velocities of the beam elements’ central nodes in the GN formulation are
directly used to calculate the normalwashes. No camber deformation is considered, and hence
the displacement transferal from the structural nodes to the boxes’ control points is straightfor-
ward, assuming rigid arms. The aerodynamic loading is considered as distributed, and appro-
priate matrices transfer the distributed loads to nodal loads at each element, as in Eq. (30).

In the GL formulation, if the enhanced aerodynamic model is not used, then the VLM mesh is
always that of the undeformed aircraft; if it is used, then the methodology derived in Section 3
is considered. The GL structural-dynamic model for the XH6 configuration is plotted in Fig. 3.

In the time-marching simulations, stiffness-proportional structural damping is considered both
for the GL and the GN formulations, with a constant of proportionality such that the first free-
free mode of vibration has 2% damping ratio. In the GL case, the structural displacements are
represented by modal coordinates, with inertia-relieved constrained modes of vibration [3] with
frequency less than 25 Hz retained in the modal basis. This choice is consistent with the time
step of 10 milliseconds used for all simulations shown in this paper.
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Figure 3: XH6 GL structural-dynamic model in ITA/AeroFlex. GRIDs: structural nodes; CBARNs: beam ele-
ments; RBARs: rigid bar elements; CONM2 CGs: CG locations of lumped-mass elements; CONM2
Offsets: offsets between such CG locations and the structural node to which the lumped-mass element is
attached; and SUPORT: support location.

5 NUMERICAL RESULTS

In Table 1, it was shown that the Frobenius norm of the AIC matrix was practically insensitive
to the airframe deformation in an equilibrium condition of straight level flight, at an airspeed
of 17 m/s. Now, it is important to evaluate if this insensitivity is also observed in maneuvering
flight.

Time-marching simulations were performed to obtain the aircraft response to an asymmetrical
elevon doublet. The doublet lasts 1.2 second and is applied only to the right outboard elevon.
The pulses have amplitude of 10.0◦ and are C1-continuous with cubic transitions lasting 0.2,
0.4 and 0.2 second, respectively. The commands begin at t = 0.2 s, with the aircraft initially
in a trimmed straight level flight condition with V = 17 m/s. The first pulse is positive and the
second is negative.

Figure 4 shows that the aircraft pitch rate and roll rate responses to the asymmetrical elevon
doublet are practically unaffected by the absence of the AIC matrix update. Figure 5 shows
that the maximum vertical displacement occurs at the left wing tip and is about 18.7% of the
wing semi-span. This level of deformation is beyond that for which small deformations would
still be valid [7, 8]. Therefore, this flight simulation demonstrates that, for the XH6 and for the
aerodynamic mesh in use, the AIC matrix update is indeed not necessary. In the the sequence
of the paper, whenever the GN formulation is mentioned, results obtained without AIC matrix
update will be shown.

Then, we can proceed to the evaluation of the methodology proposed in this paper, which en-
hances the aerodynamic model used in the GL formulation with both the modification of the
spline matrices and with the consideration of additional GAFs due to mismatch between the de-
formed spline planes and the undeformed structural-dynamic model. A central support location
is used in the GL formulation in this paper.

First, results for the equilibrium condition of straight level flight at V = 17 m/s are shown in
Table 2. In this case, the enhanced model works almost perfectly when compared with the GN
formulation, and it is seen that the GL formulation with the enhanced aerodynamic model is
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Figure 4: XH6 pitch rate and roll rate responses to asymmetrical elevon doublet at 17 m/s, with and without AIC
matrix update.
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Figure 5: XH6 wing tip vertical displacements in response to asymmetrical elevon doublet at 17 m/s, with and
without AIC matrix update.

able to capture the additional bending caused by the aerodynamic forces behaving as follower
forces. The wing tip vertical displacement is close to 12.5% of the wing semi-span, which was
observed to be the threshold between small and large deformations in previous works [7, 8].
The newly-proposed methodology is able to increase the fidelity of the GL formulation with a
much lower computing cost than that necessary in the GN formulation.

Table 2: Wing tip vertical displacements (positive upwards) for the XH6 configuration in trimmed straight level
flight at 17 m/s. (Percentages with respect to GN left and right wing tip displacements.)

Displacements [m]
Wing

GN
GL GL

Tip (Constant spline) (Enhanced)

Left 0.375
0.310 0.377

(−17.3%) (+0.5%)

Right 0.377
0.312 0.379

(−17.2%) (+0.5%)
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Table 3 shows other relevant results for the straight level flight at 17 m/s, regarding important
stability derivatives of the aircraft. These stability derivatives are obtained by the linearization
of the aircraft dynamics about the equilibrium condition, after having properly included the
ARF angle of attack, the ARF sideslip angle and all the aerodynamic coefficients in the output
vector of the dynamics. The stability derivatives of Table 3 are for the deformed airframe but
without quasi-static aeroelastic effects, that is, they are for a rigid aircraft having the shape of
the deformed airframe in the equilibrium condition. It is seen that the enhanced GL formulation
is much closer to the results obtained with the GN formulation, with the highest relative error
of +2.3% observed for the Cmα derivative. The enhanced GL and the GN formulations have a
significantly better agreement with respect to the sideslip angle derivatives. It is then expected
that the enhanced GL formulation leads to much better results than the unmodified GL when
e.g. the aircraft response to side gusts is analyzed.

Table 3: Stability derivatives for the XH6 configuration in trimmed straight level flight at 17 m/s. (Percentages
with respect to GN derivatives.)

Stability
GN

GL GL
Derivative (Constant spline) (Enhanced)

CLα [1/rad] 6.352
6.590 6.353

(+3.7%) (+0.02%)

Cmα [1/rad] −2.956
−2.503 −3.023

(−15.3%) (+2.3%)

CYβ [1/rad] 0.268
0.0459 0.268

(−82.9%) (0.0%)

Clβ [1/rad] −0.345
−0.114 −0.348

(−67.0%) (+0.9%)

The results shown in Tables 2 and 3 are for a flight condition in which deformations are near
the threshold between small and large deformations, and this explains why the GL formulation
with the enhanced aerodynamic model works so well. It is important to show that, for higher
levels of deformation, the methodology will naturally stop to produce reliable results, because
for higher levels of deformation the structural-dynamic geometrical nonlinearities grow in im-
portance and are not captured by the GL formulation. Such a kind of result is shown in Table
4, for a longitudinal maneuver with vertical load factor of 1.5 at V = 20 m/s. The wing tip
displacements predicted by the GL formulations either underestimate or overestimate those ob-
tained with the higher-fidelity GN formulation. The wing tip vertical displacement is close to
23.2% of the wing semi-span, clearly in the range of large deformations [7, 8].

Table 4: Wing tip vertical displacements (positive upwards) for the XH6 configuration in trimmed longitudinal
flight with a vertical load factor of 1.5 at 20 m/s. (Percentages with respect to GN left and right wing tip
displacements.)

Displacements [m]
Wing

GN
GL GL

Tip (Constant spline) (Enhanced)

Left 0.692
0.462 0.843

(−33.2%) (+21.8%)

Right 0.697
0.466 0.853

(−33.1%) (+22.4%)
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Figure 6, which contains the aircraft response to the asymmetrical elevon doublet previously
described, shows that the GL formulation with the enhanced aerodynamic model results in pitch
rate and roll rate time histories that more closely follow those of the GN formulation. This is
because the on-line correction of the local dihedral angles of the lifting surfaces in the enhanced
method allows the modification not only of the aircraft response characteristics but of the elevon
effectiveness as well. One of the effects is that, because of the wing deformation in bending,
the elevon has a smaller arm to produce rolling moment. For the same reason, the same elevon
deflection also generates less force in the body z-axis, then producing smaller pitching moment
as well. These factors contribute to the smaller magnitudes in the aircraft pitch rate and roll rate
responses.
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Figure 6: Nominal XH6 (σ = 1) pitch rate and roll rate responses to asymmetrical elevon doublet at 17 m/s.

The deformations attained in the maneuver, shown in Fig. 7, are large, reaching about 18.7%
of the the wing semi-span at the left wing tip in the GN formulation. The GL formulation
with the enhanced aerodynamic model more closely follows the time histories of the wing-tip
displacements in the GN formulation, but when the largest deformations occur, between 1 and
2 seconds of simulation, the enhanced GL formulation overestimates them. This is because at
such levels of deformation the geometrical linearity of the structural-dynamic model is not valid
anymore.

Nevertheless, considering that the GL formulation has much lower computing time than the GN
(few minutes for the enhanced GL compared with few hours for the GN in a regular desktop
computer, for the five-second simulations under analysis), one would generally be satisfied with
the low level of disagreement obtained between the GN and the enhanced GL formulations.

It is important to show another case in which the level of deformation attained is smaller. For
this, the stiffness matrix of the aircraft is multiplied by a factor σ:

K′GG = σKGG. (43)

Hence, whereas the nominal aircraft analyzed until now has σ = 1, now we analyze the stiffened
aircraft, with σ = 2. The structural damping is not modified. Figures 8 and 9 show the results
of the asymmetrical elevon doublet with σ = 2. The agreement between the GN and the
enhanced GL formulations is even better, validating the methodology proposed in this paper.
Two interesting results appear if one carefully compares Figs. 6 and 8. The first is that there
is almost no difference in the amplitude of the pitch rate response between these two stiffness
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Figure 7: Nominal XH6 (σ = 1) wing tip vertical displacements in response to asymmetrical elevon doublet at 17
m/s.

levels, indicating that the pitching motion is dominated by the rigid-body dynamics. The second
is that, despite the first pulse of the right outer elevon deflection is positive (trailing edge down),
the initial roll rate response is positive (right wing down) in both cases, but of much larger
amplitude in the nominal aircraft. Actually, the elevon roll control is reversed in the XH6, and
its effectiveness in reversal decreases if the stiffness increases.
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Figure 8: Stiffened XH6 (σ = 2) pitch rate and roll rate responses to asymmetrical elevon doublet at 17 m/s.

Regarding the geometrical nonlinearities in the structural-dynamic model, one thing that is eas-
ily observed in a GL formulation is that, the larger the deformations are, the more stretched
the structure becomes, because of the geometrical linearity. To observe this stretching, the total
structural length of the wing was calculated in the simulations for σ = 1 and for σ = 2. The re-
sults are shown in Fig. 10. In the nominal aircraft, the wing structure stretches up to about 0.14
m (2.3% of wing span), whereas in the stiffened aircraft the maximum stretching is about 0.03 m
(0.5% of wing span), both in the enhanced GL formulation. Comparatively, the geometrically-
nonlinear structure almost does not have its length changed. The structural stretching can be
concluded to be the most important limitation of the GL structural-dynamic model. More ex-
tensive analysis could even help to derive a criterion for validity of small deformations based
on how much the structural length is increased.
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Figure 9: Stiffened XH6 (σ = 2) wing tip vertical displacements in response to asymmetrical elevon doublet at 17
m/s.
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Figure 10: XH6 (σ = 1 on the left, σ = 2 on the right) wing structural length in response to asymmetrical elevon
doublet at 17 m/s.

6 CONCLUSIONS

In this paper, an enhanced aerodynamic model for geometrically-linear flight dynamics formu-
lations of flexible aircraft was proposed and evaluated. The proposed model includes the effects
caused by the deformation in bending of the lifting surfaces on the spline interpolation classi-
cally used in geometrically-linear models. Additional generalized aerodynamic forces due to
the mismatch between the displaced spline planes and the undeformed aircraft structure are also
derived and included in the enhanced model.

The enhanced model as developed was applied to the classical vortex-lattice method in which
only lifting surface boxes are included in the model, without any model of the aerodynamic
wake. As such, the proposed model is also directly extendable to the doublet-lattice method
combined with rational function approximations. Because one of the main findings was that the
aerodynamic influence coefficient matrix does not need to be updated on-line during simulation,
the extension to the doublet-lattice method would be seamless and without implying the need
to recalculate the rational function approximations at each time step.
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Comparisons between the geometrically-linear formulation, both with and without the enhanced
aerodynamic model, and the geometrically-nonlinear formulation revealed that the enhanced
model captures several phenomena that the unmodified model is unable to capture. For ex-
ample, the stability derivatives due to angle of attack or sideslip angle, which were seen to be
significantly affected by the wing bending in a flight condition as simple as straight level flight,
are almost exactly calculated by the enhanced model, whereas the unmodified model predicts
some very inaccurate values.

Nonlinear simulations of the X-HALE aircraft response to an asymmetrical right outer elevon
doublet also demonstrated the potential of the enhanced geometrically-linear model to more
closely follow the time histories obtained with the geometrically-nonlinear formulation, with
the former needing only a fraction of the computing time of the latter. However, whenever
structural-dynamic geometrical nonlinearities occur, the differences between them may grow,
as expected. The main factor of inaccuracy in a geometrically-linear structural-dynamic model
was seen to be the stretching of the wing structure, which is practically nonexistent in the
geometrically-nonlinear model. Further studies can now be made regarding this phenomenon.
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