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Abstract: This study presents an analysis of dynamic stall using dynamic modal decompo-
sition (DMD). The hybrid, delayed detached eddy simulations, with a k − ω SST turbulence
model, were employed to perform the dynamic stall simulations for a pitching NACA 0012 air-
foil, at a Mach number of 0.3 and a Reynolds number of 4× 106. With a mean angle of attack
of 11◦ and peak pitching amplitude of 5◦, the dynamic stall observed here can be considered to
be in the light stall regime, where potential energy transfer from the flow to the airfoil’s motion
is often observed. DMD analysis of the pressure snapshots was performed to investigate the
modal behavior representing the various physical phenomena of light stall at high, turbulent
Reynolds number. The stochastic nature of the turbulent dynamic stall phenomenon was also
investigated by comparing the DMD pressure modes from various cycles of the pitching airfoil
motion to the phase-averaged DMD pressure modes.

NOMENCLATURE

c = Chord
cl = Lift coefficient
cmy,x/c=0.25 = Pitching moment coefficient at quarter-chord
cp = Pressure coefficient
f̄ = Reduced frequency, f̄ = ωc

2V∞

t = Time
t = Nondimensional time, tnd = t V∞/c M∞

M = Mach number
N = Number of snapshots
V∞ = Freestream velocity
α0 = Mean angle of attack
α1 = Amplitude of pitching
ω = Frequency (rad/sec)
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1 INTRODUCTION

Dynamic stall is a complex fluid dynamics phenomenon that manifests itself during rapid, tran-
sient motion in which the angle of incidence surpasses the static stall limit. It has been an active
area of research for helicopters, wind turbine blades, unmanned aerial vehicle (UAV) and micro
aerial vehicle (MAV) applications, as well as low-Reynolds number insect and flapping-wing
bird flight. Dynamic stall can be separated into a light stall and a deep stall regime. In light
dynamic stall regime, the excursion of the peak dynamic angle of attack from the static stall
angle is smaller than the deep dynamic stall regime, leading to less abrupt drop in the lift and
moment coefficients during dynamic stall in the light stall regime [1, 2].

The inherent complexity and flow separation during dynamic stall phenomenon require high-
fidelity computational fluid dynamic (CFD) simulations for accurate analysis. The choice of
governing equations to be solved numerically is important. While several studies in the past
have used the Reynolds Averaged Navier Stokes (RANS) equations for studying dynamic stall
[3–6], RANS may be susceptible to inaccuracies in presence of strong separation. An alter-

native is to use Large Eddy Simulations (LES) in which the smaller turbulent length scales are
modeled and the larger ones are resolved [7, 8]. However, owing to the large computational
cost associated with LES, hybrid RANS/LES methods capable of representing a RANS-type
behavior in the vicinity of the solid boundary and an LES-type behavior far away from the wall
boundary, have also been used extensively [9].

Modal decomposition of dynamic phenomena often leads to key insight into the physics of the
problem. This has led to the application of techniques like proper orthogonal decomposition
(POD) [10] and dynamic mode decomposition (DMD) [11] for studying various complex dy-
namic physical phenomena. DMD is a data-based technique that extracts dominant dynamic
features from time-resolved measurements of the flow-field, but unlike POD, the DMD modes
also have associated damping, thus indicating the stability of the modes. Computation of modal
damping during light dynamic stall is important as energy transfer from the flow to the airfoil
oscillations can occur in this stall regime. Such energy transfer can lead to stall flutter instabili-
ties in an associated aeroelastic system.

DMD has been used recently for analyzing both deep dynamic stall simulations with RANS [12]
and LES [13], as well as dynamic stall experiments [14]. However, in these studies, the deep
dynamic stall regime was generally explored at low to moderate, transitional Reynolds num-
bers. Thus, the light dynamic stall regime at high, turbulent Reynolds number, where many
UAVs operate, has not been explored comprehensively. In the present study, DMD will be used
to analyze computational, time-resolved simulations of light dynamic stall at high Reynolds
number, where the flow can be considered to be fully turbulent. A RANS-LES hybrid, delayed
detached eddy simulations (DDES), with a k − ω SST turbulence model will be used to obtain
pressure snapshots of the flow at periodic intervals. The DMD analysis will be employed on
these pressure snapshots. Although either the velocity magnitude snapshots or velocity com-
ponent snapshots were used in previous studies [12, 13], the pressure flowfield can identify the
formation of the dynamic stall vortex (DSV) more easily than the velocity flowfield. Thus, the
formation of the DSV and the flow characteristics associated with the DSV can be attributed
to the various DMD modes. This is expected to provide physical relevance to the DMD mode
shapes. The cycle-to-cycle variations in the airfoil responses will also be investigated with
DMD analysis to understand the impact of the stochastic turbulent behavior during dynamic
stall.
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2 TEST CASE

The light dynamic stall case studied is that of a NACA 0012 airfoil with pitching oscillations
about the quarter-chord point. The flow has a Mach number M∞ = 0.3 and Reynolds number
Re∞ = 4× 106. The pitching motion has a reduced frequency of f̄ = 0.1 and an amplitude of
α1 = 5◦. The mean angle of attack is α0 = 11◦. The unsteady pitching angle of the airfoil can
be written as,

α(t) = α0 + α1sin(ω t) (1)

Equation 1 can be written in terms of nondimensional parameters as,

α(tnd) = α0 + α1 sin(2f̄M∞ tnd) (2)

The experimental results were presented in [15], which considers a mean angle of attack of
10◦. However, the mean angle of attack has been increased here to account for the wall effects
analogous to a previous simulation of the present case [16].

3 COMPUTATIONAL SETUP

DDES [17, 18] is performed here using the k − ω SST turbulence model in EZNSS [19], an
in-house code developed by the Israeli CFD center. The unified hybrid RANS/LES DDES in
EZNSS is formulated according to Ref. [18]. The mesh used here is an O-type mesh with
periodic boundary conditions and consisting of 6.3 million grid points. The mesh dimension is
611×251×41 with 0.25 chord along the spanwise or Y direction. Grid points are concentrated
near the airfoil in order to capture the DSV formation and initial convection. An illustration of
the mesh with various levels of magnification is provided in Fig. 1.

(a) Magnification=50 (b) Magnification=150 (c) Magnification=500

Figure 1: Mesh used for k − ω SST DDES

Similar to Refs. [12, 13], a reduced computational domain was used for taking the snapshots
of the flow. This reduced domain, shown in Fig. 2, consists of a slice around the suction
surface of the airfoil including the leading and trailing edges, where most of the phenomena of
interest are present. The 3D high-fidelity snapshots generated from the DDES were averaged
in the spanwise direction, along the Y direction. The snapshots were sampled in intervals of
17 time steps, where each nondimensional time step for the DDES is 2.053 × 10−2. Thus,
the nondimensional sampling time interval, ∆tnd, for obtaining the DMD snapshots is 0.3491,

3



IFASD-2019-036

resulting in 300 snapshots in a single pitch cycle. As explained in Ref. [13], such a sampling
rate will not be able to capture the small-scale highly fluctuating structures in the shear-layer but
will capture the primary structures of interest. The DDES pitching simulations were carried out
with the second-order accurate, dual-time stepping scheme available in EZNSS. The criterion
for convergence of the dual-time step solution at each time step is the reduction of the residual
by two orders of magnitude (OOM), for both the mean-flow equations and the turbulence model.
The criterion for OOM reduction of the residual and the dual-time step procedure in EZNSS has
been explained further in Ref. [20].

Figure 2: Reduced computational domain used for DMD analysis

4 DYNAMIC MODE DECOMPOSITION
The DMD algorithm used in this article requires snapshots of the flow past the airfoil. The
sampling frequency of the snapshots and the pre-processing of the DDES results is discussed in
the next section. These snapshots vi can be arranged as V N

1 , V N−1
1 and V N

2 as follows:

V N
1 = {v1,v2, . . . ,vN}

V N−1
1 = {v1,v2, . . . ,vN−1} (3)

V N
2 = {v2,v3, . . . ,vN}

where V N
1 ∈ Rm×N , V N−1

1 ∈ Rm×N−1, V N
2 ∈ Rm×N−1, m� N . Herem is the total number

of states in the computational domain and N is the number of snapshots. The DMD assumes a
linear mapping A to approximate the nonlinear dynamical system. This mapping governs the
evolution of the system from one time instant to the next time instant. Thus,

vi+1 = Avi (4)

The linear system can be represented as

AV N−1
1 = V N

2 (5)

Employing a Krylov sequence in terms ofA and v1,

V N
1 =

{
v1,Av1,A

2v1, . . . ,A
N−1v1

}
(6)
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the final snapshot can be written as a linear combination of the preceding snapshots.This as-
sumption is made for a sufficiently large of numbers of snapshots when the vectors become
linearly independent

vN = a1v1 + a2v2 + . . .+ aN−1vN−1 + r (7)

where r denotes the residual. Considering aT = {a1, a2, . . . , aN−1},

vN = V N−1
1 a+ r (8)

Since there is no a priori knowledge of A, an approximation is required. Thus, a compan-
ion matrix S is built as the approximation to A by expressing the final snapshot as a linear
combination of the previous snapshots.

A {v1,v2, . . . ,vN−1} = {v2,v3, . . . ,vN} (9)

=⇒ A {v1,v2, . . . ,vN−1} =
{
v2,v3, . . . ,V

N−1
1 a

}
+ reTN−1 (10)

=⇒ AV N−1
1 ≡ V N−1

1 S + reTN−1 (11)

=⇒ V N
2 ≡ V

N−1
1 S + reTN−1 (12)

with eN−1 ∈ RN−1 as (N − 1)th unit vector. The companion matrix S is of the form,

S =


0 a1

1 0 a2
. . . . . . ...

1 0 aN−2

1 aN−1

 (13)

To be able to compute the S matrix, a Singular Value Decomposition (SVD) of V N−1
1 is per-

formed,
SV D

(
V N−1

1

)
= UΣWH (14)

whereWH is the conjugate transpose ofW ,U ∈ Cm×N−1,W ∈ Cm×N−1, Σ ∈ CN×N . Thus,

V N
2 = UΣWHS (15)

Finally, the matrix S̃ can be obtained by projectingA on the subspace of U .

S̃ = UHV H
2 WΣ+ ∈ CN−1×N−1 (16)

where Σ+ is the pseudo-inverse of Σ, Σ+ =
(
ΣHΣ

)−1
ΣH . S̃ is the desired approximation of

A obtained by projectingA on the subspace ofU . The DMD modes are finally computed with
an eigenvalue decomposition of the S̃ matrix, resulting in the eigenvectors yi and eigenvalues
µi such that

S̃yi = µiyi (17)
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The DMD modes are then obtained as

φi = Uyi (18)

whereU is the right singular vector ofV N−1
1 and yi are the eigenvectors of S̃. The approximate

eigenvalues λ obtained from the DMD are expressed by

λ =
log (µ)

∆t
(19)

where ∆t is the time interval between subsequent snapshots. These eigenvalues can be used
to study the stability characteristics of the modes. Positive < (λ) and negative < (λ) denote
unstable and stable modes, respectively. A neutrally stable mode has a zero real part. = (λ)
provides the damped frequency of each DMD mode. The mean flow is a special case having a
zero eigenvalue, thus showing it is time-invariant. The eigenvalues obtained are usually complex
conjugate pairs having the same stability characteristics but different signs. Neglecting negative
frequencies, each conjugate mode pair represent a single DMD mode.

Reconstruction

The DMD can be written as follows,

vi =
N∑
k=1

αk(µk)
i−1φk (20)

The DMD modes can be used for reconstruction of the flow by using equation 20. For k = 1,
αk can be obtained from eq. 20 as,

v1 =
l∑

k=1

αkφk = φrα = Uyrα

⇒ α = Y −1r UHv1 (21)

where Yr = [y1 y2 ...yl] ∈ Cm×l. α can be substituted in eq. 20 to obtain the reconstructed
solution.

5 RESULTS

5.1 DDES results

Four cycles of DDES of the pitching airfoil is performed in EZNSS. The phase-averaged lift
coefficient, cl, and the pitching moment at the quarter-chord, cmy,x/c=0.25 are obtained from the
corresponding responses of the four cycles of DDES. The phase-averaged results are compared
against available experimental results in Fig. 3. Overall, the phase-averaged DDES results show
a close correlation to the experimental results. However, there are some differences between
the experimental results and the DDES predictions during the pitch-down phase. The largest
differences are observed just after the moment and lift stall, when the flow slowly recovers
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(a) Lift coefficient (b) Pitching moment at quarter chord

Figure 3: Comparison of k − ω SST DDES results with experiments

from the stall. Similar behavior has been observed and explained in other dynamic stall studies
[21–23].

The phase-averaged pitching moment coefficient at the quarter-chord is compared to the pitch-
ing moment coefficients for cycle 1 and cycle 3 of the DDES in Fig. 4. Significant fluctuations
between the pitching moment coefficients are observed during the downstroke, especially dur-
ing the recovery from stall phase. As explained in a recent review article on dynamic stall [23],
the recovery from stall is somewhat of a stochastic process and significant differences in the
aerodynamic loads between subsequent pitching cycles are expected. A cycle-averaged aero-
dynamic damping coefficient, Ξcycle, is also presented in Fig. 4 for the three cases. Ξcycle is
defined in Ref. [23] as follows:

Figure 4: Cycle-to-cycle variations in pitching moment at quarter-chord and aerodynamic damping

Ξcycle = − 1

πα1
2

∮
cmy,x/c=0.25dα (22)

The cycle aerodynamic damping can also be computed from the area enclosed in the cycle
variation of the pitching moment coefficient as:
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Ξcycle =
1

πα1
2

∫ αmax

αmin

(
cmy,x/c=0.25

D − cmy,x/c=0.25
U
)
dα (23)

where superscripts U and D denote the pitch-up and pitch-down phase of the airfoil motion.
The pitching moment coefficient is generally computed at the pitching axis, which for our case
is the quarter-chord. Thus, when energy is transferred from the airstream to the airfoil, the aero-
dynamic damping is negative indicating that the dynamic system is unstable. Such a dynamic
stall phenomenon can drive an aeroelastic system towards stall flutter. The cycle-averaged aero-
dynamic damping for the three cases presented in Fig. 4 is negative, indicating the potential of
stall-induced instability, like stall flutter, for an elastic system attached to the present aerody-
namic system. The Ξcycle for the experimental case is −0.05, which is also negative. It is also
important to note that although all the three cases presented in Fig. 4 show negative Ξcycle, their
values are somewhat different from one another due to the cycle-to-cycle fluctuations.

The present comparison between the experimental and DDES results is quite different than that
provided in a similar simulation [16]. It was observed that the results obtained in Ref. [16] with
a very coarse mesh are mesh dependent. Also, only a single cycle was presented in Ref. [16],
thus neglecting the cycle-to-cycle variations during recovery from stall.

The dynamic stall phenomena is further investigated by looking at the negative pressure coeffi-
cient, −cp, on the upper surface of the airfoil at different phases of the pitching motion Φ, and
comparing it to the cl and cmy,x/c=0.25 variations with the phase in Fig. 5. Here, we define the
phase as Φ = ωt. Fig. 5 (a) shows a large suction at the leading edge of the airfoil till Φ = 80◦

(α = 14.2◦). This is denoted as the leading edge suction (LE suction) phase of the dynamic
stall. At Φ = 80◦ (α = 14.2◦), a locally formed high suction region is observed at about 35% of
the chord, indicating the formation of the dynamic stall vortex (DSV). As expected for the light
dynamic stall regime at high Reynolds number, the DSV is formed at the location of maximum
airfoil thickness. Such a behavior was reported earlier and explained in Refs. [2, 15]. We can
also observe that the DSV formed at Φ = 80◦ (α = 14.2◦), eventually moves along the airfoil
and leaves the trailing edge at Φ = 125◦ (α = 15.44◦). Another locally formed high suction
region at the trailing edge at Φ = 125◦ (α = 15.44◦) is considered the trailing edge vortex
(TEV). The moment stall is observed around Φ = 85◦ (α = 14.38◦), shortly after the formation
of the DSV. The pitching moment coefficient at the quarter chord decreases as the DSV travels
towards the trailing edge of the airfoil. The lift stall is observed around Φ = 105◦ (α = 14.97◦)
as the DSV reaches the trailing edge. While the airfoil recovers from the moment stall, the cl
reduces further as the DSV leaves the trailing edge completely. Eventually, the flow reattaches
and the airfoil recovers from both the lift and moment stall.

Four snapshots of the suction (−cp) flowfield are shown in Figures 6 (a)-(d), at Φ = 60◦, 81.6◦,
108.8◦ and 122.4◦, respectively. At Φ = 60◦ we don’t see the DSV yet but the LE suction
can be observed. At Φ = 81.6◦, we see the formation of the DSV at x/c = 0.35. The DSV
increases in strength, travels towards the trailing edge (6 (c)) and eventually leaves the trailing
edge (Figure 6 (d)) at Φ = 122.4◦ in the form of the TEV. The DMD analysis will be performed
on the pressure snapshots to investigate the modal participation in the dynamic stall phenomena
explained here.

The upper surface suction for the four cycles of DDES is illustrated in Fig. 7 (a)-(d) to inves-
tigate the cycle-to-cycle variations in the aerodynamic loading observed in Fig. 4. We can see
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(a) Upper surface -cp (b) cl and cmy,x/c=0.25

Figure 5: Variation of aerodynamic forces with change in the phase of the pitching motion

(a) Φ = 60◦ (b) Φ = 81.6◦

(c) Φ = 108.8◦ (d) Φ = 122.4◦

Figure 6: Snapshots of -cp at various phases of pitching
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(c) Cycle 1 (d) Cycle 2

(c) Cycle 3 (d) Cycle 4

Figure 7: Cycle-to-cycle variations in upper surface suction coefficient, −cp

that in the four cases, the location of the DSV formation remains fixed at 35% of the chord.
However, the strength of the leading edge suction and extent of the suction from the leading
edge varies from cycle to cycle. The suction contours representing the strength of the DSV
traveling towards the trailing edge and the strength of the TEV also vary from cycle to cycle.
The strength of the vortices is significantly larger for cycles 2 and 4 (7 (b), (d)). The strength
of the TEV is minimum for cycle 3 (7 (c)). The phase of the various features shown here
also varies slightly from cycle to cycle. Thus, the phase-averaging acts as a smoothing process
and the levels of the contours of the phase-averaged upper surface suction, shown in fig. 5
(a), are slightly different than those observed here. The cycle aerodynamic damping calculated
via equation 23 has a minimum value for cycle 1 (-0.2568) and maximum value for cycle 3
(-0.2004). Cycles 2 and 4 have intermediate values (-0.2331 and -0.2316, respectively) of cycle
aerodynamic damping. The pressure snapshots of these four cycles will also be analyzed with
DMD to investigate the pressure modes, which lead to such varying behavior of the DSV and
also the varying cycle-averaged aerodynamic damping.

5.2 DMD analysis

5.2.1 Phase-averaged pressure snapshots

The DMD analysis was performed on the phase-averaged snapshots of the pressure coefficient
cp. In earlier DMD analysis of dynamic stall phenomena, either the snapshots of the stream-
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wise velocity component [13], or the velocity magnitude [12] was used for computing the DMD
modes. However, the pressure coefficient provides a clearer indication of the leading edge
suction, the formation of the DSV, its movement along the airfoil and the TEV, than the velocity
flowfield. Thus, the DMD pressure modes are used to investigate these important features of
the dynamic stall phenomenon.

As explained earlier, the DMD modes obtained from the analysis have complex conjugate pairs
of eigenvalues except for the first mode, which has a real eigenvalue. Each mode pair having
complex conjugate eigenvalues will be denoted a single DMD mode number. All the DMD
modes, except the first mode, have frequencies that are multiples of the pitching motion fre-
quency. They were ranked in ascending order of their modal amplitude. Figure 8 (a) shows the
reduced frequencies of the various modes, normalized by the reduced frequency of the pitching
motion. We can see from the scattered nature of the reduced frequency plot that when the modes
are ranked according to their modal amplitude, except for modes 2-5, the subsequent modes are
not the higher harmonics of the pitching motion frequency. This indicates that the higher modes
may have a higher contribution to the pressure flow field than some of the lower modes. The
variation of the modal amplitude is shown in Fig. 8 (b). We can see that the modal amplitude
of the first 5 modes is much higher than the rest of the modes. The amplitude of mode 5 is over
an order of magnitude lower than that of mode two. However, the relatively flat nature of the
modal amplitude curve from mode 6 onward shows that the modal contribution to the dynamic
stall phenomena is non-negligible.

(a) Normalized reduced frequency, k/kpitch (b) Modal amplitude

Figure 8: DMD modes ranked according to |α|

The first seven DMD modes are presented in Table 1 along with their eigenvalues and reduced
frequencies. The table shows that the first mode, having a zero eigenvalue, is a stationary
mode. This mode represents the mean flow and should also be obtained by time-averaging
the phase-averaged pressure snapshots. This is demonstrated in Fig. 9, where the 1st DMD
mode, multiplied with its modal amplitude, has been compared to the time-averaged mean
pressure flowfield obtained from the DDES. The two cases have a very similar flowfield and
also the same magnitude of the suction contours. This can be further concluded by looking at
the differences in the −cp between DMD mode 1 and the time-averaged DDES solution in Fig.
10, which shows that the differences are more than two orders of magnitude smaller than the
actual cp values. Looking at mode 2 from Table 1, we observe that this mode has the same
reduced frequency of 0.1 as that of the pitching excitation provided to the airfoil. The next
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Table 1: Eigenvalues and reduced frequency of DMD modes

Mode Eigenvalue (µk) Reduced frequency (f̄ )
1 1.0 –
2 0.9997 ± 0.0209i 0.1000
3 0.9992 ± 0.0420i 0.2007
4 0.9983 ± 0.0626i 0.2990
5 0.9961 ± 0.0832i 0.3977
6 0.9570 ± 0.2634i 1.2822
7 0.9936 ± 0.1049i 0.5022

higher modes 3-5 can be considered the higher harmonics of the pitching motion. Mode 6
has a frequency that is thirteen times the pitching frequency, but is ranked ahead of the fourth
harmonic, mode 7, because of its higher modal amplitude.

(a) Time-averaged DDES pressure snapshots (b) DMD mode 1

Figure 9: Comparison of −cp

Next, each the complex conjugate pairs associated with each of the modes 2-7, were multiplied
with their corresponding complex conjugate modal amplitudes via equation 20, to obtain real-
valued cp values. Here, N = 2 in equation 20 as we are applying the equation on the complex
conjugate pair of a DMD mode. The variation of the surface suction distribution of MD modes
2-7, with the phase of the pitching motion, is presented in Figures 11 (a)-(f). It can be seen
that although mode 2 has a large relative modal amplitude compared to the higher modes, the
formation of DSV is not clearly evident from it. Only a LE suction region can be distinctly
identified in this mode, which has the same phase as that of the traveling DSV in the surface
pressure plot in figure 5 (a). Modes 3 and 4 are the subsequent higher harmonics of mode 2.
The formation of the DSV can be identified in mode 4 based on the concentrated suctions at
35% of the chord. However, the high suction values along the chord indicate the travel of the
DSV in all the modes 2-4.

Modes 5, 6 and 7 show the formation of the DSV at 35% of the chord and its eventual movement
towards the trailing edge much more clearly. Mode 6 also clearly shows the TEV which is not
clearly evident in the other DMD modes shown here. Modes 5, 6 and 7 also show significant
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Figure 10: Defference between the−cp obtained from time-averaged DDES pressure snapshots and DMD mode 1

damping and decay of the modal features with an increase in the period number. The features
observed in modes 5, 6 and 7 closely resemble that of the surface pressure distribution in fig. 5
(a), although the energy content in these modes is relatively much lower than modes 2, 3 and 4.
This indicates that for the light dynamic stall phenomena at the high, turbulent Reynolds number
presented here, higher modes with relatively lower modal participation show important physical
phenomena that are sometimes not observed in the larger energy modes. This is especially true
for the formation of the DSV and its travel towards the trailing edge of the airfoil, as several
higher modes show these features much more clearly than the lower modes. This is significantly
different from what was concluded in a previous DMD analysis of deep stall of a plunging airfoil
at lower Reynolds number [13].

To develop a reduced-order model with the DMD modal ranking presented earlier, the L2 error
norm between the cp snapshots and the reconstructed solutions were computed as follows:

L2 error(%) =

∥∥∥∥∥∥∥∥
√[∑G

i=1(cpreconstructed − cpDDES)2
]

√[∑G
i=1 cpDDES

2
]

∥∥∥∥∥∥∥∥ (24)

where G represents the total number of grid points in the reduced computational domain used
for performing the DMD analysis. These are presented for 5 cases: N =9,19, 29, 49 and 99, in
figure 12, whereN represents the total number of modes including the complex conjugate pairs.
Thus, N =9 represents the stationary mode and four DMD mode pairs. The largest L2 error
norms are observed during the formation of the DSV phase and its travel towards the trailing
edge, from φ = 80◦−130◦. Once the DSV leaves the trailing edge and the airfoil recovers from
stall, the error between the reconstructed solution and original snapshot decreases. As expected,
theL2 error norms decreased with increasing the number of modes in the reconstructed solution.
With N =99 a peak error of 11% was observed at Φ = 86.4◦. The reconstructed upper surface
suction distribution along the airfoil with the phase of motion, for N = 49 and N = 99,
are compared to their counterpart obtained from the DDES in figure 13. We can see that for
r = 49 (fig. 13 (b)) the DSV at 35% of the chord and the TEV are not completely developed
compared to the DDES results (13 (a)). However, for r = 99 (fig. 13 (c)) much better correlation
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(a) Mode 2 (b) Mode 3

(c) Mode 4 (d) Mode 5

(e) Mode 6 (f) Mode 7

Figure 11: Change in upper surface -cp distribution along the airfoil with the phase of the pitching motion for
DMD modes 2-7

14



IFASD-2019-036

is observed between the DSV and the TEV of the reconstructed solution compared to their
counterparts from the DDES snapshots.

Figure 12: L2 error norm between the reconstructed solution and DDES pressure snapshots for various model
orders

(a) DDES results (b) DMD reconstruction, r=49 (c) DMD reconstruction, r=99

Figure 13: Comparison of upper surface suction, −cp

The DMD analysis was also used to investigate the contribution of the various modes to the
cycle-averaged aerodynamic damping. Since the DMD analysis was performed on a reduced
computational domain consisting mainly consisting of the upper surface of the airfoil, the
cmy,x/c=0.25 was computed with only the airfoil surface grid points of the reduced computa-
tional domain. The cmy,x/c=0.25 thus computed for the DDES snapshots are shown in Fig. 14
(a). It can be observed from Fig. 3 (b) that the cmy,x/c=0.25 for the reduced computational
domain shows reasonable correlation with its counterpart computed for the full domain. The
cmy,x/c=0.25 was also computed for the various DMD modes and is presented for DMD mode
2 in Fig. 14 (b). These cmy,x/c=0.25 values for the full solution and various DMD modes were
used for computing the cycle aerodynamic damping via equation. 23. The aerodynamic damp-
ing coefficients for the various DMD modes, Ξcycle,DMD, are presented in Table 2. The aero-
dynamic damping coefficients normalized by the damping coefficient of the DDES solution,
|Ξcycle,DDES|, are also presented in Table 2. It can be observed that since DMD mode 1 is a
stationary mode, it does not have any aerodynamic damping. DMD mode 2 has a negative aero-
dynamic damping coefficient thus showing the potentially unstable nature of the mode. Also,
a relative damping coefficient of 0.9958 indicates that it contributes almost all of the negative
aerodynamic damping of the full solution. The contribution of modes 3-8 to the aerodynamic
damping is negligible.
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(a) DDES pressure snapshots (b) DMD pressure mode 2

Figure 14: Comparison of cmy,x/c=0.25 obtained for the reduced computational domain computed

Table 2: Normalized cycle aerodynamic damping of various DMD modes

DMD Mode Ξcycle,DMD Ξcycle,DMD/Ξcycle,DDES

1 0 0
2 -0.7003 0.9958
3 -2.1e-04 3.1e-04
4 -0.0043 0.0061
5 0.0037 -0.0053
6 9.3e-04 -0.0013
7 -0.0036 0.0052
8 -0.0045 0.0078
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From figure 14 (b), it can be observed that the cmy,x/c=0.25 of DMD Mode 2 has a phase lead of
a little over 90◦ to the pitching oscillation. This phase lead generates positive work thus creating
the negative aerodynamic damping coefficient. We can conclude that the DMD mode having
the frequency of the prescribed motion, and primarily showing the LEV and the path of the
DSV’s travel along the airfoil, contributes the most to the negative cycle-averaged aerodynamic
damping of light dynamic stall phenomena at high, turbulent Reynolds number.

5.2.2 Cycle-to-cycle variations

Next, DMD analysis is performed to obtain the pressure modes for various cycles of the pitching
oscillation. The differences in the pressure modes and the eigenvalues associated with them will
be investigated to understand the role of the DMD modes in the cycle-to-cycle variations often
observed in the aerodynamic responses during dynamic stall. It was observed that with the
present number of DDES snapshots captured in each cycle, the DMD analysis did not converge
if the snapshots from only one cycle are considered. Such non-convergence of DMD can be
expected when a sufficient number of observables or snapshots are not used for generating the
DMD modes. Thus, the total number of snapshots from two cycles were phase-averaged and
then used for the DMD analysis to obtain converged results. The two cases presented here are
phase-averaged results from cycles 1 and 2, and cycles 2 and 3. The first case, which is denoted
as PA cycle 1-2, has a phase-averaged cycle aerodynamic damping of -0.2810. The second
case, denoted as PA cycle 2-3, has a phase-averaged cycle aerodynamic damping of -0.2164.
The phase-averaged results obtained from four cycles is denoted as PA cycle 1-4. It has a cycle
aerodynamic damping of -0.2300 lying in between the corresponding values of the other two
cases. PA cycle 1-2 and PA cycle 2-3 will be analyzed further with the help of the DMD modes
and compared to the already obtained PA cycle 1-4 results.

The modal displacements of the DMD modes are sorted based on their amplitude for the three
cases mentioned earlier and presented in figure 15. It is observed that for modes 1-3 the modal
amplitude for the three cases is similar. For mode 4, PA cycle 1-2 has a slightly lower modal
amplitude than the other two cases. From mode 5 onward, somewhat different modal amplitudes
are observed for the three cases. Overall, the three cases show a similar pattern of modal
amplitude and modes 1-4 comprises most of the energy of the flow.

Figure 15: Comparison of modal displacements (ranked according to |α|) between DMD analysis of various phase-
averaged pressure snapshots

The reduced frequency spectrum of three cases for the first 50 modes, sorted according to their
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modal amplitude, are presented in figure 16. Figure 16 is the same as fig. 8 (a), but only
showing the first 50 modes. The reduced frequency spectrum for all the three cases is highly
scattered indicating that for all the three cases, the higher frequency modes often have a larger
modal amplitude than their lower frequency counterparts. Hence, they are expected to provide
a significant contribution to the physical phenomena observed here. Mode 1 is the stationary
mode for all three cases. Modes 2 and 3-4 are the modes with the frequency of pitching and its
higher harmonics, respectively, for all the three cases. The mode 5 for PA cycle 1-2 is not the
third harmonic, unlike the other two cases. Similarly, mode 6 for PA cycle 3-4, is a much higher
harmonic with a much larger frequency than its counterparts for the other two cases. This
shows the significantly different cycle-to-cycle modal participation observed during dynamic
stall. Such different pressure modes lead to tangible differences in the cycle to cycle surface
pressure distribution, as observed in fig. 7.

(a) Phase-averaged cycle 1-2 (b) Phase-averaged cycle 1-4 (c) Phase-averaged cycle 2-3

Figure 16: Comparison of modal reduced frequency (ranked according to |α|) between DMD analysis of pressure
snapshots

DMD modes 3, 4, 5 and 6 from the three cases are compared in figures 17, 18, 19 and 20.
From figures 17 and 18, we see that modes 3 and 4 are the first and second harmonic modes,
respectively, for all the cases. However, from 18 (a) it is not evident that mode 4 for PA cycle
1-2 is unstable and has a positive real part of the eigenvalue. Mode 3 does not clearly show the
DSV formation which can be clearly observed in mode 4. From fig. 19 (a) it is observed that
mode 5 for PA cycle 1-2 is a higher harmonic than its counterparts. Also, it can be observed that
in mode 5 for PA cycle 2-3 the DSV at 35% of the chords grows from one period to another.
Mode 6 of PA cycle 2-3 in fig. 20 (c) is a much higher harmonic than its counterparts.

(a) Phase-averaged cycle 1-2 (b) Phase-averaged cycle 1-4 (c) Phase-averaged cycle 2-3

Figure 17: Comparison of upper surface -cp of DMD mode 3
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(a) Phase-averaged cycle 1-2 (b) Phase-averaged cycle 1-4 (c) Phase-averaged cycle 2-3

Figure 18: Comparison of upper surface -cp of DMD mode 4

(a) Phase-averaged cycle 1-2 (b) Phase-averaged cycle 1-4 (c) Phase-averaged cycle 2-3

Figure 19: Comparison of upper surface -cp of DMD mode 5

(a) Phase-averaged cycle 1-2 (b) Phase-averaged cycle 1-4 (c) Phase-averaged cycle 2-3

Figure 20: Comparison of upper surface -cp of DMD mode 6
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5.3 Stability characteristics of DMD modes

Here we will discuss the stability of various DMD modes by investigating the real part of the
modal eigenvalues. It is important to note that such modal stability is mostly an indication of the
role of various modes in the flow separation as explained in Ref. [13]. Since this is a prescribed
motion to the airfoil applied periodically over a cycle, the modal stability does not reflect the
stability of the dynamical system.

The real part of the DMD eigenvalues for all the three cases are plotted in fig. 21 against the
inverse of modal amplitude, for modes 2-6. Since the modes are ranked according to their
modal amplitudes, the modal rank increases with the inverse of the modal amplitude. It is
observed that for PA cycle 1-4, modes 3 and 4 show positive real part of the DMD eigenvalues
indicating unstable modes. However, the positive real part is small for both the modes. Mode
2 has a very small negative real part of the eigenvalue, mode 5 has a moderate negative real
part and mode 6 has a large negative real part. For PA cycle 1-2, mode 4 is unstable with a
moderately large positive real part of the eigenvalue. Mode 2 and 3 show very small negative
real part and modes 5 and 6 show a large negative real part. For PA cycle 2-3, modes 4 and 5
are unstable but mode 5 has a much larger positive real part than mode 4. Modes 2 and 3 has
a small negative real part whereas mode 6 has a large negative real part. Overall we see that
when phase-averaged over 4 cycles, some of the higher amplitude modes are unstable but with a
small positive real part. However, both PA cycle 1-2 and PA cycle 2-3 have at least one unstable
mode which has a moderately large real part of the eigenvalue. This is possibly because of
phase-averaging retaining integral effects like aerodynamic forces, but not the modal features
which vary in phase between the individual cycles. Although PA cycle 1-2 and PA cycle 2-3 are
also phase-averaged, it is done over two cycles and still retains some of the effects of the cycle-
to-cycle variations. However, phase-averaging over four cycles retains a much lower amount of
individual cycle features like modal eigenvalues.

It is important to note that unstable DMD modes were also observed in a DMD analysis of deep
dynamic stall in Ref. [13]. However, in that case, the positive the real part of the eigenvalues
were much smaller than what is observed here for the light dynamic stall case, especially for
PA cycle 1-2 and PA cycle 2-3.

Figure 21: Comparison of modal damping (ranked according to |α|) between DMD analysis of various phase-
averaged pressure snapshots
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6 CONCLUSIONS

In this study, a DMD analysis of the dynamic stall phenomena of a pitching NACA 0012 airfoil,
occurring at high, turbulent Reynolds numbers and in the light stall regime, was presented. The
CFD simulations for the test case were performed using DDES and the results obtained from
DDES were first validated against experimental results obtained for a similar setup. The pitch-
ing moment predicted by the DDES showed negative cycle-averaged aerodynamic damping.
The cp distribution predicted by the DDES showed large leading edge suction, the formation
of the DSV at about 35% of the airfoil, movement of the DSV towards the trailing edge and
eventual formation of the TEV. Significant cycle-to-cycle variations were observed in the phase
and the amplitude of the LE suction, the suction coefficient associated with the DSV and the
TEV, and in the cycle-averaged aerodynamic damping.

DMD analysis performed on the DDES pressure snapshots phase-averaged over four cycles
showed a stationary mode that matched exactly with the time-averaged DDES pressure snap-
shots. The second DMD mode showed the frequency of the pitching motion and subsequent
DMD modes were higher harmonics of the second DMD mode. The second DMD pressure
mode showed a prominent leading edge suction region and another suction region coinciding
with the path of the traveling DSV. The formation of the DSV could be identified in mode 4 at
35% of the chord. Modes 5, 6 and 7 showed the formation of the DSV at 35% of the chord as
well as its movement towards the trailing edge much more clearly. Mode 6 also clearly showed
the TEV which was not clearly evident in the other DMD modes. Although DMD Mode 6 is
a much higher harmonic of mode 2, it was ranked ahead of some of the lower harmonics due
to its much larger modal amplitude. This indicates the importance of the higher DMD modes,
with relatively lower modal amplitude, in the important physical features of dynamic stall.

It was observed that a reduced-order model a model order of 99 (stationary mode + 49 DMD
mode pairs) was required to reduce the peak L2 norm of the error between the reconstructed
solution and DDES solution to 10%, especially during the phase of the DSV formation. Also, on
increasing the number of DMD modes from r = 49 to r = 99, a significant improvement in the
correlation between the reconstructed surface pressure distribution and its DDES counterparts
was observed.

The cycle-averaged aerodynamic damping for both the DDES snapshots as well as the DMD
pressure modes was obtained by computing the pitching moment at the quarter-chord via the
pressure coefficients of surface grid points for the reduced computational domain. It was ob-
served that DMD mode 2 was the most important contributor to the negative aerodynamic damp-
ing of the system. It had a negative cycle-averaged damping coefficient, with a relative value of
0.9958 to its counterpart computed for the DDES solution for the reduced domain.

DMD analysis was also performed on phase-averaged snapshots obtained from cycles 1 and 2
(PA cycle 1-2), and cycles 2 and 3 (PA cycle 2-3), and compared with that obtained earlier from
the four cycles (PA cycle 1-4). It was observed that when the modes for the three cases were
ranked based on their respective modal amplitudes, modes 1-3 of had same modal amplitudes
for all the cases. For mode 4 onwards, somewhat different modal amplitudes for a specific
mode number was observed for the three cases. Overall, the three cases show a similar pattern
of modal amplitudes and modes 1-4 comprised most of the energy of the flow. Similar to PA
cycle 1-4 discussed earlier, several higher frequency modes for PA cycle 1-2 and PA cycle 2-3
had a larger modal amplitude than their lower frequency counterparts. For all the three cases,
mode 1 is the stationary mode and the modes 2-4 are the same harmonics. However, mode
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5 for PA cycle 1-2 is not the third harmonic, unlike the other two cases. Similarly, mode 6
for PA cycle 3-4 is a much higher harmonic than its counterparts for the other two cases. This
shows the significantly different cycle-to-cycle modal participation taking place during dynamic
stall. Such different pressure modes can be attributed to the differences in the surface pressure
distribution from one cycle to another.

The stability characteristics of the DMD modes were also investigated by inspecting the real
part of the eigenvalues of the DMD modes. Such modal stability is mostly indicative of the role
of the DMD modes in flow separation. For the present case with prescribed periodic motion,
such modal stability does not indicate the stability of the aerodynamic system. It was observed
that for PA cycle 1-4, modes 3 and 4 were unstable modes, but with a small positive real part
of the eigenvalue. For PA cycle 1-2, mode 4 was unstable with a moderately large positive real
part of the eigenvalue. For PA cycle 2-3, modes 4 and 5 were unstable but mode 5 had a much
larger positive real part than mode 4. Overall, it was observed that when phase-averaged over
4 cycles, the positive real parts of the eigenvalues of the unstable modes were much smaller
than their counterparts obtained from both PA cycle 1-2 and PA cycle 2-3. This is possibly
because phase-averaging retains integral effects like aerodynamic forces, but not the modal
characteristics which vary in phase between the individual cycles. PA cycle 1-2 and PA cycle
2-3 are also phase-averaged, but it is done over only 2 cycles and still retains some of the effects
of the cycle-to-cycle variations. Phase-averaging over four cycles destroys the modal features
that are present in the individual cycles.

Overall, the present study provided several key insights regarding the physics of the problem
from a perspective of modal decomposition of a complex dynamic physical problem. Future
work would comprise of further investigation of the problem to establish differences between
the DMD modes for attached and separated flow, as well as dynamic stall in the light and deep
stall regimes.
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