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Abstract: The increased airframe flexibility of the new generation of commercial aircrafts,
and the unreliability, for unconventional aircraft configurations, of the classical statistical-based
aeroelastic methods, require the introduction of physics-based aeroelastic analysis in the early
development stages of the overall aircraft synthesis process. The paper presents a differenti-
ated unsteady aeroelastic analysis module suitable for the large scale MDO problem typical of
preliminary aircraft design. Morino’s method is implemented and deployed for the frequency
domain aerodynamic analysis. This method is able to deal with arbitrary complex 3D body
surfaces increasing the geometrical fidelity and the robustness of the analysis procedure. Finite
state aerodynamic modeling is adopted to represent the aerodynamic term in the aeroelastic
equation allowing the use of simple root locus method for the flutter point definition. The
interface with the central data model, CPACS, allows the deployment of the aeroelastic mod-
ule in collaborative multi-disciplinary design workflows. The total derivative of flutter speed
is computed analytically, whereas for some partial derivatives complex step approach resulted
more convenient. Since derivatives with respect to wing planform parameters, such us span
and sweep angle, are sought, the derivatives of the structural modal shapes cannot be neglected
and are analytically computed. For the total derivative of the aerodynamic term in the aeroe-
lastic equation, the GAF matrix, we developed a discrete adjoint method. Finally, the Goland’s
wing benchmark case is used for flutter analysis validation, and, for this configuration, deriva-
tives with respect to span and sweep angle are computed and compared with finite difference
results.

1 INTRODUCTION

In the conceptual and preliminary development phases, flexibility effects are conventionally not
included in the design investigations. At best, aeroelastic instabilities are estimated by empirical
relations and available data from previous designs, rather than by incorporating physics-based
analyses. Hence, at these stages the estimation of the relevant load cases includes conserva-
tive allowances and safety margins for the structural design in order to guarantee the struc-
tural integrity. This rather conventional sequential design approach usually adds an “aeroelastic
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penalty” to the final designed structure [1]. However, with the increasing efficiency of the struc-
tural design concepts, the importance of flexibility is significantly growing: its effects need to
be properly accounted from the beginning of the development in order to minimize expensive
redesign activities or the degradation of the prospected performance.
As Ref. [2] pointed out, although well-established methods are available for linear aeroelastic
analyses of modern airplanes, there is still a limited capacity to bring them into the early stages
of the design process. Steady high-fidelity aeroelastic analysis has been already successful in-
tegrated in a multidisciplinary design process. The obtained optimal wings show a significant
increase of the aerodynamic efficiency, up to 20%, but the excessively high aspect ratio suggests
possible flutter instability [3, 4]. When flutter constraints are included in the overall aircraft de-
sign process (OAD), they highly affect the optimal solution, as shown by Ref. [5]. For instance,
flutter-free configurations show a higher structural mass and a lower aspect ratio wing. The
same trend have been also observed for unconventional configurations.

In order to further foster the integration and increase the impact of unsteady aeroelasticity in the
aircraft design process, efficient derivative computation for unsteady aerodynamics and flutter
speed are necessary. Indeed, gradient based optimization is one of the most popular approach for
aircraft multidisciplinary design and optimization (MDO), and the only viable solution when the
number of design variables is extremely high, like in large scale MDO. This approach strongly
rely on the accuracy of the derivative of the objective and constraint function with respect to
design variables.
In literature, several works deal with the definition of the flutter speed, or flutter constraint,
derivative. These works differs for the level of fidelity of the structural model, of the aerody-
namic model and the design variables considered in the differentiation. In [6] a modified strip
theory is used to compute the unsteady aerodynamic foraces in frequency domain, whereas the
wing structure is modeled as an equivalent plate. The low fidelity of both aerodynamic and
structural model allows to obtain an analytic expression for the flutter speed derivative with
respect to wing planform parameters, such as aspect ratio, area, taper ratio and sweep angle.
In [7], the accuracy of the previous aerodynamic model is increased, by correcting the strip
theory with finite span effects. Ref. [8] uses the same analytic approach substituting the strip
theory with the piston theory in order to study supersonic flow conditions.
In [9] the level of fidelity of the aerodynamic model is increased by using the doublet lat-
tice method (DLM), whereas the wing structure is modeled with a beam-based finite element
method. The use of the finite state modeling for the aerodynamic term allows to use state space
analysis to solve the aeroelastic equation, and hence to obtain the analytic expression for the
derivative of the flutter speed. However, the increased fidelity of the aerodynamic model pre-
vents the use wing planform parameter as design variable, only structural parameter, such as
bending and torsional stiffness are considered. Indeed, with the DLM, in order to obtain the
flutter speed derivative with respect to wing planform parameter, the derivative of the structural
modal shapes cannot be neglected, as done in [9].
Ref. [10] describes the NeoCASS framework for conceptual aero-structural sizing of the com-
plete aircraft configuration. DLM, as well as a RANS based reduced order model, are available
for the aerodynamic analysis. Both fuselage and wing structure are modeled with a stick finite
element model, in which all the parameter of the section, like skin, frames and spar, are used to
define the section stiffness characteristics. The framework allows the user to perform structural
optimization using gradient based algorithm. Also in this case, only derivative of flutter speed
with respect to structural parameters are considered.
A detailed shell element wing structural model is used in [11] to perform topological opti-
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mization, and the aerodynamic analysis is carried out with DLM. The non-iterative procedure
proposed in [12] is used to solve the p-k form of the flutter equation. Again, only the flutter
speed derivative with respect to structural parameters is computed, therefore the derivative of
the structural modal shapes are neglected.
A similar approach is used in [13, 14], where DLM is employed for the aerodynamic analysis,
and the structural modeling and analysis is carried out using the TACS software [15], a FEM
solver specialized for thin-walled composite structures. As in [11], the flutter analysis is per-
formed with a non iterative p-k procedure. Planform parameters as well as structural parameters
are considered as design variable for the flutter speed derivative computation, thus the derivative
of the structural mode shapes are included in the differentiation procedure.

The work here presented is part of an overall framework, aiming to enhance the aircraft early
design stages for conventional and unconventional configurations by physics based analyses, for
instance by accounting for static and dynamic aeroelastic constraints. Here, the unsteady aero-
dynamic analysis is carried out with the boundary element method developed by Morino [16],
and able to consider generic 3D body shapes. The aeroelastic equation is solved using a state
space approach resulting in a twofold benefit. First, the form of the aeroelastic equation is math-
ematically valid also far from the flutter point. Second, the complex root finding procedure,
used in the p-k method to solve the frequency matching problem, is replaced by a standard root
locus method. Moreover, the finite state aerodynamic modeling, necessary for the state space
approach, allows us to obtain flutter speed and flutter frequency derivative analytically.
The unsteady aerodynamics is differentiated with respect to wing planform parameters. There-
fore, we cannot neglect the dependency of the modal shapes on the design variables, and they are
differentiated accordingly exploiting the method presented by Cardani and Mantegazza in [17].
The developed unsteady aeroelastic module is suitable for a collaborative and multidisciplinary
aircraft design process. In order to foster the integration among the different disciplinary mod-
ules, the central data schema CPACS [18] is used as standard input-ouput data format. The tool
is also accessible via RCE [19], the DLR’s distributed environment in which the design process
is implemented. These two features, together with the complete automatization of the analysis
procedure, make the unsteady aeroelastic module suitable for large collaborative MDO process.

In Section 2 we describe the implemented analysis method, such us the boundary element
method for aerodynamic, and the state space approach for the flutter analysis. In Section 3
the definition and implementation of the flutter speed derivative is discussed and results are
compared with finite difference results. Finally, in Section 4 the entire procedure is applied to
the Goland wing use case, a typical test case for flutter analysis.

2 THE UNSTEADY AEROELASTIC MODULE

2.1 Morino’s Method

The current state of the art for accurate aeroelastic instability prediction consists of time-
marching coupled CFD-CSD simulations. The small size of the time steps, required to ob-
tain reliable results, increases significantly the computational cost of the analysis, making it
not always suitable for preliminary aircraft design, where time constraint and available com-
putational resources may postpone the deployment of CFD to later design stages. Indeed, the
standard flutter prediction method in the industrial environment, for the prelimnary phase, is
based on a flat surface linear aerodynamic model, the doublet-lattice method (DLM), developed
by Albano and Rodden [20]. These method abstracts the wings to lifting surfaces, which can be
flat [21] or twisted [22], whereas the fuselage, if considered, is treated with dedicated elements
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for 3D non-lifting body. The low computational cost compensates for the low fidelity of the
model, and the reliability is increased correcting the aerodynamic influence coefficients (AIC)
with wind tunnel experimental data. For an optimization process this data are not available,
hence the need to push forward the fidelity of the aerodynamic analysis without increasing the
computational cost.

Figure 1: Onera M6 wing model with 500 body panels. The plunging-pitching motion
shapes are also represented in the left and right sub-figure respectively.

Here, the boundary element method proposed by Morino in [16] is implemented for the fre-
quency domain aerodynamic analysis of 3D bodies. Morino’s method is based upon the integral
equation obtained applying the Green’s function theorem to the small perturbation equation, and
can be used for steady as well as unsteady aerodynamic analysis, for subsonic as well as super-
sonic flow. Here, only the subsonic incompressible model is implemented.
Morino’s boundary element method and DLM solve the same field equation, the small per-
turbation equation, but they strongly differ in terms of geometrical fidelity of the boundary
condition. It has also been proved by Morino in [23] that, for a null-thickness body, his the-
ory reduces properly to the lifting surface theory of the standard DLM. One of the contribution
of this paper is the extensive comparison between DLM and Morino’s method, carried out to
validate our implementation.

With this method, arbitrary complex 3D bodies are treated in an unified manner, reducing the
effort and increasing the robustness of the model generation phase and of the aero-structural
mapping as well. For an MDO environment suitable for a large range of aircraft configurations,
conventional as well as unconventional, this is a key feature of the aeroelastic analysis module.
Besides implementation aspects, the increased geometrical fidelity of Morino’s method has been
proved to be necessary to capture important unsteady aerodynamic effects, like in-plane motion
aerodynamic effects and local fuselage-wing interference.
Finally, it is important to highlight that Morino’s method has a computational cost comparable
with DLM. With respect to the latter, additional panels are needed to cover the aircraft outer
mold line, and also the wake needs to be modeled with panels. However, the performed con-
vergence studies suggest that the necessary number of panels and length of the wake do not
downgrade the computational performances of the method. For the Onera M6 wing use case,
500 body panels and 500 wake panels are sufficient to have a converged solution, see figures
1 and 2, and approximately 3 seconds are needed to compute one element of the GAF matrix
for one value of reduced frequency, on a 4 × 2.70 GHz cores machine. Note that, the most
expensive part of the computation is the model generation, changing mode shapes or value of
reduced frequency only affects the boundary condition. Indeed, for the same use case nearly the
same time (approximately 4 seconds) is needed to compute a 5 × 5 GAF matrix for 10 values
of reduced frequency.
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Figure 2: Converge studies on the number of body (a) and wake (b) panels. Use case:
Onera M6 wing. The 2 × 2 GAF matrix is calculated for the plunging-pitching motion
depicted in figure 1 and a reduced frequency k = 0.76.

2.1.1 Comparison between Morino’s Method and Doublet Lattice Method

Validation studies have been already presented by the authors in [24]. Our implementation of
Morino’s method is compared to Theodorsen’s theory and the DLM implemented in NASTRAN
MSC. Nevertheless, by using a commercial code the comparison has been carried out only for
the top-level results, leaving open the possibility of lower-level bugs.
Here, we present a comparison between the implemented Morino’s method and the DLM im-
plementation described by Demasi in [25]. The chosen use case is the Onera M6 wing already
used for the convergence study. The 6× 6 GAF matrix elements are compared for 20 values of
reduced frequency ranging from 0 to 2, the typical interval for flutter analysis. We condider 6
motion shapes: plunging, pitching and the first 4 structural modes, see figure 3.

As can be seen from figure 4, a good agreement is found among the two methods. The higher
discrepancy is observed for the 3rd structural mode, while for the other motion shapes the two
curves are practically overlapping. It has been also observed a decrease of the discrepancy due
to a decrease in the thickness to chord ratio.
The comparison continues on lower-level variables the pressure jump across the lifting surface
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(a) Plunging (b) Pitching (c) Mode 1

(d) Mode 2 (e) Mode 3 (f) Mode 4

Figure 3: The 6 displacement shapes used for the comparison between Morino’s method
and doublet lattice method.

∆Cp. In order to carry out this comparison, the 3D model is reduced to the equivalent flat model
using averaging the contribution of upper and lower panels. Figure 5 shows a good agreement
also on these lower-level variables for rigid body as well as structural modal motions.

2.2 Finite State Aerodynamic

In linear flutter analysis 1 the Laplace transform of the generalized aerodynamic force vector,
f(s), is expressed as

f(s) = Q(sl/U∞)q (1)

where Q is the so called generalized aerodynamic forces matrix (GAF), and is a non linear
function of s and U∞ only through the complex reduced frequency p := sl/U∞. Note that,
except some very simple cases like the classic Theodorsen two-dimensional theory, it is not
possible to obtain the analytic expression of Q(p), which is instead evaluated numerically on a
finite number of sampling points. In fact, the methods used for the evaluation of Q(p) are able
to compute the unsteady aerodynamic forces only for harmonic oscillation motion, that is for
p = ik, where k is the reduced frequency. Then, Q(p) is the analytic continuation of Q(ik).
As pointed out in [26] comment 4: “if two analytic function coincide over the imaginary axis,
they will coincide over the whole domain of analyticity”, meaning that the finite state approach
provides an approximation of GAF matrix that is valid also outside the imaginary axis, or, in
other words, far from the standard definition of the flutter point.

This is particularly valuable when advanced definition of the flutter point are used, such as the
one proposed in [27]. In order to reduced the hard discontinuities of flutter speed due to mode
switching or mode hopping, the flutter point is defined as the intersection of the damping curve
with an ad-hoc function of the free stream speed, G(U∞), instead of the classic zero-damping
axis. Therefore, as clarified by figure 6, the flutter point is now outside the pure imaginary axis,
and hence it is in this region that the prediction has to be accurate.

In the finite state aerodynamic approach,Q is approximated by a rational expressions in which
the non-linear dependency of Q on p appears explicitly. Then, the aeroelastic equation can be

1With the term linear we mean that the aerodynamic forces depend linearly on the Lagrangian coordinates
representing the surface motion. Instead, the non linear relation of the aerodynamic term with respect to the
free-stream speed and the frequency of oscillation is fully included.
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Figure 4: Comparison between Morino’s method and DLM predicted GAF. The elements
of the GAF matrix are plotted for increasing values of the reduced frequency, from 0 to 2,
according to the black arrow.

rewritten, in time domain, asAx = ẋ, making possible to replace the p-k method, with a simple
root locus method, see subsection 2.3.
The finite state approach is also advantageous for control analysis and loads studies, such as
maneuver and gust analysis, see for example [28] on optimal control design, [29] on free-body
aeroelasticity. Further, the analytic expression of the Q − p dependency allows us to obtain
the analytic derivative of Q with respect to the reduced frequency k, as necessary to obtain the
flutter speed derivative, see Section 3.
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Figure 5: Comparison between Morino’s method and DLM predicted pressure jump ∆Cp.
The chord-wise distribution is plotted for a section at 3/4 of the semi-span, and for k =
0.88.

Usually the Q(p) is evaluated numerically by means of low or medium fidelity aerodynamics
methods like DLM or the Morino’s method implemented here. However, although not exploited
in this work, the methods presented in this subsection, in subsection 2.3, and part of the method
presented in Section 3 can also be applied to non-linear aerodynamics model once GAF are
provided, see for example [30] and [31].

2.2.1 RFA and MFA Finite State Model

Two different finite state approximations are implemented: the rational function approximation
(RFA) developed by Roger in [32], and the matrix fraction approximation (MFA) proposed by
Morino etal. in [26].

Figure 6: Classical flutter point definition A, and definition proposed in [27], B.
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Figure 7: Comparison between MFA and RFA models using 2 poles. The elements of the
GAF matrix approximation are plotted for increasing values of the reduced frequency,
from 0 to 2. The use case is the 15 degree swept back wing of the HA145E NASTRAN
example, the first 4 structural modes are considered.

In Roger’s model the GAF matrix is approximated with a quadratic polynomial plus lags terms:

Q(p) ≈ Q̂(p) := E0 +E1p+E2p
2 +

M∑
i=1

p

p+ βi
Ei+2 (2)

where the poles βi are real, positive and with the same order of magnitude of p. Morino’s
model eliminates the arbitrariness in the choice of the poles, approximating the GAF matrix as
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a fraction of matrix polynomials.

Q(p) ≈ Q̂(p) :=

(
M∑
i=0

Dip
i

)−1(M+2∑
i=0

Nip
i

)
(3)

The accuracy of the approximation increases with increasing the number of poles,M in both eq.
(2) and (2), which is equal to the size of the state space system. The approximation matrices,
Ei,Di andNi, are in both model obtained solving a least square problem in which the distance
from the GAF samples,Q(ik), is minimized.

Figure 7 shows that, using the same numbers of poles, Morino’s model is significantly more
accurate than Roger’s one. For instance, in [33] it is used to approximate the complex aerody-
namics of rotors. For the Theodorsen’s use case we compute the integral of the error between
the finite state models and the analytic solution over the range of considered reduced frequency,
see table 1.

Table 1: Comparison between MFA and RFA models using 2 poles and 11 sampling points.

Error
Roger’s model 2.96× 10−4

Morino’s model 3.54× 10−5

2.3 State Space Flutter Analysis
We consider the aeroelastic equation expressed in the following form2,(

Ms2 +Cs+K
)
q = qDQ (sl/U∞) q (4)

where qD := 1/2ρU2
∞ is the dynamic pressure. By using one of the finite state approximations

proposed in subsection 2.2 we obtain the sought form of the aeroelastic system of equations.
Here, we report only the system of equations obtained with the MFA model, since our imple-
mentation is slightly differ from the one proposed in [26], and the RFA version is the most
popular.
Substituting eq. (3) into eq. (4) we obtain the following aeroelastic system of equations,

U2
∞
l2
Mq̈ + U∞

l
Cq̇ +Kq + U2

∞
l2

(DM−1Mq̇ +DM−2Mq) + U∞
l
DM−1Cq =

qD (NMq +NM+1q̇ +NM+2q̈) + vM−1

v̇M−1 + U2
∞
l2
DM−3Mq + U∞

l
DM−2Cq +KDM−1q = qDNM−1q + vM−2

. . .

v̇2 + U2
∞
l2
D0Mq + U∞

l
D1Cq +D2Kq = qDN2q + v1

v̇1 + U∞
l
D0Cq +D1Kq = qDN1q + v0

v̇0 +D1Kq = qDN0q

where the over-dot represents the differentiation with respect to U∞t/l. By applying the Laplace
transform the eigenvalue problem system is obtained: A(U∞)x = px, where x is the vector of
states containing physical as well as added aerodynamic states.

2Instead, in the p-k method the aeroelastic equation is expressed as
(
Ms2 +Cs+K

)
q = qDQ (ik) q, which

is mathematically inconsistent for Re(s) 6= 0, since Q (ik) is calculated only for non-damped harmonic oscilla-
tions.
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The aeroelastic state space system is solved for a set of free stream speed values, U∞, ranging
from null speed to the maximum speed in the flight envelope. In general the order of the
eigenvalues corresponding to adjacent speed values is not the same, hence the need for adequate
mode tracking techniques. We implemented the modal assurance criterion (MAC) proposed by
Van Zyl in [34]. Note that, since the GAF matrix is complex, the aeroelastic eigenvectors are
complex as well, and the standard MAC are not accurate enough. For each speed value different
from zero, each eigenvector is compared to all the eigenvectors obtained at the previous speed
value. The highest value of the van Zyl’s correlation function indicates the matched couple of
eigenvectors. Once all the states have been tracked, the spurious ones can be easily discarded
knowing that, for null speed, the physical eigenvalues have null real part and imaginary part
equal to the correspondent structural natural frequency.

2.4 Simplified Finite Element Model and Mode Mapping

Focus of this work is the definition and implementation of a flutter speed differentiation pro-
cedure, in which wing planform parameters are used as design variables, and the unsteady
aerodynamic forces are obtained with Morino’s method. Hence, the structural model is kept as
simple as possible, and the integration with advanced finite element structural model like the
open source TACS [15] is planned for the near future. Due to the low fidelity of the structural
model, some of the advantages connected to the 3D capability of Morino’s method cannot be
highlighted by this work. However, we tackle the most important and difficult part of the struc-
tural analysis: the differentiation of the structural modal shapes with respect to the geometrical
parameters, such as the wing planform ones, see Section 3.

The implemented structural model is a simplified beam-based FEM. Each node has only 3
degrees of freedom, namely: the displacement and rotation associated to the primary bending,
and the rotation due to torsion; since these two are the most important modes for flutter analysis
in simple aeroelastic model, as the one considered in this work.

Figure 8: Mapping of the 2nd bending mode on the 3D aerodynamic grid (black wire-
frame), for the Onera M6 wing

The mapping of structural modal displacements onto the aerodynamic grid is based on the radial
basis function method described by Beckert and Wendland [35] or Rendall and Allen [36], and
the in-house implementation described in [37] is used. In order to decrease the discrepancy
between the 1D structural grid and the 3D aerodynamic grid, additional mass-less points are
added on both trailing and leading edges, and are rigidly connected to the corresponding beam
node to correctly map the displacements due to torsional rotations, see figure 8.
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3 DIFFERENTIATION PROCEDURE

Equation (4) is manipulated in order to obtain a more compact expression in which only the
dependencies on design variables vector t, complex frequency s, and free-stream speed U∞ are
highlighted.

[A(t, U∞, s)− sB(t)] q = 0 (5)

where

A =

[
0 I

ρ∞U
2
∞/2Q(sl/U∞, t)−K(t) −C(t)

]
B =

[
I 0
0 M(t)

]
With the method described in subsection 2.3 we compute the n-th right and left eigenvectors,
u(n) and v(n), and n-th eigenvalue, s(n), where n = [1, . . . Ns] and Ns is the number of cho-
sen Lagrangian coordinates, we proceed with the eigensensitivity analysis differentiating eq.(5)
with respect to the design variables.

First, we multiply by the left eigenvector.

v(n)T
[
A(t, U∞, s

(n))− s(n)B(t)
]
u(n) = 0 (6)

Then we differentiate with respect to one of the design variable3, t. For the sake of simplicity
we drop the dependency from t, U∞ and s(n).

(
dv(n)

dt

)T
[A− s(n)B]u(n) + v(n)T [A− s(n)B]

du(n)

dt
+

+ v(n)T
[
∂A

∂t
+
∂A

∂U
Ut +

∂A

∂s
s

(n)
t − s

(n)
t B − s(n)∂B

∂t

]
u(n) = 0

Reordering the above equation with respect to the unknown Ut and s
(n)
t , and exploiting the

definition of right and left eigenvector yields

v(n)T ∂A

∂U
u(n)Ut + v(n)T

[
∂A

∂s
−B

]
u(n)s

(n)
t = v(n)T

[
∂A

∂t
− s(n)∂B

∂t

]
u(n) (7)

Considering the real and the imaginary part of eq.(7) we obtain 2 independent equations in 3

unknown: Ut, Re(s
(n)
t ) and Im(s

(n)
t ). In order to close the system, we have to introduce another

equation involving U∞ and s(n). We can consider two different cases.

1. We are interested in the derivative of the aeroelastic frequency, s(n), for a specific value
of the flight speed, U∞. Then, all the derivative involving U∞ are null and we have 2
equation in 2 unknown Re(s

(n)
t ) and Im(s

(n)
t ).

2. We are interested in the derivative at the flutter point, hence Re(s(n)) = 0, and we have 2
equation in 2 unknown Ut and Im(s

(n)
t ). This procedure apply also the definition of flutter

point mentioned in subsection 2.2. In this case the system of equation is closed by the
additional equation Re(s(n)) = G(U∞).

3The entire vector of design variables can be considered, but the following procedure and results are still valid

12
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Next, we compute the matrix derivative with respect to the design variable.

∂A

∂t
=

[
0 0

1
2
ρ∞U

2
∞
∂Q
∂t
− ∂K

∂t
−∂C

∂t

]
(8)

∂A

∂U
=

[
0 0

ρ∞U∞Q− 1
2
ρ∞s

(n)l ∂Q
∂p

0

]
(9)

∂A

∂s
=

[
0 0

1
2
ρ∞U∞l

∂Q
∂p

0

]
(10)

∂B

∂t
=

[
0 0
0 ∂M

∂t

]
(11)

Subsection 3.2 shows the procedure for the derivative of the structural matrices, M , C and
K, as well as the derivative of the modal shapes with respect to the design variable t. Section
3.1 concerns the partial derivative of the aerodynamic matrix, Q, with respect to t. For the
derivatives of Q with respect to the complex reduced frequency p, we exploit the finite state
aerodynamic approximation. Differentiating eq.(3) with respect to p we have

Q̇(p) = D(p)−1Ṅ (p)−D(p)−1Ḋ(p)Q(p) (12)

where

Ṅ (p) =
M+2∑
i=0

ipi−1Ni and Ḋ(p) =
M∑
i=0

ipi−1Di (13)

Finally, the procedure to compute the flutter speed derivative can be summarized in the follow-
ing steps.

1. Compute, with the preferred method, flutter speed UF , flutter frequency ωF , flutter right
and left eigenvectors uF and vF , as they appear in eq.(5). We use the root locus method,
but the procedure does apply to any other method, like the p-k method for example.

2. Compute the partial derivative of the matrices, ∂A
∂t

, ∂A
∂U

, ∂A
∂s

and ∂B
∂t

, with eqs. (8) to (11)
replacing U∞ with UF and s(n) with iωF .

3. Compute flutter speed derivative, UF,t, and flutter frequency derivative , ωF,t, with eq.(7)
using UF and iωF instead of U∞ and s(n).

3.1 Derivative of the Generalized Aerodynamic Forces Matrix
Each element of the generalized aerodynamic forces matrix, Qhk, represent the work done by
the aerodynamic pressure due to the k-th shape motion on the h-th displacement shape.

Qhk =

∫∫
SB

φh · n
[
−2
(
ik/lµk +

(
µkξ l + µkηm+ σkn

)
· i
)]

dS (14)

where φh is the h-th shape function, σk and µk are the aerodynamic unsteady normal-wash
(see eq.(15)) and potential associated to the k-th deformation shape, SB indicates the body sur-
face, and (ξ, η) the relative surface coordinates system. The aerodynamic potential is obtained
solving the linearized potential flow equation:

∇2µk = 0 in Ω

∂µk

∂n
= ikφk · n−

eξ × φkη + φkξ × eη
||eξ × eη||

· i on SB

∆
∂µk

∂n
= 0 on SW

(15)
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where Ω is the flow domain, and its boundaries are the closed surface of the body SB, and the
open surface of the wake SW .

We can define a sub-differentiation process in which we seek the derivative ofQhk with eqs.(15)
as disciplinary equations, and the potential µ as state variable. Although not exploited in this
work, the methods and procedures developed here can be used for shape and structural opti-
mization, for example using the free-form deformation (FFD) technique for the outer mold line
parametrization, and the structural element thickness as structural design variables. Therefore,
the number of design variables is potentially significantly greater than the number of elements
of the GAF matrix, making the adjoint method the preferred approach for the computation of the
GAF derivative. Now, we focus on the computation of the partial sub-derivative of the function
of interest, Qhk(µ, t), and the disciplinary equations, eqs.(15), which will be concisely referred
as R(µ, t) = 0.

Following the so-called discrete adjoint approach, we first discretize Qhk(µ, t) expression and
eqs.(15), then we differetiate. After the discretization, the continuous state variable, the poten-
tial µ(ξ, η), is replaced by a vector of state variables, µ = [µ1, µ2, . . . , µNp ]T , representing the
potential on each panel.

Dividing the body surface in Np panels, the expression of one element of the aerodynamic
matrix, Qhk becomes

Qhk(t,µ
k) =

Np∑
i=1

φhi (t) · ni(t)Ci
p(t,µ

k)Ai(t) (16)

where Ci
p is the pressure coefficient on the i-th panel

Ci
p(t,µ

k) = −2
(
ik/lµki +

(
diξ(t,µ

k)li(t) + diη(t,µ
k)mi(t) + σi(t)ni(t)

)
· i
)

(17)

The function diξ and diη represents the surface derivative of the potential in the two tangential
directions on the i-th panel. To compute this derivative, we use a finite difference method with
a variable stencil; when possible the second order central schema is used otherwise the right
or left second order, and, in the worst case, a first order schema. For example, assuming that
for the i-th panel all the surrounding panels in the ξ direction are available, and that the panel
numbering direction coincides with the xi direction, then diξ(t,µ

k) = ai(t)µ
k
i−1 + bi(t)µ

k
i+1,

where ai(t) and bi(t) are the finite difference schema coefficients depending on the grid. The
disciplinary equations, eq.(15), are reduced to the following linear system.

R(t,µ) = AICd(t)µ
k −AICs(t)σ

k(t) = 0 (18)

where σki (t) represents the boundary condition on the i-th panel for the k-th shape deformation4.

σki (t) = ikφki (t) · ni(t)−
eiξ(t)× φki,η(t) + φki,ξ(t)× eiη(t)

||eiξ(t)× eiη(t)||
· i (19)

The kutta condition on the wake is implemented directly in the definition of AICd. Next,
we compute the derivative of the generalized aerodynamic forces matrix element Q(t,µ) and
the disciplinary equation R(t,µ) with respect to the design variable t and the potential of the

4In eq.(19) the k indicate the shape deformation when is used as index, and the reduced frequency when
multiply the imaginary unit i.
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j-th panel, µj (the index h and k representing the shape functions are dropped for the sake
of simplicity). It is important to note that the imaginary component is introduced only by the
body boundary condition σ and the wake boundary condition, in AICd. Therefore for all the
other variables we can use the complex step method (CS) to compute the partial derivative with
respect to the design variables.

Partial derivative of the GAF matrix with respect to the design variables.

∂Q

∂t
=

∂

∂t

Np∑
i=1

φi(t) · ni(t)Ci
p(t,µ)Ai(t)

=

Np∑
i=1

(
∂φi
∂t
· niCi

pAi + φi ·
∂ni
∂t

Ci
pAi + φi · ni

∂Ci
p

∂t
Ai + φi · niCi

p

∂Ai
∂t

)
where

∂φi
∂t

is the derivative of the structural eigenvector calculated by the method described in
subsection 3.2.

∂ni
∂t

,
∂Ai
∂t

are obtained with the complex step method.

∂Ci
p

∂t
= −2

(
diξ
∂li
∂t

+ diη
∂mi

∂t
+ σi

∂ni
∂t

+
∂diξ
∂t
li +

∂diη
∂t
mi +

∂σi
∂t
ni

)
· i, where the deriva-

tive of the panel unit vectors, l, m and n, can be obtained with the complex step
method. The derivative of the normal-wash, ∂σi

∂t
, appears also in the derivative of R

with respect to the design variable t, and is extensively analyzed in the following sub-
section.

∂diξ
∂t

=
∂ai
∂t
µi−1 +

∂bi
∂t

(t)µi+1, since ai(t) and bi(t) are real variables, the complex step
method is used to compute the needed derivatives.

∂diη
∂t

=
∂ci
∂t
µi−1 +

∂di
∂t

(t)µi+1, as above.

Derivative of the GAF matrix with respect to the state variables.

∂Q

∂µj
=

∂

∂µi

Np∑
i=1

φi(t) · ni(t)Ci
p(t,µ)Ai(t) =

Np∑
i=1

φi · ni
∂Ci

p

∂µi
Ai

where

∂Ci
p

∂µj
= −2

[
ik

l
δij +

(
∂diξ
∂µj

li +
∂diη
∂µj

mi

)
· i

]
, where δij is the Kronecker’s delta.

∂diξ
∂µj

= ai(t)δi−1,j + bi(t)δi+1,j

∂diη
∂µj

= ci(t)δi−1,j + di(t)δi+1,j

Derivative of the disciplinary equations with respect to the design variables.

∂R

∂t
=

∂

∂t
(AICd(t)µ−AICs(t)σ(t)) =

∂AICd

∂t
µ− ∂AICs

∂t
σ −AICs

∂σ

∂t

where
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∂AICd

∂t
=
∂Cs

∂t
+
∂W u

∂t
, where Cs is matrix of the doublet-like body influence coefficients

for the zero-frequency aerodynamics case, and W u is the matrix of the doublet-like
wake influence coefficients matrix containing the unsteady wake boundary condition.

∂Cs
ij

∂t
is obtained with the complex step method, since in the zero-frequency case there are
only real terms.

∂W u
ij

∂t
=

 0 if panel j /∈ TE∑Nw

w=1

(
∂W s

iw

∂t
e−ik/l∆w,TE − ik

l
W s
iw

∂∆w,TE

∂t
e−ik/l∆w,TE

)
if panel j ∈ TE

,

where W s is the doublet-like body influence coefficients for the zero-frequency aero-
dynamics case, ∆w,TE is the distance along the wake among the w-th wake panel and
the associated trailing edge (TE) body panel, and Nw is the number of wake panel in
stream-wise direction.

∂W s
iw

∂t
,
∂AICs

∂t
are computed with the complex step method, since in the zero-frequency case there are
only real terms.

∂∆w,TE

∂t
depends exclusively on the wake geometry, hence it is different from zero only for
design variables that modify the trailing edge shape. It these case the complex step
method is used.

∂σi
∂t

=
∂Fi
∂t
−∂Gi

∂t
, where Fi(t) andGi(t) represent the imaginary and real part respectively

of the body boundary condition on the i-th panel.
∂Fi
∂t

= ik
∂ni
∂t
· φi + ikni ·

∂φi
∂t

, where both ∂ni

∂t
and ∂φi

∂t
have been already obtained.

∂Gi

∂t
= g

(
∂eiξ
∂t

,
∂eiη
∂t

,
∂φi,ξ
∂t

,
∂φi,η
∂t

)
. This is the most demanding terms and highly depends

on the surface parametrization. In particular, (eiξ, e
i
η) are the surface tangential vectors

of the i-th panel, and φi,ξ, φi,η the surface derivatives of the deformation shape function
calculated on the i-th panel. Since (eiξ, e

i
η) are real variables we use the complex step

method to compute their derivative. Instead for the mixed derivative, φi,ξt, φi,ηt we use
the following procedure:

1. compute the derivative of the modal shapes with respect to the design variables,
φt, with the method described in subsection 3.2;

2. perform the surface differentiation of φt, obtaining φt,ξ and φt,η;
3. Then, assuming φ to be a continuous function and with a continuous derivative

with respect to both design variables and surface coordinates, the Schwarz’s the-
orem apply: φξt = φtξ, and φηt = φtη

Derivative of the disciplinary equations with respect to the state variables.

∂R

∂µj
=

∂

∂µj
(AICd(t)µ−AICs(t)σ(t)) = [AICd]j

that is the j-th column of the matrixAICd.

3.2 Derivative of Modal Shapes

The derivative of the stiffness, damping and mass matrices are assembled starting from the
derivative of the single finite element, and the latter are obtained analytically given the low
complexity of our structural model. Focus of this subsection is the differentiation of the struc-
tural modal shapes, φ, with respect to the design variable, t.
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The structural modal analysis equation is5

(K − λM )φ = 0 (20)

where λ is the square of the natural frequency. Following the procedure proposed by Cardani
and Mantegazza in [17], instead of solving eq. (20) as an eigenvalue problem, it is observed that
only the direction of the eigenvector φ is defined, not its module. Therefore, in order to close
the system a normalization equation is added and the obtained system, eq. (3.2), can be solved
as a standard non-linear system, for instance we use the Newton-Raphson method.{

(K − λM )φ = 0

φTWφ = 1

Usually the matrix of weights,W is a combination of the structural matrices, we useW = M .
Next we directly differentiate system (3.2) with respect to the design variables obtaining the
derivative of the eigenvector and eigenvalue with respect to the design variables.[

(K − λM) −Mφ
2φTW 0

]{
∂φ
∂t
∂λ
∂t

}
=

{
−(∂K

∂t
− λ∂M

∂t
)φ

0

}
(21)

In order to validate the procedure we carried out a comparison with complex step and finite
difference methods. Figure 9 and 10 shows a good agreement between the implemented analytic
procedure and the complex step method for the derivative of both eigenvalue and eigenvectors.

4 RESULTS

The Goland’s wing is considered as a first test case for the flutter speed derivative procedure.
This is a classical reference case for validation studies. Details of the model geometry and
structure can be found in [38].
Obtained results show a good agreement with literature data. In particular, Goland’s wing
exhibits a typical flutter mechanism due to the coupling between the first bending and torsional
mode (represented in figure 11), the natural frequency of these two modes are found at 7.88 Hz
and 13.87 Hz respectively. At sea level (ρ = 1.225 kg/m3), flutter is found at UF = 146.63 m/s
and fF = 10.36 Hz (figure 12 and 13) that is in good agreement with literature results.

After the flutter analysis, we deploy the differentiation procedure. Figure 14 shows the compar-
ison between finite difference and the implemented procedure on the derivative of flutter speed
with respect to the span, whereas figure 15 concerns the derivative with respect to the sweep
angle.
As expected, the derivative of flutter speed with respect to the span is negative, and significantly
higher in absolute value than the derivative with respect to the sweep. The relative error, ε,
between our methods and the finite difference derivatives presents the expected behavior. For
high value of the step size the error decreases linearly, then after reaching the minimum point
the error grows again for lower values of the step size.
The minimum found value of the relative error for the flutter speed derivative with respect to
span and sweep is 9 × 10−4 and 2.5−2 respectively. Due to the well know numerical problem
of the finite difference approach no better agreement was expected. Although these results con-
firm the accuracy of the implemented procedure, a definite validation can be obtained only by
comparison with complex step, and it will be carried out in the following work.

5For the sake of simplicity we do not consider the damping matrix, but the described procedure does apply also
in this case.
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Figure 9: Relative error on the span derivative of the first 4 structural eigenvalues for the
Goland’s wing.

5 CONCLUSIONS

In this paper a procedure to compute the flutter speed derivative with respect to wing planform
parameter is presented and implemented. This procedure is based on a 3D boundary element
method, Morino’s method for frequency domain aerodynamic analysis, and exploit the finite
state aerodynamic modeling to represent the aerodynamic term in the aeroelastic equation.

Morino’s method is able to consider arbitrary complex 3D body shapes increasing the fidelity of
the unsteady aerodynamic analysis, and provides the necessary robustness for the deployment
in a large scale MDO process.

The finite state aerodynamic modeling allows for the use of simple root locus method for the
computation of the flutter point. In this way, the complex iterative procedure typical of p-k
methods is avoided, and the accuracy of aeroelastic eigenvalues computation far from the flutter
point is increased.
Moreover, by using the finite state finite state approach it is possible to define analytically the
flutter speed derivative starting from the derivative of the structural and the aerodynamic terms.
The derivative of the structural mass, stiffness and damping matrices are obtained analytically,
whereas for the aerodynamic term, the GAF matrix, a discrete adjoint procedure is set up.

Since the goal here is to consider derivatives with respect to wing parameters, such as span or
sweep angle, the derivative of structural modal shapes cannot be neglected as typically done for
structural design variables, and, thus, they are analytically computed.
The partial derivative of the zero-frequency aerodynamic contribution to the GAF is computed
with complex step, since this part of the computation involves only real value variables, and

18



IFASD-2019-029

10−810−510−2

Step size

10−12

10−7

10−2

εp

10−810−510−2

Step size

10−13

10−9

εp

10−810−510−2

Step size

10−11

10−5

εp

10−810−510−2

Step size

10−13

10−9

10−5

εp

Complex Step Finite Difference

Figure 10: Parallelism test of the span derivative of the first 4 structural eigenvectors for
the Goland’s wing.

the number of function of interest are equal if not greater than the number of design variables.
Starting from these terms the derivative of the unsteady complex variables are assembled ana-
lytically, and then the total derivative of GAF is computed with an adjoint approach. The entire
procedure is here described in detailed.

Flutter analysis is validated with a classical aeroelastic benchmark: Goland’s wing. Obtained
results show a good agreement with literature. The same use case is used to carry out a valida-
tion on the analytic differentiation procedure. Flutter speed derivative with respect to span and
sweep are compared with finite difference results showing a good agreement.
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Figure 11: Goland wing model first bending (left) and first torsional modal shape.
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Figure 12: Root locus of Goland’s wing at sea level.
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Figure 13: The real and imaginary part of the aeroelastic eigenvalues of Goland’s wing at
sea level.
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Figure 14: Derivative of flutter speed with respect to span, ∂UF

∂t
, for the Goland’s wing. On

the bottom the relative error, εUF
, between the implemented analytic procedure and finite

difference.
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Figure 15: Derivative of flutter speed with respect to sweep, ∂UF
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, for the Goland’s wing.

On the bottom the relative error, εUF
, between the implemented analytic procedure and

finite difference.
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