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Abstract: During flutter analyses of aircraft a large parameter space has to be analyzed cov-
ering not only the extended flight envelope but also a large set of mass variations and failure
cases. The generalized aerodynamic forces are computed for a reference mass case applying a
linearized frequency domain method based on the Reynolds-averaged Navier-Stokes equations.
The aerodynamic matrices for different mass cases are approximated using a least-square ap-
proach. While this approach is working for most normal mass cases, larger deviations in flutter
predictions can occur for discrete structural failures. Error criteria are developed to estimate if
the approximation is within bounds without calculating the aerodynamic response of the actual
modes. The modal assurance criterion is compared to a local error, weighting the modal dis-
placements with their corresponding aerodynamic forces, as well as a norm of the generalized
aerodynamic force matrices. The three error estimators are benchmarked for a discrete struc-
tural failure case showing a similar performance. Furthermore, if the maximal error exceeds a
certain threshold, the reference basis used in least-square approach has to be augmented to im-
prove the prediction. While a suitable residual mode can be found by engineering judgment, an
automatic process is preferable. A proper orthogonal decomposition is applied to find the most
dominant error mode. This approach can also be applied to define a better reference mode set
directly in the beginning of the process. Instead of using the mode shapes of a reference mass
case, the modes of several mass cases including failure cases are used as snapshots. Results are
presented comparing frequency and damping progressions as function of speed for a transport
aircraft at nominal and failure conditions.

1 INTRODUCTION

In flutter analysis, the stability of the coupled system of structural, aerodynamic and inertia
forces has to be ensured for a parameter space to cover the extended flight envelope, spanned
by e.g. flight altitude and Mach number. In addition, several mass variations and failure cases
have to be analyzed. In the current process, generalized aerodynamic force (GAF) matrices
are computed applying the linearized frequency domain (LFD) method [1–3]. The underlying
nonlinear Reynolds-averaged Navier-Stokes (RANS) equations are linearized around a steady
flow field, computed by a nonlinear, coupled fluid-structure simulation. The obtained linear
system is transformed into the frequency domain resulting in a large, sparse system of linear
equations. This approach maintains the dynamic characteristics of the underlying nonlinear
RANS model. Although the LFD method is about two orders of magnitude faster than its
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nonlinear counterpart, it is too expensive to directly compute all variations (and evolutions)
of the structural model. Instead, a least-square approach (LSQA) is used to approximate the
GAF matrices for different mass cases. A correlation matrix is computed relating the set of
reference modes to the set of modes for the case of interest. Due to linearity, the same transfer
matrix can be used to approximate the aerodynamic forces. The quality of this LSQA depends
on the reference mode set. If the production modes are approximated well, the aerodynamic
forces will be accurate. A typical choice is to select one mass case as reference to approximate
all other cases. While this approach is expected to work properly for nominal mass cases,
larger deviations in flutter predictions can occur for discrete structural failures. The structural
dynamics of this case are not sufficiently resolved by the reference mode set and therefore the
basis needs to be enhanced [4].

First, an error criterion is developed to estimate if the approximation is within bounds without
calculating the aerodynamic response of the actual modes. The modal assurance criterion [5,6]
might not be sufficient, since local errors could be averaged out if there is a good agreement
for a large number of structural nodes. Therefore, a local criterion is conducted evaluating the
maximal error. Two additional estimators are analyzed: In the first, the error mode is weighted
by the aerodynamic forces and thus, the maximal difference of the local work per mode is eval-
uated. In the second criterion, a relative GAF error is computed. Secondly, if the maximal error
exceeds a certain threshold, the basis used in the LSQA has to be augmented to improve the pre-
diction. While a suitable residual mode can be found by engineering judgment, an automatic
process covering all mass and failure cases is preferable. A proper orthogonal decomposition
(POD) is applied to find the most dominant error mode. POD is a modal decomposition tech-
nique which determines the optimal set of modes to represent a reference set based on the L2

norm, which is commonly referred to as ’energy’ of the input modes [7]. POD was introduced
for aeronautical application by Lumley as a method to extract coherent structures from a tur-
bulent flowfield [8, 9]. Moreover, it is actively researched as a method for model reduction in
unsteady aerodynamic simulations [7, 10–12]. This approach can also be applied to define a
better reference mode set directly in the beginning of the process. The input will be a set of
vibration modes of the aircraft for different structural layouts and mass distributions. The aim
of the POD method is thus to decompose this input mode set in an optimal, orthogonal reference
set.

Results are presented to compare the three different error estimators for a transport aircraft. In
addition, the two approaches to choose the reference basis are compared for nominal and failure
cases. Frequency and damping progressions as function of equivalent airspeed are analyzed.
Moreover, influence of different setups for the POD are discussed on basis of the introduced
error criterion.

2 NUMERICAL METHOD

2.1 Flutter Simulation Process

The classical flutter simulation is a linear stability analysis examining if small perturbations
of the system grow or decay in amplitude. Therefore, a linear structural model is used and
transformed into generalized coordinates. Moreover, the aerodynamic forces can be linearized
around a steady, mean state and projected onto the modal basis. Physically, the static, aeroelastic
equilibrium, defining the point of linearization, depends on the dynamic pressure, too. However,
this effect is neglected during these flutter analyses, which are computed for constant Mach
number.
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The governing unsteady aeroelastic equation in the frequency domain and in generalized coor-
dinates reads [

M∗p2 +D∗p+K∗ − ρ∞
2
U2
∞GAF(M∞, p)

]
q̂ = 0,

with the Laplace variable p, free-stream velocity U∞, density ρ∞, Mach number M∞, gener-
alized coordinate vector q̂ and generalized mass, damping and stiffness matrices M∗, D∗ and
K∗, respectively. The generalized air force matrix can be computed as

GAF =
2

ρ∞U2
∞
ΦTFA(s)Φ,

with the aerodynamic response of small perturbation FA(s) and the eigenvector matrix Φ. The
flutter boundary is computed by an in-house pk-solver [13], considering only the imaginary
part of the Laplace variable when evaluating the GAF matrix. MSC-NASTRAN [14] is used
to establish the dynamic structural matrices and to perform the modal analysis, whereas the
DLR-TAU code [15] is applied to solve the RANS equations. FlowSimulator [16] is used as
the data handling framework linking all computational aeroelastic modules and enabling fluid-
structure interaction [17, 18]. Steady, coupled simulations are conducted to obtain the static
elastic equilibrium for one flight level. Afterwards, the unsteady aerodynamics are computed
applying (LFD) solver [1, 19] using the linearized Spalart-Allmaras turbulence model [20].

2.2 GAF Approximation

The unsteady aerodynamics are only computed for a set of reference elastic mode shapes. The
results are mapped to different mass and structural layout cases using a least-squares approach
based on the relative mode shapes of the production case and the reference case, respectively.
The production modes are represented as a linear combination of the reference mode shapes
and a correlation matrix Ψ, with ϵ being the residual vector:

Φprod = ΦrefΨ+ ϵ.

The correlation matrix is found by minimizing the RMS of the residual using the pseudo-inverse

Ψ =
(
ΦT

refΦref

)−1

ΦT
refΦprod.

The reference GAF matrix is then projected to the production case by

GAFprod = ΨTGAFrefΨ.

Note that the goal of the approximation is to map the unsteady aerodynamic results. The modes
in the LSQA should therefore represent as closely as possible the modes on the CFD surface
which are seen by the flow solver. Assuming that the CFD surface nodes are evenly distributed
over the surface suggests, that selecting the CFD surface points is a good starting point to
represent these modes. The modes described on the structural grid have to be interpolated to
the CFD surface nodes for each flutter computation to accomplish this. However, this is a
computationally expensive process which is not practically feasible to be repeated for all flutter
computations. The LSQA can therefore only be executed on the structural finite element nodes.
The influence of different node selections was studied and a manual selection of structural
nodes, as visualized in Figure 1, showed the best performance. All aircraft components have
a considerable weight in the approximation and the mode shapes can be captured accurately in
all desired degrees of freedom.
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Figure 1: Manually selected node set for mode representation in LSQA

2.3 Proper Orthogonal Decomposition

POD is used to provide an objective algorithm to decompose an expanded mode set covering
multiple mass and structural layout cases in a reference set. The input modes are structured in
a matrix with as column dimension the number of considered modes and as row dimension the
degrees of freedom of each of these modes. The implementation of the POD method depends
on the size of the input matrix. If the column dimension exceeds the row dimension, which
would be the case if a large set of reference cases and only a subset of the degrees of freedom of
the FEM is used, the classical POD method should be applied. When the opposite is true, which
could be the case if all nodes and degrees of freedom of the FEM are used or if only a small
set of reference cases is considered, the method of snapshots should be applied. Both solution
strategies are introduced here. Note that these methods give the same result, and the only reason
for selecting one or the other is the memory and computational efficiency of the POD.

2.3.1 Classical POD method

Consider X to be the input matrix with m number of elastic mode shapes and n number of
degrees of freedom. The POD modes will be the eigenvectors of the eigenvalue problem of
dimension n:

XXTϕn = λnϕn,

with ϕ the resulting POD eigenvectors, which can be assembled in a POD eigenvector matrix
Φ and λ the eigenvalues corresponding to each of the POD modes.

2.3.2 Method of snapshots

As mentioned, if the row dimension is large, the size of matrix R = XXT can pose memory or
computational time issues. Instead, the method of snapshots computes the eigenvalue problem
on the, in this case, much smaller matrix XTX:

XTXθm = λmθm.

The solution of this eigenvalue problem gives the same eigenvalues, but the POD eigenvector
matrix Φ has to be recovered from the computed eigenvectors θ by

Φ = XΘΛ−1/2

with the input matrix X, the intermediate eigenvector matrix Θ and a diagonal matrix with the
eigenvalues Λ.
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Figure 2: Flutter curve convergence by modifying the stiffness of the additional mode for the failure case

2.3.3 Properties of the POD mode set

The resulting set of POD modes has some useful properties. The POD modes are orthonormal
and sorted by the relative information content they represent of the input modes. The strictly
real and positive eigenvalue corresponding to each resulting mode is a measure for the amount
of energy represented by that mode. Therefore, the eigenvalues are commonly used as trunca-
tion parameter to decide how many of the resulting modes should be used in order to capture
approximately all energy contained in the reference. Only r number of POD modes have to be
retained such that ∑r

j=1 λj∑n
j=1 λj

≈ 1,

with the eigenvalues λ and the total number or resulting POD modes n.

3 ERROR ESTIMATION

3.1 Test Case Description

The test case is based on a flutter computation of a generic aircraft model with a structural
deficiency to create mode shapes which can locally strongly deviate from those with a nominal
structure. The reference modal basis is made up out of nominal structure modes for the full
considered frequency range enhanced with one mode accounting for the failure case to tune the
model. The stiffness of this added mode is step-by-step reduced to have a smooth transition from
the nominal structural model to the considered failure case. Figure 2 shows the frequency and
damping progression for two modes of this test case. The direct aerodynamics approach serves
as reference solution, directly computing the aerodynamic response to the production modes
without the LSQA. These plots show a convergence of the flutter curves from the approximation
with only nominal structure reference modes (solid, red line) to the verification result, while
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reducing the stiffness of the additional reference mode. This gives a suitable test case for the
error estimation study as the performance of the proposed quality criteria can be tested by
linking them to each step of this convergence.

3.2 Quality Criteria

The error estimator should give a measure for the induced error of the LSQA on a production
flutter computation for a given reference modal basis. Following criteria are applied in the
comparison.

3.2.1 MAC Error

A commonly used metric to quantify the correlation between two modes is the MAC (mode
assurance criterion). The MAC error quality criterion is computed as

MAC Error = 100% · max

1−

(
ϕT

i ϕ
′
i

)2(
ϕT

i ϕi

)(
ϕ′T

i ϕ′
i

)


i=1,...,nmodes

,

with ϕ the exact production modes, ϕ′ = ϕrefΨ the approximate production modes and nmodes

the number of production modes. The MAC criterion is a standard tool in practice for modal
correlation of theoretical models to experimental vibrational tests [5, 6]. However, the hypoth-
esis was that this criterion could be insufficient to capture local mode errors, such as the one
introduced by the test case. These local mode approximation errors could still have a large im-
pact on the GAF matrix and consequently on the frequency and damping progression. Therefore
two additional quality criteria are established.

3.2.2 Aerodynamic-Weighted Local Mode Approximation Error

This local mode error weights the local mode approximation error on each of the considered
structural nodes by the magnitude of the unsteady aerodynamic forces and therefore is a measure
for the error in the induced aerodynamic work. The quality criterion is normalized as

Aero-Weighted Local Mode Approx. Error = 100% · max

 max
(
ϵw,i

)
max

(
ϕw,i

)


i=1,...,nmodes

.

with ϵw = ϵ ◦ |F′
a| the element-wise product of the least-square residual and the magnitude of

the unsteady aerodynamic forces and Φw = Φ ◦ |F′
a| the exact production modes weighted by

aerodynamic forces. Note that the approximate aerodynamic forces F′
a have to be interpolated

to the structural grid to enable the element-wise weighting.

3.2.3 Approximate GAF Error

As third criterion an approximate GAF error is computed as

Relative GAF Error = 100% · max

{
|GAFe

ii|∣∣GAF′
ii

∣∣
}

i=1,...,nmodes

,
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with GAFe = ϵ · |F′
a| and GAF′ = Φ · |F′

a| the approximate GAF error matrix and the approx-
imate GAF matrix, computed by a matrix product with the magnitude of the unsteady aerody-
namic forces. Only the diagonal elements on the approximate GAF matrices are considered,
which describe the amount of energy added or subtracted to a certain mode by the unsteady
aerodynamics of its own modal deformation.
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Figure 3: Convergence of proposed quality criteria

3.3 Results

The results for the three proposed quality criteria are shown in Figure 3. The markers on each
line correspond to the intermediate convergence curves presented in Figure 2, whereas the lines
are constructed out of 25 intermediate convergence steps. The red dotted line indicates the point
where no longer a deviation between the approximation and the direct aerodynamics could be
observed. The three proposed criteria show a clear convergence corresponding to the conver-
gence in the frequency and damping progression. All three criteria are therefore good predictors
of the influence of the mode approximation error on the frequency and damping progression.
The hypothesis that the MAC would not be sufficient is therefore disproved for this test case
scenario. While both other estimators show a larger gradient at the ”convergence-line”, the
additional computational complexity does not justify the small benefit of a slightly clearer cri-
terion.

Based on the results for this test case scenario, best-practice quality thresholds can be estab-
lished for each criterion. For the MAC error criterion this was defined at 1%, which will be
used in the upcoming sections.

3.4 Modal Basis Enrichment

When the error estimators indicate an insufficient reference set, enrichment of this modal basis
is necessary. The test case showed that the addition of a single mode of the structurally deficient
structure sufficed to eliminate the mode approximation error. This is caused by the similarity
of the residual for all critical modes with respect to the approximation. The normalized resid-
ual for the three most critical modes is shown in Figure 4. These figures also show the highly
local appearance of the mode approximation error around the location of the structural defi-
ciency. The residual similarity implies that the introduced structural deficiency created a piece
of orthogonal modal information which could not be reproduced by a linear combination of the
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Figure 4: Max. normalized LSQA residual ϵ for the three most critical modes

nominal structure reference modes. The mode approximation error can therefore be solved by
adding this piece of information to the reference set. This can be achieved by a basis enrichment
with a critical production mode or the residual for one of these critical production modes. More
advanced methods like finding the dominant residual through a POD analysis was - for this test
case scenario - not required.

4 POD-BASED REFERENCE MODAL BASIS SELECTION

The error estimation study showed the importance of the reference modal basis. A new method
is proposed to improve the reference modal basis selection. The POD theory is used to decom-
pose an expanded modal basis spanning multiple structural layouts and mass distributions in a
reference set. This should give more robust results for structural failure cases while retaining the
approximation accuracy for nominal structure flutter computations. Results will be compared
to a reference set containing only the nominal structure modes for one mass distribution. Both
methods are verified by the direct aerodynamic results. The performance of the two reference
selection methods will be tested by two test cases. The first one is a nominal structure flutter
computation without any structural deficiencies, thus creating mode shapes which should be
easy to approximate. Secondly, the structural failure case discused in the error estimation will
be re-used.

4.1 POD-Based Reference Setup

The performance of the POD-based reference selection method is strongly influenced by its set-
up. The first factor is the selection of the POD input cases. Which mass and structural layout
cases are used as snapshots for the POD decomposition? For this test case scenario only the
structural layouts of the test cases will be used as input. In total 7 different load cases with a
nominal structural layout were used, alongside 3 load cases for each of the 2 considered failure
cases.

For each combination of structural layout and mass distribution, a selection of the modes can
be made. The effect of a frequency limit on the modes for a certain input case is visualized
in Figure 5. These figures give the MAC error for all modes of one of the test cases sorted by
their natural frequency. Four different frequency limits are imposed on the input case. This
shows that a good approximation can only be achieved for those modes which lay inside the
frequency band used for the POD snapshots. Imposing a frequency limit of 10Hz results in
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(b) Frequency limit of 20 Hz
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Figure 5: Effect of an imposed frequency limit on the POD input modes on the MAC error for all modes of failure
case
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Figure 6: MAC error criterion for different normalizations

large approximation error for modes around 15Hz. A similar result is obtained using a limit
of 30Hz, while using a 20Hz limit already causes more than 20% MAC error at 21Hz. Modes
with higher natural frequency exhibit more local deflections which cannot be represented by
low-frequency modes.

The POD will decompose the input based on the L2 norm of the input modes. The mode
normalization therefore determines the error norm which is minimized by the POD. Figure 6
shows the average MAC error of all test cases for mass normalization, max. normalization and
orthonormalization. Mass normalization is unfavorable, because it gives a higher L2 norm to
the higher frequency modes. Orthonormalization and max. normalization perform equally well
and are therefore good choices for the POD algorithm.

Finally, the POD truncation level has to be selected. Commonly this is done by establishing the
cumulative relative information content based on the POD eigenvalues. However, for the test
case scenario the threshold selection was made based on the average error estimators. Figure 7
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Figure 7: MAC error criterion for different truncation levels

shows the average MAC error for different truncation levels. No frequency limit to the POD
snapshots is imposed, the first 150 modes are always considered. To reduce the MAC error
below the best-practice threshold of 1%, 130 POD modes have to be retained. However, the
choice was made to retain 150 modes, which is the same amount as the other reference selection
method. This enables a clear performance comparison for the same computational cost.

4.2 Results

The flutter results of both test cases are presented in Figure 8. The presented modes are se-
lected based on the largest observed deviations either in frequency or damping. A selection of
frequency and damping curves for the nominal structure flutter computation is shown in Fig-
ure 8(a). The direct aerodynamics are used as verification result. Mode A and D show small
deviations in the damping with the POD reference basis and modes B and C show small devia-
tions with the nominal reference basis. However, overall the approximation with both reference
selections is in excellent agreement with the direct aerodynamics reference solution. Thus, both
methods could be used satisfactorily for flutter computations without structural deficiencies.

Figure 8(b) shows the frequency and damping progression for the failure case. As already
shown in the error estimation study, the nominal reference selection method creates large devi-
ations in both frequency and damping. On the other hand, the results of the POD reference set
are in excellent agreement with the direct aerodynamics. The extra modal information on the
failure case, which was part of the snapshot matrix in the POD input, is well represented in the
reference basis and, thus, the approximation error is eliminated. The MAC error for the nominal
reference and the POD-based reference for this computation are 8.5% and 0.1%, respectively.
This is in good agreement with the frequency and damping results.
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(a) Frequency and damping progression for the nominal structure flutter computation

(b) Frequency and damping progression for the failure case

Figure 8: Comparison of flutter results for two test cases

5 CONCLUSION AND OUTLOOK

In this work, three different error estimators are compared to indicate the accuracy of a least-
square approach approximating the aerodynamic force matrices. The criteria are used to judge
if the given reference mode set can be used to accurately predict a flutter boundary or if the
basis needs further enrichment. The modal assurance criterion was benchmarked against a local
criterion based on the aerodynamically-weighted maximal displacements and a relative error
in the diagonal elements of the aerodynamic force matrix for a discrete structural failure case
of a transport aircraft. All three estimators performed equally well and therefore the simplest
solution, the modal assurance criterion, was picked with a strict threshold of 1%. Note, if
the criterion is fulfilled, the flutter results are reliable. However, exceeding the threshold not-
necessarily results in inaccurate flutter boundaries, since the imprecisely captured modes might
not participate in the dominating coupling mechanism. Nevertheless, if the error is too high, the
reference mode set must be enriched. In the studied cases, a sufficient approximation is yielded
adding the mode with the highest error. More sophisticated methods like extracting the most
dominant error mode applying a proper orthogonal decomposition were not necessary.
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Subsequently, the selection of a more robust set of reference modes for the least-square ap-
proach is analyzed. A basis consisting of modes from a nominal structural layout is compared
to a basis obtained by a proper orthogonal decomposition comprising modes from nominal
cases as well as failure cases. The total amount of reference modes considered within the least-
square approximation is kept constant between both methods. Both sets perform equally well
on nominal structural cases, whereas the reference basis containing only modes of a nominal
structure exceeds the threshold for the modal assurance criterion considering the failure case.
Contrary, the optimized set using proper orthogonal decomposition agrees excellently with the
flutter reference solution using direct aerodynamics.

The new selection of the least-square reference set combined with the error estimator results
in a robust process to approximate aerodynamic forces of different mass cases and structural
layouts. Nevertheless, further improvements can be discussed, e.g. an automatic selection of
the input modes for the single-value decomposition. Furthermore, the finite-element nodes
used in the least-square approach are selected manually based on engineering experience. An
automatic way by introducing a weighting of the nodes could be analyzed.
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