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Nomenclature 

a = span length 

A = cross section area 

B = chord length 

Caij = aerodynamic modal damping, normalized by the airspeed 

Ci = structural modal damping 

Cmat = material damping coefficient 

E = modulus of elasticity 

fi = frequency of the i
th

 mode 

G = shear modulus 

H = membrane thickness 

I = area moment of inertia 

J = torsional rigidity of the cross section 

Ki = structural stiffness 

k = non-dimensional frequency 

Kaij = aerodynamic modal stiffness, normalized by the square of the airspeed 

La = aerodynamic lift force per unit length  

Ma = aerodynamic pitching moment per unit length  

N0 = initial membrane pre-tension per unit length 

Qa = aerodynamic pressure on a membrane element 

Qe = elastic stiffness term 

V0 = airspeed 

vd = divergence velocity 

vf = flutter velocity 

W = plunge displacement of a strip 

w = plunge displacement of a membrane element 

Wi = plunge displacement of a strip in the i
th

 mode shape  

Xi = displacement of the i
th

 mode  

ΔN = additional tension due to membrane deflection 

ε͞x = mid-plane strain averaged over the span 

ζ = damping ratio 

θ = pitch displacement of a strip 

θi = pitch displacement of a strip in the i
th

 mode shape  

ν = Poisson's ratio 

ρ = membrane density 

ρa = air density 

σ0 = pre-stress in the membrane 

ωf = flutter frequency 

ωi = frequency of the i
th

 mode 
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I. Abstract 
The paper presents a computational and experimental study of the nonlinear aeroelastic response of a pre-tensed, high aspect-ratio, 

thin membrane strip. The goal of the study is to derive and validate a computational model that can be used for analysis and design of 
membrane strips, for the purpose of energy harvesting from flutter at low airspeeds.  The mathematical model is based on a beam 

model, accounting for stiffening effects due to pretension and large deformations. The aerodynamic model is a potential flow model. 
The equations of motion are written as a set of nonlinear ordinary differential equations, using Galerkin’s method, and are simulated 

numerically, and analytically using the Multiple scates method. The nonlinear aeroelastic model is used to study the oscillation 
characteristics of the membrane strip in the various stability regions. The effects of the initial pretension and non-linear stiffening on 

the energy-harvesting potential of the system are studied. The combined effect of the preload on the flutter onset speed, on the 
flutter frequency and amplitude, and on the loss of orbital stability, indicate that an optimal preload can be determined based on the 
intended airspeed range for energy harvesting. A series of wind tunnel tests is conducted, in which the flutter onset velocity, and the 
post-flutter frequencies and amplitudes are measured. Good agreement between the experimental data and computational results 

validate the computational model.  

II. Introduction 

 

In recent years there has been considerable interest in renewable energy resources, and specifically in wind power. One of 

the devices that were suggested for energy harvesting in low-speed winds is the Windbelt generator, by Shawn Frayne and 

Jordan McRae with the Humdinger Wind Energy Company [1]. The Windbelt device is a taut, high aspect-ratio membrane 

that flutters in low-speed winds. Magnets that are attached to the fluttering membrane move in and out of coils, thereby 

generating electrical power. A somewhat similar device was proposed by Sundararajan et al. [2], where the mechanical 

vibrations are transformed into electrical power via piezo-electric devices. These devices motivated the current study of the 

post-flutter characteristics of a high aspect-ratio membrane (i.e., a membrane strip) in low subsonic flows. 

 Aerodynamics and aeroelastic analyses of 2D membrane wings are well documented in recent literature (e.g. [3–9]). 

These studies typically refer to membranes that are restrained at the leading and trailing edges, and deal with equilibrium of 

tension, aerodynamics, and inertial forces on the membrane wing. There is also a vast body of literature on aeroelastic 

stability and limit-cycle oscillations (LCO) of plates and shells, specifically on plates that are clamped on all sides, or on 

cantilevered wings (e.g.[10-13]). These studies present different models with different levels of complexity, from a simple 

beam model, to an arbitrary shell structure modeled with finite elements (FE). The aerodynamic models may vary from linear 

potential strip theory to full CFD analysis.  A recent study, motivated by NASA’s mold-line link project for noise reduction 

of transport aircraft, performed numerical analysis and wind-tunnel testing on membranes of low aspect ratio, in various 

boundary conditions [12]. None of these studies consider the aeroelastic stability and characteristics of high aspect-ratio 

membranes, as in the case of the Windbelt device. A somewhat similar, yet different problem studied in the literature is the 

problem of panel flutter [13-14]. These studies focus on the stability and LCO of thin shells at different aspect ratios, and use 

similar structural models. However, in the problem of panel flutter, only one side of the panel is exposed to airflow, whereas 

in the case discussed in the current study both sides of the membrane are subjected to airflow. 

The current study presents a nonlinear LCO analysis of a membrane strip, of high aspect ratio, in low subsonic flow. The 

structural model is nonlinear, employing Galerkin’s method on a pre-tensed beam model, accounting for the large 

deformations during oscillation. The aerodynamic model is a linear potential-flow model. The analysis focuses on the 

variation of the flutter oscillation amplitude and frequency as a function of airspeed, and the various stability regions. The 

solution is numerical and with a Parametric study from an energy harvesting point of view is then presented. . The numerical 

analysis is verified with an analytic multiple scales solution. Wind tunnel tests serve for validating the mathematical model 

and its assumptions.  

III. Mathematical model 

 

Figure 1 shows the membrane-strip geometry, and the problem setup. The strip dimensions are axbxh (a- span, b-chord, 

h-thickness), where a>>b>>h. The membrane strip is pre-tensed at the short ends (or, clamped at one end and tensioned at the 

other end), while the long ends, which are the membranes’ leading and trailing edges, are free. 
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Figure 1: Schematic illustration of the problem. 

 

0N

0N

, 0a V

, , ,E h   a
b

 

Figure 2: Degrees of freedom of the membrane 
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As customary in dynamic aeroelastic problems, 

a modal technique is employed, assuming that the 

displacements of the membrane-strip can be 

described by superposition of a few characteristic 

shapes (typically, structural natural modes). A 

Galerkin approximation is used, with the first four 

natural modes as shape functions, in order to obtain 

a set of nonlinear ordinary differential equations 

(ODEs) describing the membrane’s oscillations due 

to wind loads. The equations are then integrated 

numerically using a Runge-Kutta based algorithm. 

 

A. Structural model 

 

The structural model is that of a continuous pre-tensed beam. Due to the high aspect ratio of the membrane we assume 

that there is no chordwise bending, and therefore each strip (of length dx) of the membrane can move in two degrees of 

freedom (DOF): plunge (W) and pitch (ϴ), as 

shown in Fig. 2. We verify this assumption in 

section IVA by comparing modal analysis results 

computed with this model and with a finite-

element model that does include chordwise 

bending. The mathematical model assumes large 

displacements, small rotation angles, and small 

strains. In-plane bending and axial deformations 

are irrelevant for the analysis and thus are not 

considered. The equilibrium equation is written 

for an element dy of the strip (an element dx-dy of 

the membrane), where the element’s 

displacements can be written in terms of the 

strip’s DOFs as:  

 
   ( , )w x y W x x y  

 (1) 

Summing the forces on an element dx-dy yields the membrane’s dynamic equation that resembles the string equation: 

 

 

 
   2

2

, ,
, a e

w x y w x y
N x y h Q Q

x x t


  
   

     (2) 

where N is the tension in the span direction, per unit length, ρ is the membrane material density, and h is the membrane 

thickness. Qa is an aerodynamic pressure term, and Qe is the elastic term, resulting from bending and torsional rigidity. In Eq. 

2 the aerodynamic and elastic terms are considered as external forces. They will be derived later on in this section. 

The tension in the membrane is provided by: 

 
  0,N x y N N  

 (3) 

Where N0 is the pre-tension, and ΔN is the additional tension due to the lengthening of the membrane: 
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where εx is the averaged strain (over the thickness) in the span direction. Substituting Eqs. (1), (3), and (4) into Eq. (2), the 

equilibrium equation, in terms of the strip’s DOF, becomes: 
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  



 (5) 

The elastic terms are formulated for a strip, based on an Euler Bernoulli beam model and Saint Venant’s theorem, and are 

written in terms of the strip’s cross-section properties EI and GJ: 
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 (6) 

The aerodynamic terms for the lift and pitching moment on a strip, La and Ma respectively, are based on Theodorsen’s 

unsteady aerodynamic model (detailed in the Aerodynamic model section): 
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 (7) 

Summing the forces over the chord and requiring overall force and moment equilibrium leads to the force and moment 

equations for the strip: 
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where: 
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 (9) 

Provided sufficient pre-tension, the elastic bending stiffness is negligible compared to the membrane stiffness, and the 

bending stiffness terms are therefore omitted. The elastic torsional stiffness, however, cannot be neglected. 

 

 For solution of the non-linear equation we implement Galerkin's method [17], assuming that the nonlinear solution can be 

described by a linear combination of shape functions: 

 

                 
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1 1 2 2 3 3 4 4
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   

   
 (10) 

where Wi and θi are the plunge and pitch displacements in the i
th

 shape function respectively, and Xi are the generalized 

displacements. The shape functions are the structural, natural mode shapes presented in appendix A, obtained from eigen-

solution of the linearized homogeneous equations: 
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Note that in each mode either θi or Wi is zero due to the structural uncoupling of the bending and torsion. 

Implementing Galerkin's method on the element’s equilibrium equation (Eq. (2)) leads to: 
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 (12) 

where wi is the element’s displacement in the i
th

 mode. Substituting Eq. (1) yields: 
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where 
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Integrating on dy yields: 
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where r1 and r2 are the left-hand side terms of Eq. (8a) and (8b) respectively. Integrating on dx, four differential equations are 

obtained: 
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where the K and ξ terms are defined in appendix A.  

 

Structural, viscous damping can be added in several ways. One approach is to assume a linear relation between the 

displacement rate and the force: 
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and adding Eq. (18a) to Eq. (12). Another approach is to assume a linear relation between the strain rate and the damping 

force, thus between the rate of curvature change and the resultant force 
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and adding Eq. (18b) to Eq. (12). Note that Cmat has different dimensions in Eqs. (18a) and (18b).  Since the coefficients Cmat 

are difficult to establish, it is customary to assume a modal damping coefficient, ζi, based on experience or vibration test: 
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In the following analyses we assume no structural damping, ζi=Cmat=0. 

B. Aerodynamic model 

 

The aerodynamic lift and moment, per unit length, are based on Theodorsen’s strip theory, assuming potential flow, a flat, 

rigid, and thin section that oscillates in two degrees of freedom of pitch and plunge, in a constant frequency, with no 

aerodynamic interaction between sections. The aerodynamic force in each DOF consists of two terms: one due to modal 

displacement and one due to modal velocity.  
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Substitution of the oscillatory derivatives found in [18] and integration yields: 
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where k is the non-dimensional frequency, defined as: 
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b
k

v


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 (21) 
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After normalization of the generalized aerodynamic forces, similarly to the structural terms, and addition of the damping 

terms, Eq. (22) is obtained. The coefficients are provided in appendix A. Note that there is no linear coupling between DOFs 

1,2 and DOFs 3,4, neither in the structural nor in the aerodynamic terms. 
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C. Solution of the aeroelastic equations 

Equation 22 is solved numerically using Matlab’s ODE45 solver, which is an adaptive solver that integrates a system of 

ODEs using a 4th order Runge-Kutta formula (with a 5th order correction). Since the aerodynamic terms are functions of the 

oscillation frequency, the solution is followed by spectral analysis. After obtaining the oscillation frequency, the aerodynamic 

terms are updated, and the problem is simulated again. This procedure is repeated until convergence. 

D. Power calculation 

After solution of the aeroelastic equation, a calculation of the work done by the aerodynamic forces can be made. Integrating 

the work over an oscillation cycle yields the average power generated by the external forces (aerodynamics). The calculation 

is made in modal coordinates: 

 

    
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
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

    
 (23) 

where FXi and FẊi are the aerodynamic forces presented in Eq. 20. This estimate serves as an upper boundary for the energy 

that can be harvested,  since the energy of the system would generally be the input energy times an efficiency factor. 

It is noted that the integration in Eq. (23) is performed only on the external forces (only on the aerodynamic terms). The 

total work of the system (including the structural terms as well as the aerodynamic terms) equals zero.  Since the system is 

above flutter speed, the aerodynamic damping is negative, leading to constant power flow into the system. Energy flows out 

of the system through the nonlinear terms and the structural damping. Attachment of an energy harvesting system would 

affect the solution, causing it to oscillate in smaller amplitudes. This is why the power calculation in Eq. (23) yields an upper 

boundary value. 
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Table 1: Structural parameters. 

Property a b h σ0 E ρ ζ ρa ν 

value 596 25 0.25 3.89 6980 1430 0.0 1.225 0.39 

units mm mm mm MPa MPa Kg/m
3
 % Kg/m

3
 -- 

 

E. Strain calculation 

The analysis is validated with an experiment presented in section VI. The main measurement in the experiment is the strain in 

the longtitutional direction, on a pre-selected point on the membrane. Hence, in order to get a better basis for comparison 

with the experimental data, the strain in the membrane is evaluated numerically. The strain in the membrane is the result of 

three components: 

 0 b T     
 (24) 

 

The first component is strain due to pre-tension: 

 

0

0

N

EA
 

 (25) 

The second component is the strain due to the bending of the membrane: 

 

2

22 2
b

Mh w h

E EI x





  

  (26) 

and according to Eqs. (1) and (10)  

 

 
2 22 4

2 2 2
1

, i i

i

i

Ww
x t X y

x x x





  
  

   


 (27) 

Note that though the bending contribution to the stiffness was negligible, the strain due to bending is not.  

The third component results from the additional tension in the membrane, due to the large deformation (ΔN): 

 

22 2 4

0 0
1

1 ( , )

2 2

a a
i i i

T

i

X WN w x y
dx y dx

Eh a x a x x






       
       

      
 

 (28) 

Note that while the first component is static, the second is dependent on X(t) and therefore oscillates in the LCO frequency. 

The third component is dependent on X(t)
2
 and therefore oscillates in a frequency that is double the LCO frequency, and not 

about zero: 

 
    2 0

0 cos 1 cos 2
2

X
X X t X t    

 (29) 

IV. Numerical test case 

 

The membrane in the test case is made of Mylar, with the geometrical parameters and properties detailed in table 1. 

 

 

 

 

 



  

10 
 

Table 2: Modal and flutter analysis comparison between different models. 

 

 four modes 

continuous pre-

tensed-beam 

10 modes 

shell+panel 

model 

10 modes FE 

beam+strip 

model 

1
st
 Bending [Hz] 43.9 44.2 44.4 

1
st
 Torsion [Hz] 49.1 48.7 49.2 

2
nd

 Bending [Hz] 87.9 88.4 88.8 

2
nd

 Torsion [Hz] 98.2 98.3 98.5 

Vf [m/s] 6.2 6.4 6.4 

Vd [m/s] 8.6 8.9 8.6 

 

A. Linear analysis 

Modal analysis and linear flutter analysis were conducted for the membrane in three different ways as follows: 

 

1. Modal analysis using the continuous pre-tensed beam model derived above. Since flutter analysis is linear, 

linearization was made about zero deflections. A k-method flutter analysis [18] was performed using the resulting 

four-mode system, with strip-method aerodynamics. 

2. Modal analysis in Nastran using shell elements. The resulting 10 modes were used in Zaero g-method flutter 

analysis with unsteady panel aerodynamics (Zona 6)[19]. 

3. Modal analysis for a FE beam model, augmented with the geometric stiffness matrix (due to pretension), in a Matlab 

code. The resulting 10 modes were used in a k-method flutter analysis, with strip theory aerodynamics. 

 

The objective of analysis 2 was to verify the assumption that there is no chordwise bending in the first modes, and thus 

that the beam model is appropriate. In addition, it provided comparison between strip and panel aerodynamic models. The 

objective of analysis 3was to support the exclusion of the bending stiffness terms from the continuous pre-tensed beam 

model, and verify that four modes are sufficient for flutter analysis. A comparison between the results of the three analyses is 

presented in Table 2, showing good 

agreement. The first bending frequency 

computed by model 1 (without the 

bending stiffness), is slightly lowered 

(by 1.1%), which leads to a 3% 

reduction in flutter speed. 

Figure 3 shows the V-g plot of the 

continuous pre-tensed-beam model. 

Flutter occurs at 6.2 m/s for the first 

bending and first torsion modes, and 

divergence, of the torsion mode, at 8.6 

m/s. Similar plots were obtained with 

the other two models. 

 

 

 

B. Nonlinear analysis 

 

Equation 22 was simulated at velocities up to five times the flutter velocity.  In order to assess the sensitivity of the 

problem to initial conditions (IC) the response in each airspeed was simulated twice, with two sets of IC, of large and small 

 

Figure 3: Vg plot obtained from the pre-tensed beam model. Left: frequency vs. velocity, right: damping vs. velocity 
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Figure 6: Modal amplitude vs. airspeed  
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mode 1 large IC

mode 2 large IC

mode 3 large IC

mode 4 large IC

mode 1 small IC

mode 2 small IC

mode 3 small IC

mode 4 small IC

displacements, where a large displacement is an order of magnitude larger than the computed membrane’s vibration 

amplitude, and a small displacement is an order of magnitude lower. Figure 4 shows a plot of the maximum displacement of 

the mid-span leading edge (LE) point at steady oscillations versus the ratio of airspeed to flutter speed (where flutter speed is 

the linearly computed flutter speed). At the high velocities, the oscillation is chaotic and no steady state is achieved. The 

values plotted at these velocities are the maximum values of the last 100 out of 3000 periods. 

 

 
 

Figure 5 shows the average displacement (over time) of the mid-span leading edge point at steady oscillations. Three 

stability thresholds are seen in Figs. (4) and (5), dividing the membrane oscillations into four regions, as a function of 

airspeed, as described in table 3. 

 
 

Figure 6 shows the modal displacements as a function 

of airspeed (where the modal bending deformations are 

normalized by span length, and the torsion deformations 

by span-over-half-chord). It is seen that the third and 

fourth modes remain stable (oscillations decay). This is 

unlike in the linear stability analysis where there is also 

flutter of the third and fourth modes. This is due to the 

stiffening, resulting from large deformations of the first 

and second modes. 

Figure 7 shows the membrane’s mid-span leading 

edge oscillations in each of the four regions. While in 

region 2 the oscillations are about zero-displacement, in 

region 3 there is a static offset displacement. It is due to 

this static offset that the maximum displacement in Fig. 4 

appears to depend on the IC. If this static offset is 

subtracted from the solution, both branches coincide. 

Table 3: Different stability regions. 

region v/vf  

1 0-1 Stable. All oscillations decay. 

2 1-2.2 LCO 1st and 2nd modes. 

3 2.2-3.7 
LCO 1st and 2nd modes with a static offset (the oscillation is about non-zero deflection). 

The onset of this phenomenon does not occur at the linearly computed divergence speed. 

4 >3.7 Gradual loss of periodicity, turning into chaotic oscillations. 

 

Figure 4: LE maximum displacement vs. airspeed 

 

Figure 5: LE average displacement vs. airspeed  
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Figure 8: oscillation frequency vs. airspeed  
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Spectral analysis was conducted at each speed, using the FFT algorithm. Figure 8 shows the variation of the dominant 

frequency as a function of airspeed. It is seen that the frequency increases bi-linearly with the airspeed, independent of the IC. 

The increase in frequency results from aerodynamic stiffness, 

and also from the nonlinear elastic term, which is governed by 

the cube of the displacement magnitude. The change in 

frequency growth rate seen at 2.2 times flutter speed corresponds 

to the static offset in membrane oscillations. It is likely due to 

the larger deformations and, as a result, the additional stiffness.  

Sample results of the spectral analysis from each of the 

stability regions are shown in Fig. 9. Though the oscillation is 

non-harmonic, a dominant frequency appears in all cases, for 

both modes. In regions one and two, the oscillation is very close 

to harmonic, and only one frequency is observed. Note that in 

region one, the amplitude is very small. This is due to the decay 

of the oscillations in this region. Region two is characterized by 

a classical LCO. In region three, a large peak appears at zero 

frequency due to the static offset of the vibration. In addition, a 

content of higher harmonics can be seen, especially in the 

torsion (second) mode. In region four, there is a dominant 

frequency, plusa small frequency content in a large spectrum.  

 

 

Figure 7: Sample time history plots at the different stability regions 
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Figure 10: Strain time history 
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We recall that the aerodynamic model assumes vibration in a single frequency. The oscillations in regions three and four 

do not adhere to this assumption, thus the results there are phenomenological and not necessarily accurate. 

Figure 10 shows a time history of each of the strain components discussed in III, E. , and the total strain, at a sample 

airspeed. It shows that although the bending term is negligible in the stiffness calculation, it effects the measured strain.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

Figure 9: Frequency content at different stability regions 
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V. Multiple scales solution 

The multiple scales solution was conducted on a reduced, two-mode, system. The system is written in a non-dimensional 

matrix form (Eq. (23)). The scaling parameters are defined in Eq. (24) and the matrix and vector terms are defined in Eq. 25. 

             2 0a s aZ v C Z K v K Z f
 
       (23) 

   1

1

2

1
,

X
Z t

X ba
 

 
  

 
  (24) 

    11 12 11 12

2

21 22 21 221 1

/ /1 1
,

a a a a

a a

a a a a

C C b K K b
C K

bC C bK K 

   
    

   
  (a25) 

    
3 2

1 11 1 12 1 2

2 3 2
21 22 2 21 2 1

01
,

0
s

K Z Z Z
K f

K Z Z Z

 

  

  
    

   
  (b25) 

The following assumptions are made and substituted into Eq. (23): small displacements (Eq. (26)):, multiple time scale(Eq. 

(27)), large cubic coupling (Eq. (28)), and a small detuning from the flutter velocity (Eq. (29)),  

      2

1 2Z Z Z     (26) 

 ; 0,1,n

nT n     (27) 

 
ij

ij





   (28) 

 fv v v    (29) 

where, ε is a small parameter. Collecting terms of equal order of ε yields:  

           2 2

0 1 0 1 10( ) : 0a s f aD Z vD C Z K v K Z
 

       (30) 

 

          

       

     

2 2

0 2 0 2 2

2

0 1 1 1 1 0 1

1 1

0( ) : 2

2

a s f a

f a a

f a

D Z vD C Z K v K Z

D D X v D C X v D C X

v v K X f X

 







   

    

 

  (31) 

The general solution of the first order equation (Eq. (30)) is: 

      0

1 1
mT

m mm
Z c T V e


   (32) 
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where: λm are complex eigen values of the equation, {Vm} are the eigen vectors, cm(T1) are complex, time dependent, functions 

describing the amplitudes of the frequency response. All of the obtained modes except the flutter mode (recognized by the 

flutter frequency) decay with time. Therefore, leaving only the non-decaying solution yields: 

 

      0

1 1
fi T

f fZ c T V e cc


    (33) 

Note that the flutter frequency, in this section is non-dimensional. Substituting Eq. (33) into Eq. (31) yield: 

 

          
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0

2 2

0 2 0 2 2

1

2

2

2 ...f

a s f a

f f a f f

i T

f a f a f f

f f f

D Z vD C Z K v K Z

i I v C V D c

i C v K V v c e cc

f V c c









   

   
 
      
 
 
 
 

  (34) 

where: 

   
 

 

2 22

11 1 1 12 2 1 2 2
1

2 22
2

22 2 2 21 1 2 1 1

3 2
;

3 2
f f

V V V V V V V
f V V

VV V V V V V

 

 

     
    

   
 

  (35) 

Demanding elimination of the secular terms in Eq. (34) leads: 

  
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2 0
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f f a f a f f

f f f

i I v C V D c

U i C v K V v c

f V c c
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



   
 
    
 
 
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 

  (36) 

where Uf is the left eigenvector of equation 6.5a that corresponds to the flutter frequency. Assuming a polar solution (Eq. 

(37)) and separation of the equation to real and imaginary equations leads to Eq. (38). 

    2

2

1

2

iQ T

fc P T e   (37) 
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1 1 2

2

1 1 2

D P P M v M P

D Q N U N P




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

 

  (38) 

where: 
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  (a39) 
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  (c39) 
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       
2 Im

4 2

T

f f
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f f f a f

U f F
N

U i I v C V

 
 
 
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  (d39) 

Demanding steady state yields: 

  2

1 1 2 1

2

0

0 0D P P M v M P P M v

M

 




      



  (40) 

The results of the MS analysis and a comparison to the numerical results are presented in figure 11, showing good coherence 

with the numerical ones, but give an overshoot in the first mode and lower values in the second.  Since the multiple scales is 

derived at the proximity of the flutter velocity, it is only valid at this region, and the higher stability thresholds are not 

obtained with it. 

 

 

 

 

 

Figure 11: asymptotic solution and comparison to numerical results  
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VI. Parametric study 

 

The effects of two parameters were examined in the parametric 

study: 

 The effect of the preload. 

 The effect of the non-linearity-parameter λ 

A. Preload 

A plot presenting the flutter/divergence onset, and the second 

bifurcation point, is presented in Fig. 12. The second bifurcation 

point is the upper limit of the validity of the analysis model, since 

above this threshold the oscillation is in multiple frequencies. 

From the experimental point of view, above these speeds the 

oscillations lost orbital stability. This makes this threshold a limit 

on energy harvesting, since energy harvesting from a non-periodic 

oscillation is more difficult, and probably less efficient. Figure 11 

shows that as the preload is increased, the region of periodic 

oscillations decreases. Higher preload means smaller working 

region for energy harvesting.  

A plot of the average power at different velocities for different 

values of preload is presented in Fig. 13. The plot shows that the 

input energy increases with airspeed for all preload values. A 

steep increase in the slope occurs at the second stability threshold. 

Above this threshold the energy increases, however, it would be 

difficult to harvest.  

An optimal pretension cannot be determined for the whole 

airspeed range. A specific pretension would have to be determined 

based on the target airspeed range. 

B. Divergence before flutter 

Figure 12 shows that for high values of preload linear flutter 

analysis predicts divergence before flutter. In the non-linear 

analysis, as in the experiment, there is no static divergence, and 

the membrane always flutters. This is due to the nonlinear 

stiffening.  

The effect of the nonlinear stiffening on divergence can be 

explained using a simplified, static 2D model shown in Fig. 14. A 

plate is mounted on a nonlinear spring having linear and cubic 

components. Moment equilibrium on the plate yields: 

 
2 3

0 0/ 2LV SC e K      (30) 

The non-trivial solution of the equation is: 

  2

0 02 / 2LV SeC K      (31) 

 

Figure 12: Flutter, divergence, and second bifurcation 

onset velocities as a function of preload 
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Figure 13: Average input power as a function of 

airspeed, for different values of preload (kg) 
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As long as the nominator is negative only the trivial solution exists. As the nominator becomes positive, a new stable solution 

is created. This is the static divergence. Unlike in the linear case, the deflection in this “divergence” is finite. As a result of 

the static deflection the stifness is increased, thus increasing the frequencies of the structure, and the flutter velocity. Figure 

14 shows a time history of the onset of the oscillation with 4.3 kg preload and airspeed above divergence velocity and below 

flutter. The displacement starts as non oscillating divergence (0<t<0.1), which then turns into LCO. A few limitations on the 

discussion above arenoted: The oscillations shown in Fig. 14 start at zero frequency and develop into LCO of a certain 

frequency. The aerodynamic model used to compute this response assumes a single frequency (in this case, the LCO 

frequency was used). Therefore, the result shown in Fig. 15 is not accurate, but rather serves to demonstrate the mechanism 

of the phenomenon of LCO at divergence speed. For the same reason, it is very difficult to accurately predict the onset of 

flutter in the “divergence before flutter” preload regions with the aerodynamic model used in this study.  

C. Non linearity parameter λ 

The nonlinearity parameter λ is defined in Eq. (A2). It multiplies all of the nonlinear terms in the membrane’s equation of 

motion (A2). The λ parameter represents the magnitude of the nonlinear stiffness terms, and is linearly dependent on the 

modulus of elasticity. Figures 16 and 17 show the power and vibration-amplitude at different airspeeds for different λ values. 

The oscillation frequency is independent of λ. The relation between the amplitude and λ and between the power and λ is 

given in Eq. 32.  

 

 

Figure 15: Time history of the oscillation onset 

preload=4.3kg, velocity=12.5m/sec 

  

Figure 14: 2d strip on a nonlinear spring model 

 

Figure 16: Variation of average power with 

airspeed for different values of λ, preload of 2.5 Kg 

 

Figure 17: Variation of oscillation amplitude with 

airspeed for different values of λ, preload of 2.5 Kg 
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Figure 18: test setup, left: schematic sketch, right: photo 
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It is noted that although λ is dependent on the modulus of elasticity, changing the modulus of elasticity has a wider effect 

on the problem due to its effect on the shear modulus, and thus on the torsion frequencies and flutter velocity. 

VII. Experimental study 

A.  Setup 

 To verify the computational model a series of 

wind tunnel tests was conducted, in which a 0.025 

by 0.6 m Mylar membrane was clamped to the 

tunnel ceiling and pre-loaded by various weights, 

ranging from 0.5 to 4.5 kg. Figure 18 shows a 

schematic sketch and a photo of the test setup. By 

gradually increasing the flow speed divergence and 

flutter speeds were measured for each loading case. 

At speeds above flutter speed the frequency and 

amplitude of the membrane vibrations were 

recorded.  

 The measurement setup consists of two strain 

gauges, an accelerometer, a stroboscope, and a 

simple camera. The airspeed is measured by the 

internal wind speed gauges that are part of the wind 

tunnel. All of the measurement devices except for 

the stroboscope are connected to the wind-tunnel 

data acquisition system, and are thus synchronized. 

The two unidirectional longitudinal strain gauges are 

mounted on two opposite sides of the membrane 

middle axis. The gauges are located ~50mm above 

the bottom clamping device (the exact distance 

depends on the pretension). These gauges are used 

for two purposes: Measure the oscillation’s 

amplitude and frequency, and provided online 

measurement of the pre-tension. The latter is highly 

important since the preload is somewhat reduced 

during the experiment- First due to the clamping, 

and then during the oscillations. The accelerometer 

is attached to the lower clamping device, close to the base of the membrane. Though the clamping device is relatively rigid in 

comparison with the membrane, the membrane-induced oscillations were large enough to yield sufficient readings for 

spectral analysis. In addition to the strain gauges and the accelerometer, in certain parts of the experiment a stroboscope was 

used to visualize the oscillation’s mode shape. This was done by setting the scope to a frequency that is close to the flutter 

frequency. Since the stroboscope operates in a single frequency, when the oscillation is harmonic (or relatively close to 

harmonic), a clean mode shape is seen. When the oscillation is non-harmonic the picture obtained by the stroboscope is 

smeared, giving a good indication on the loss of orbital stability.  

The experiments took place in the Faculty of Aerospace Engineering's subsonic wind tunnel. The wind tunnel has an open 

stream circulation. It allows work at wind speeds in the range of 0 to 90 m/sec. The inlet has an area ratio of 1:25. Eight nets 

are installed in it in order to reduce turbulence and the effect of outside wind gusts. The experiment cell is built from four 

frames that, together, create a square section with height and width of one meter and length of three meters. The wind tunnel 

enables Reynolds numbers of up to six million, and low turbulence level of less than half percent. The stagnation pressure is 

atmospheric pressure, and the air temperature is the same as the outside temperature. 
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Figure 19: Measured vs. actual preload at different 

stages of each experiment  
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B.  Test Procedure and Results 

 

The test was performed with various preloading 

weights, ranging from 0.5 to 4.5 kg. The test procedure for 

each loading case was as follows: First the bottom side of 

the membrane was unrestrained, allowing it to lengthen 

freely. Then a weight was suspended on the membrane 

bottom end, and a measurement of the strain was taken.  

The bottom clamping device was tightened on the 

membrane and another strain measurement was taken. The 

airspeed in the tunnel was gradually raised until flutter 

onset. After the flutter velocity was established, the speed 

was slightly decreased and an airspeed sweep through the 

flutter velocity was recorded. The oscillations at various 

wind velocities above flutter were then recorded, in 

increments of ~0.5m/s. The length of each recording time 

window was about three seconds. The velocities were 

raised until loss of orbital stability. Finally, the airspeed 

was gradually lowered to zero while recording the 

oscillations. 

Figure 19 shows the preload as measured on the free 

(unclamped) membrane and on the clamped membrane, 

before and after each test, showing that the preload was 

reduced due to the clamping and also during the 

oscillations. For comparison with results from numerical 

analysis, the value of the clamped load before test was 

used. 

Figure 20 shows a comparison of the flutter (and divergence) velocities and frequencies for each loading case, as 

computed numerically and measured in the wind tunnel. The flutter frequencies are in good agreement with the numerical 

results. The flutter speed is in good agreement up to preload of ~3.5, where the analysis yields divergence before flutter. In 

the experiment there is no divergence, but the LCO onset velocities in this airspeed range correspond to the computed 

divergence velocities, as discussed in section V.A. 

 
  

 

Figure 20: Flutter velocities (left) and frequencies (right) as a function of preload – Comparison of experimental and 

numerical results 
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Figure 21: Variation of LCO frequency with airspeed for 

different preload values: Analysis Vs. experiment    
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Figure 22: Time history comparison of strains, 

pretension=2.25 kg, air velocity=8.1 m/sec 
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Figure 21 shows the change in LCO frequency with increased airspeed, for different values of preload, as obtained in the 

experiment and in the analysis. The resolution of the numerical results is 0.61 Hz. The numerical results are in good 

agreement with the experiment. The loss of orbital stability in the experiment, in the low pretension values, occurred in a 

lower speed than that predicted in the analysis (not shown). 

Figure 22 shows a comparison of sample time history plot of the strains from the analysis and the experiment. The plot is 

taken from the results with 2.25 kg preload at airspeed of 8.1m/s. A slight static offset appears between the two sets of 

results. This offset probably results from the preload reduction during the oscillation that was presented in Fig. 19. Otherwise, 

the results are in good agreement. Both plots show an oscillation in two frequencies, the higher of which is dominant, as 

discussed in section III.E. and shown in section IV.B., Fig. 10. The plot also shows good correspondence between calculated 

amplitude and the amplitude recorded in the experiment.  

VIII. Summary and Conclusions 

 

The paper presented a numerical, analytical and experimental study of the phenomenon of LCO in a pre-tensed membrane 

strip, for the purpose of energy harvesting. The mathematical model used in the numerical analysis was of a pre-tensed beam, 

with nonlinear, coupled bending and torsional stiffening due to large deformation. The aerodynamic model was a potential 

strip theory model. The experimental study was based on a series of wind tunnel tests, in which the flutter onset velocity was 

detected, and the post-flutter LCO oscillations were recorded via strain gauge readings. The numerical results were in good 

agreement with the analytical calculation in terms of flutter velocity and amplitudes in the stable-oscillation region. The 

numerical results were in good agreement with the experimental results, in terms of flutter velocity and oscillation 

frequencies, for most preload regions. In the region of high preload the linear stability analysis predicts divergence before 

flutter. In the experiment, and in the nonlinear analysis, LCO occurred at the (linearly predicted) divergence speed. This was 

explained to be a result of the nonlinear stiffening, due to large deformations. 

From an energy harvesting point of view, the study showed that for every airspeed, the optimal preload, which is the 

preload that yields maximum power, is different. It was also shown that for each preload value there is a working region of 

airspeeds suitable for energy harvesting. This region is bounded from below by the flutter velocity and from above by the 

second stability threshold, after which the oscillations lose their orbital stability and become non-periodic. This working 

region becomes smaller with higher preload. 

Further research is recommended in which the energy harvesting system is taken into account and coupled with the 

aeroelastic equation. The current study doesn't accurately predict the LCO beyond the loss of orbital stability and the onset of 

LCO at the divergence velocities. This could be improved by use of time domain, instead of frequency domain, 

aerodynamics. 
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Appendix A. Mode Shapes and Coefficients of the Final Aeroelastic Equation 

Mode Shapes and frequencies: 
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Coefficients of the final aeroelastic equation: 
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Appendix B: The V-g method (fit to the non-dimensional formulation) 

 

The dynamic equation that represents the linearized aeroelastic system can be written by: 

       2([ ] [ ]) ([ ] [ ]) 0A D v B X E v C XX       (B1) 

where: 

A is the inertial matrix (in our case a unity matrix) 

B is the aerodynamic damping matrix (scaled by ρv) 

C is the aerodynamic stiffness matrix (scaled by ρv
2
) 

D is the structural damping matrix 

E is the structural stiffness matrix 

The solution is based on adding a fictitious damping into the system in the form of a complex stiffness matrix multiplier i*g.  

         2([ ] [ ]) 1 [ ] [ ] 0A D v B X ig E v C XX        (B2) 

 

 

Neglecting the structural damping, assuming a harmonic solution (2.3), dividing by -w
2
, and extracting the (non-dimensional) 

velocity from the definition of non-dimensional frequency (2.4) yields an eigenvalue problem (C5). 
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Note that the solution is a function of the non-dimensional frequency and velocity k and v.  

The next step in the solution is assuming a value of k and solving the eigenvalue problem C6 

    0([ ] [ ]) 0F E X   (B6) 

From each eigenvalue we derive a frequency, a damping multiplier and a velocity using C7, C8
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The results are plotted on two graphs of (w V.S. v, aka v-w plot) and (g V.S v, aka v-g plot). 

The procedure is repeated for a multitude of k's each time adding the results to the graph. Note that for each assumed k, the 

aerodynamic coefficients are recalculated. The result is a full v-g and v-w plot.  

When the v-g plot crosses reaches zero, it means that no damping should be subtracted from the system in order for it to lose 

stability. That is the flutter speed. The fluttering frequency and modes are obtained from the v-w plot at the flutter velocity.  

Structural damping can be taken into account by offsetting the vg plot by ζ/2 (ζ is the damping ratio). 

The damping and frequencies obtained from the v-g plot are only correct at flutter speed. In the rest of the region, the solution 

is wrong due to the added damping and due to the fact that the solution assumes oscillation in a single frequency. This 

assumption is only reasonable when the structure loses stability and one frequency becomes strongly dominant. 

Static instability (divergence) can also be seen. It is identified by a frequency that reaches zero.  

 

 


