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Abstract: There has been considered the task of non-linear transonic aerodynamics module to 
be integrated in the program that allows to analyze frequency-domain flutter performance for 
different aircraft configurations. New aerodynamics block is based on rapid numerical 
integration of the Euler unsteady equation linearized on the steady solution. The algorithm 
used is based on the iterative coupling of non-viscous solution for external flow and solution 
for spatial compressible viscous boundary layer. Aerodynamic block performs calculation of 
unsteady aerodynamic flows for aircraft rigid motions and elastic vibration modes at several 
values of Strouchal numbers Sh = ωb/V, ω — angular frequency, b — mean aerodynamic 
chord, V — true airspeed. 

The elastic beam model makes use of simplified panel aerodynamic configuration whereas 
aerodynamic block utilizes 3-D aircraft model. Interaction between flutter calculation 
program and aerodynamic block is carried out using interpolation of elastic beam model 
displacements and velocities on to the 3-D aerodynamic model grid nodes and inverse 
interpolation of aerodynamic forces on to the elastic beam model grid nodes. Values of the 
aerodynamic coefficients calculated for several Strouchal numbers are used as reference 
points for the development of the third order fractional interpolation for each aerodynamic 
coefficient. Use of aerodynamic coefficient frequency approximations allows to solve flutter 
equations in frequency domain as well as to determine dynamic system poles. Standard 
methods of poles trajectory plotting with zero-damping points tracing is applied to determine 
critical flutter parameters. 

Using mathematical model of the next generation airliner as an example the comparison is 
made as to the new CFD block with well-known DLM method for aerodynamic coefficients, 
pressure distribution and flutter analysis results. The comparison illustrates that both methods 
gave almost identical results for subsonic flow, but for transonic flow the difference between 
methods is remarkable.  

1 INTRODUCTION 

Calculation of aircraft flutter during transonic flight is a very important task because transonic 
flight mode is the most continuous for the majority of passenger airliners, heavy transport 
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aircraft and military aircraft. However, it is known that critical flutter speed is very often 
decreased during transonic flight. 

Use of panel methods widely applied in unsteady aerodynamics, such as double lattice 
method (DLM) [1], does not allow to take into account nonlinearities related to airfoil 
thickness, angle of attack of airfoil, and appearance of local supersonic areas. This means that 
flutter calculation with use of panel methods at Mach numbers close to one may be 
considered approximate. In late 70s of the last century, a tremendous up-growth of the 
computer science started works on usage of computational fluid dynamics for analysis of 
unsteady flows around a complete aircraft. In the beginning, rather quick methods of 
numerical solution of transonic small perturbation [2, 3] and full-potential [4] equations were 
widely used. But simplifications accounted in those equations led to misidentification of 
location of shocks and their dynamics. Then algorithms appeared which allowed solving of 
more exact and resource-intensive Euler's equations [5-7], and Reynolds averaged Navier-
Stokes equations [8-9]. The latter ones, which consider flow viscosity, provide accurate 
solutions for developed flow separations at aerodynamic surface, but still are rather 
complicated from computational standpoint [10]. During airliners’ cruise flight regimes there 
are no separations at all or separations are small and reattached, so that one may assume that 
Euler’s equations solution considering boundary layer effect will provide acceptable results. 

This area is underdeveloped in Russia. Domestic program BLWF120 by O.V. Karas and V.E. 
Kovalev has been the first to provide a tool required to investigate transonic flutter. It is a 
possibility to relatively quickly calculate unsteady flow around a complete aircraft based on 
numerical integration of Euler’s equations considering boundary layer (iterative coupling 
method). The main goal of the study is implementation of BLWF 120 program as 
aerodynamic block into IMAD computing complex [11] that allows calculation of flutter 
performances within a frequency domain with use of unsteady aerodynamics. The article 
provides overview of operation of the programs used and their interaction, as well as 
comparison of unsteady aerodynamics results and flutter characteristics defined with use of 
DLM and BLWF120 program for the promising passenger airliner. 

2 OVERVIEW OF STEADY AND UNSTEADY COMPUTATION ALGORITHMS 
USED IN BLWF PROGRAM 

Table 1 below shows main differences between BLWF120 and DLM method that is widely 
used in IMAD. 

Parameter DLM BLWF 

Type of equation being solved Linear Non-linear 

Equations used Helmholtz wave equations 
without considering 

airflow viscosity 

Euler’s equations 
linearized onto non-linear 

steady solution 
considering boundary 

layer effect 

Strouhal1 number limitation ≤ 3 No limitation 

                                                 
1 Reduced frequency, see the definition in paragraph 3 
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Parameter DLM BLWF 

Angle-of-attack limitation Zero angle-of-attack All the way to build-up of 
large non-attached 

separations 

Mach number limitation < 0.9 < 3 

Airfoil modeling Flat panels considering 
profile camber 

Detailed consideration of 
airfoil geometrical 

characteristics 

Fuselage and engine nacelles 
modeling 

Mostly cruciform 
configuration 

Accurate modeling of 
surface geometrical 

characteristics 

Table 1:  Main differences between DLM and BLWF computation methods 

BLWF120 program provides the fast computation of unsteady aerodynamic derivatives of a 
complete aircraft based on linearization of unsteady Euler’s equations near steady solution. 
Steady solution is calculated in BLWF 100 program [12] using numerical integration of the 
Euler steady equations by means of fast implicit method considering viscosity effect within 
the framework of viscous-inviscid coupling. 

Important advantage of BLWF120 program which significantly simplifies unsteady 
aerodynamics calculation is use of overlapping computational grids method. The program 
automatically builds up local computational grids around each aircraft structural element 
(fuselage, wing, engine nacelle etc.). Typical local grids are shown in Figure 1. Flow 
parameters on grid outer boundaries are defined by interpolation of parameters calculated for 
adjacent elements grids. 

 
Figure 1:  Aircraft aerodynamic model for BLWF calculation with local grids for separate aircraft 

structural elements 
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3 OVERVIEW OF BLWF AND IMAD INTERFACE 

Numerical analysis of aircraft dynamic properties is performed in IMAD complex based on 
aircraft comprehensive mathematical model which includes finite element model of elastic 
aircraft with predefined stiffness and mass-inertia properties of the components, actuators 
dynamic stiffness, and aerodynamic model. 

Upon completion of structure natural modes analysis, unsteady aerodynamic coefficients are 
calculated using BLWF for predefined list of Strouhal numbers Sh = 0, 0.5Shmax, Shmax, 
1.5Shmax, where Shmax — representative Strouhal number defined by a user. 

Interface between IMAD and BLWF includes three stages. At the first stage, IMAD exports 
file containing boundary conditions for specific aerodynamic flows in the form of translations 
or velocities in panel mesh nodes of a simplified aerodynamic model used in IMAD. For 
example, boundary conditions for an alpha-flow correspond to aircraft positioned at angle of 
attack. 

At the second stage, steady and unsteady flows are calculated in BLWF100 and BLWF120 
using detailed aerodynamic model predefined in BLWF input file. Boundary conditions in 
aerodynamic panel mesh nodes of IMAD model are translated into BLWF model using 
relative coordinates along the wingspan, wing chord, etc. 

At the last stage, BLWF120 output file containing dimensionless pressure distribution among 
nodes of aircraft aerodynamic model for the whole list of aerodynamic flows and Strouhal 
numbers is imported into IMAD. Unsteady aerodynamic coefficients for the whole list of 
model natural modes are defined by numerical integration of a product of generalized 
displacements times unsteady aerodynamic pressures. 

After that, parametrical study of flutter equations is performed, usually with flight altitude as 
a variable parameter and a constant Mach number. As flutter equations have unsteady 
aerodynamic coefficients as function of Strouhal number, these coefficients are defined in 
IMAD using approximation of earlier calculated aerodynamic coefficients for predefined set 
of Strouhal numbers [11]. Approximation is applied in the form of fractional rational function 
of the following nature: C(Sh) = N(Sh)/D(Sh), where N(Sh) and D(Sh) are third order 
polynomial of Sh number. As referenced in [11], such approximation method allows keeping 
conventional methods of calculation of dynamic system poles due to increased number of 
equations. For this purpose, additional equations may be treated as equations defining delay in 
the aerodynamic forces behavior, i.e. their inherent nonstationarity. Thus calculated unsteady 
aerodynamic forces become the right hand side of the flutter equation. Then roots of the 
flutter equation are founded and dynamic system poles hodographs are plotted. 

4 FLUTTER CALCULATION METHOD USING UNSTEADY AERODYNAMICS 

Consider the approximation of unsteady aerodynamic coefficients for set of Strouhal 
numbers. 

As situated above aerodynamic pressures are calculated for a set of boundary conditions and 
for a set of reduced frequencies which cover the required frequency range and include the 
zero value. Each particular flow may be denoted by an upper index k corresponding to a 
relevant kinematic parameter Xk and gives complex pressure distribution. 

Knowing complex aerodynamic pressures allows one to calculate complex derivatives kC
l

 

which are real quantities at zero value of the reduced frequency and become complex 



IFASD-2015-204 

5 

quantities otherwise; in addition, they depend on Mach number М and the reduced frequency. 
Here l denotes the component of the dimensionless aerodynamic forces and moments vector. 

The reduced frequency may be defined using Strouhal number Sh as 

 Sh = Ωb/V  

where Ω is the angular frequency, b — mean aerodynamic chord, V — airplane velocity. 

It is convenient to introduce the complex reduced frequency 

 Vsb/=Sh  (1) 

where s = σ + iΩ is the complex angular frequency or the Laplace operator, and i is the 
imaginary unit; when s = iΩ, the complex reduced frequency becomes a purely imaginary 
value, .Shi=Sh  

The specified set of reduced frequencies may be represented as follows: 

K,Sh,Sh,0Sh 2
2

1
10 V

b

V

b Ω=Ω==  

So, we may use 
(m)kC

l
 to denote a complex derivative 

kC
l

 for a reduced frequency Shm. 

For numerical investigations we should restrict the set of reduced frequencies to a few terms. 
Let us consider aerodynamic derivatives approximation for three Strouhal numbers: 
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The next step is to approximate the complex derivatives by means of the analytical transfer 
function W (named also "filter"): 
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The final representation of complex aerodynamic coefficients as functions of complex angular 
frequency is as follows: 
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The transfer function W has the following properties: 

1. It goes to a value of one as s goes to zero. So the correct values of aerodynamic 
derivatives are reached for quasi-steady state. 

2. It goes to a finite real value of 2
31 )/( kk TT
ll

 as s goes to infinity. The requirement for 

complex derivatives to be real conforms to the exact solution for dimensionless 
pressure Cp = 4/M for unit boundary condition at panel control point when s = ∞. This 
fact gives the principal difference in comparison with other known approaches. 

3. It is a second-order transfer function capable of satisfactorily approximating the 
complex derivatives as functions of the complex angular frequency. 

4. It can be used readily in both time and frequency domain analyses. 

5. It represents a stable system. This is satisfied by requiring kT 2l  and kT 3l  to be positive. 

The next step is the assumption that the index l in 
kT 2l  and kT 3l  may be omitted, i.e. 

 
kkkk TTT 3322 , ==

ll

T . (4) 

 .0,0 32 >> kk TT  (5) 

The relation (4) allows one to essentially reduce the total number of integrators and simplify 
the approach as shown below (in the "Frequency domain" subsection). 

By using (2), (3), and (4) we may represent the generalized aerodynamic force as 

 kkk
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note that the superindex (0) corresponds to the zero frequency.  

The unknown vector Z with components 

 kkkk X
sTsT

Z
22

32 )(1

1

++
=  

may be introduced to provide 

 XZTTE =++ )( 2
3

2
2 ss  (7) 

where E is the diagonal unit matrix and T2 =  kT2  and T3 = 
kT3  are diagonal matrices. By 

introducing a new unknown vector 

 U = sZ, (8) 

eqn (7) may be re-written: 
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Upon combining eqns (6), (8), and (9) it can be shown that 
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 (10) 

If the process is quasi-steady, then U ≈ 0, Z ≈ X and C ≈ C0 + DX, i.e., the aerodynamic forces 
correspond exactly to zero reduced frequency. In the general case, the time history of 
aerodynamic forces has time lags relative to vector X time history. Generally, eqn (10) can 
immediately be utilized to compute unsteady aerodynamic forces. The above condition (4) 
made it possible to derive a rather simple form of these equations, as well as notably decrease 
the order of the system; this fact is very important in practice. Let us consider application of 
the expression to the unsteady problem in two important situations for frequency and time 
domain analyses. 

4.1 Frequency domain. Flutter analysis 

The typical equation used in the quasi-steady flutter problem may be written as follows: 

 DXXAXM += 0
&  (11) 

where the last term represents quasi-steady aerodynamic forces. Matrices M and A0 are 
known. Here, M may be interpreted as the generalized mass matrix, and A0 is the generalized 
matrix allowing for structural damping forces and stiffness. 

Using eqns (6), (10), and (11) the equations for unsteady flutter may be written as, 
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or, in matrix notation, 
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By introducing the new unknown vector 

V =  Z - X 

eqn (12) may be represented finally as 
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If the process is quasi-steady one, then U ≈ V ≈ 0 and the underlined terms of the equation 
may be ignored, so the flutter equation coincides with eqn (11). It is evident that the "price" of 
unsteady solution is three times the system dimensionality. Again, we see that (4) greatly 
decreases the state vector dimensionality in the flutter analysis for unsteady problem. 

4.2 Time domain. Transient response analysis 

For this kind of analysis the system (10) must be integrated simultaneously – both the basic 
equations of elastic body motion and the equations of the onboard control system with sensors 
and actuators. 

The "price" of the unsteady approach is approximately three times the number of integrators. 

So the approach makes it possible to represent aerodynamic forces in both frequency and time 
domains and can be used to analyze any non-stationary motion of airplane. Eqn (3) can be 

treated as a second-order filter with unknown parameters kkkk TTTT 32 ,,, 10 ll

. 

Obviously, eqn (2) should give correct values of complex derivatives in the case of harmonic 
oscillations (s = iΩ). This condition is the basis of a numerical algorithm for determining 
unknown parameters of all filters. Thus, the expressions (2) are required to approximate the 
values known at reduced frequencies of 0.5Shmax and Shmax. 

The cost function is defined as the total square deviation between values of aerodynamic 
derivatives obtained by using the DLM and the corresponding values of the transfer functions 
(3) at reduced frequencies of 0.5Shmax and Shmax. In this case the objective function argument 

is the set of time constants 
k
nT
l

, n = 0 – 3.  

The numerical procedure developed is based on discrete multi-level global minimization of 
the corresponding cost function with restrictions (5). 

5 MATHEMATICAL MODEL DESCRIPTION 

Elastic aircraft mathematical model represents a set of beam sub-structures divided into finite 
elements. Sub-structures displacement compatibility in attachment points is provided by 
means of common springs. Model general layout including sub-structures attachment points is 
shown in Figure 2. 
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Figure 2:  General layout of aircraft beam structure including sub-structures attachment points 

For the purpose of DLM calculation, aircraft aerodynamic model is usually defined using thin 
lifting panels, the geometry of which corresponds to aircraft sub-structures planform view. 
Fuselage and engine aerodynamic models defined using crucified configuration also include 
vertically located panels (see Figure 3). 

As opposed to DLM, BLWF allows to consider actual geometric shapes of sub-structures 
such as fuselage and engine (see Figure 4). To create corresponding aerodynamic models with 
solid bodies, IMAD complex has additional capability to import aircraft geometric data in 
accordance with BLWF input file structure. Besides, while DLM calculations only consider 
mean curvature of lifting surfaces, BLWF flow calculations consider actual profile of the 
wing, stabilizer etc. That said, differential pressure distribution shape having zero at the 
leading edge with further pressure surge requires much more accurate definition of the 
computational mesh. 

 
Figure 3:  Aircraft aerodynamic model used for DLM calculations  
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Figure 4:  Aircraft aerodynamic model used for BLWF calculations  

6 FLUTTER CALCULATION RESULTS 

Comparison of BLWF and DLM results of critical speed calculation for two types of 
symmetrical flutter is described below. Critical speed values are shown in relative numbers. 

6.1 Horizontal tail symmetrical flutter 

Horizontal tail symmetrical flutter appears when there is interaction of elevator rotation, 
elevator first torsion mode and elevator second bending mode. Calculated critical flutter speed 
versus Mach number M curves for both numerical methods are shown in Figure 5. DLM 
shows gradual increase of critical flutter speed up to М = 0.85, while BLWF demonstrates 
sharp decrease of critical flutter speed down to М = 0.82 – 0.85. At cruise speed М = 0.82, 
critical flutter speed is almost identical. 

 
Figure 1:  Critical speed of horizontal tail symmetrical flutter versus Mach number 
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6.2 Wing symmetrical flutter 

Wing symmetrical flutter appears when there is interaction of wing first bending mode and 
wing first torsion mode. DLM calculation shows gradual decrease of critical flutter speed as 
long as Mach number increases, while for BLWF critical flutter speed goes down to M = 0.82 
and then increases (see Figure 6). At cruise speed М = 0.82, critical flutter speed is almost 
identical. 

 
Figure 2:  Critical speed of wing symmetrical flutter versus Mach number 

7 CONCLUSION 

A new aerodynamic module based on the non-linear transonic aerodynamic program 
BLWF120 has been added to IMAD complex. The upgraded IMAD code has become suitable 
for aircraft flutter calculation at any flight stage, including transonic flight. A case study of 
results obtained in DLM and BLWF120 aerodynamic modules has been performed using 
flutter characteristics analysis of the promising passenger aircraft as example. 
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