
KRYLOV SUBSPACE RECYCLING FOR LINEARISED
AERODYNAMICS ANALYSIS USING DLR–TAU

S. Xu1, S. Timme1, and K. J. Badcock1

1School of Engineering, University of Liverpool
Liverpool L69 3GH, United Kingdom

shenren.xu@liverpool.ac.uk

Abstract: The major computational challenge, when using frequency domain linearised
computational fluid dynamics in the analysis of aeroelastic problems such as aircraft flut-
ter, gust response or shock buffet, are the excessive memory and CPU time requirements
to solve the large sparse linear systems of equations. To address these issues found with
the generalised minimal residual linear equation solver currently used in the DLR–TAU
code, the generalised conjugate residual solver with deflated restarting is adopted. Here
an invariant Krylov subspace is recycled both between restarts when solving a single linear
frequency domain problem and for a sequence of equations when varying the system ma-
trix and forcing terms. The proposed method is applied to three test cases including the
forced excitation of a pitch-plunge aerofoil, the fast prediction of shock buffet onset for an
aerofoil using global stability analysis and the computation of a reduced order model basis
for a realistic passenger aircraft. The memory requirements for the problems investigated
are reduced by up to an order of magnitude, while the CPU times are reduced by up to
a factor of three.

Keywords: Krylov Subspace Recycling, GMRES, GCRO-DR, Linearised Computa-
tional Fluid Dynamics, DLR–TAU Code, Flutter, Gust Response, Shock Buffet

1 INTRODUCTION

This paper presents the details of an investigation to improve the generalised minimal
residual (GMRES) linear equation solver currently implemented in the DLR–TAU code
both in terms of memory requirements and convergence rates when using the generalised
conjugate residual solver with deflated restarting (GCRO-DR). Linearised computational
fluid dynamics (CFD) is chosen to model the transonic aerodynamics in the aeroelastic
test cases presented. The range of potential applications include flutter and gust re-
sponse analysis as well as the prediction of transonic shock buffet onset using eigenvalue
calculation methods.

For modern aircraft design, the accurate and efficient calculation of both the flutter on-
set and gust response at an early design stage is of critical importance as it, to large
extent, determines the flight envelope and structural sizing. Despite significant advances
in computational algorithms for CFD and structural dynamics, using time-domain sim-
ulation for such routine analyses is still not a viable option. Linear frequency domain
functionality, implemented in the DLR–TAU code [1], can be used to efficiently compute

1

IFASD-2015-186

the aerodynamic response due to structural excitation, the information of which is then
needed in a flutter analysis [2] similar to industrial approaches using the classical doublet
lattice method (DLM). In addition, linear and nonlinear reduced order models can be
constructed for gust response analysis when using eigenmodes of the aeroelastic system
as a projection basis [3, 4].

More specifically, to predict the flutter onset using CFD aerodynamics in a DLM-like
approach, the aerodynamic response due to excitation in the structural modes at various
frequencies is first pre-computed, and then various interpolation techniques can be used
to reconstruct a response surface to quickly provide aerodynamic data when solving the
small flutter eigenvalue problem. Typically, for a complete passenger aircraft, the part
of the analysis, requiring access to the CFD solver functionality with millions of degrees
of freedom, involves up to 100 structural modes and seven to ten excitation frequencies
resulting in several hundred solves per configuration.

An even more computationally challenging situation arises when the fluid part exhibits
an instability, which further complicates the fluid-structure interaction. An example of
such flow instability with aeronautical relevance is transonic shock buffet. For small-scale
problems, the onset of the flow instability can be found by solving for a few eigenvalues of
the system, using a direct sparse equation solver, at each flow condition and tracking the
eigenvalue which first crosses the imaginary axis [5–7]. For realistic wing cases, a direct
method is not a viable option and an iterative sparse equation solver combined with a
shifted inverse eigenvalue method could be used instead to calculate the relevant eigen-
value. Different from a flutter analysis, where the frequency range of interest is dictated
by the frequencies of the structural dynamics in vacuum, self-induced flow instability is
independent of the structural motion. A good initial guess for the shift is thus not easy
to find. In [8, 9] it was discussed however that the aerodynamic response at pre-buffet
conditions exhibits resonance when excited near the frequency of the flow instability. This
information can then serve as a good initial guess. Another computational challenge asso-
ciated with tracking the destabilising eigenvalue is that the shifted fluid Jacobian matrix
is nearly singular. For instance, in [10] the preconditioned restarted GMRES solver was
used in DLR–TAU to compute the frequency response of an aerofoil at pre-buffet con-
ditions and the linear solver failed to converge in many cases, presumably due to the
worsened stiffness at those conditions.

The theoretical formulation of the linearised CFD aerodynamics is introduced in Section 2,
while the numerical methods used for solving the resulting large sparse linear systems of
equations are discussed in Section 3. Results demonstrating the memory and runtime
efficiency of the GCRO-DR solver compared to the baseline GMRES solver are shown in
Section 4 for three test cases.

2 LINEARISED FREQUENCY DOMAIN AERODYNAMICS

The transient nonlinear equation describing the unsteady aerodynamics is written in semi-
discrete form as

ẇf = Rf (wf ,x, ẋ,θ) (1)

where wf and Rf denote the fluid unknowns and corresponding residual vector, respec-
tively, and θ are the system parameters. The vectors x and ẋ are location and velocity
of the fluid mesh points which are functions of the structural mode shapes and the modal

2

IFASD-2015-186

amplitudes denoted η. Linearising about an equilibrium point and assuming small am-
plitude harmonic motion, the latter equation can be re-formulated as(

∂Rf

∂wf

− iω(k)I

)
φ

(j,k)
f = −

(
∂Rf

∂η
+ iω(k)∂Rf

∂η̇

)
φ(j)
η (2)

where φf and φη are complex-valued amplitudes of fluid and structure, respectively. The
equation gives the aerodynamic response φf following a disturbance of the structure
φη. To find aerodynamic data for further analysis, this equation usually has to be pre-
computed for each structural mode shape (denoted by superscript j) and for a range of
forced sinusoidal excitations in the modal amplitudes at different frequencies ω (denoted
by superscript k). As mentioned earlier, several hundreds of this equation need to be
solved for industrial problems with the number of fluid unknowns easily exceeding several
tens of millions.

Adding equations to describe the unsteady motion of the structure in terms of the modal
amplitudes η gives a coupled problem to be solved for investigation in flutter stability
and also gust response behaviour. The basis of a reduced order model for such aeroelastic
analyses can be calculated from the eigenvectors of the coupled system. The fluid part
of the direct (i.e. right) eigenvalue problem is equivalent to Eq. (2), except that the
structural part of the eigenvector φη is now part of the solution rather than a pre-defined
user input and that the eigenvalue (i.e. frequency) corresponds to a particular eigenvector
(with superscript k = j). The corresponding adjoint (i.e. left) eigenvalue problem for the
fluid part of the eigenvector ψf can be derived as((

∂Rf

∂wf

)T
+ iω(j)I

)
ψ

(j)
f = −

(
∂Rη̇

∂wf

)T
ψ

(j)
η̇ (3)

where Rη̇ is the residual vector corresponding to the structural unknowns. Details of
the mathematical formulation of linearised frequency domain aerodynamics and model
reduction in the context of aeroelastic analysis can be found in [4].

Another type of problem arises when the fluid exhibits an instability without structural
motion. One typical example is the shock-buffet problem where the shock wave interacts
with the boundary layer and destabilises the steady flow beyond a critical parameter.
To find the buffet onset, shifted inverse methods are an obvious choice to calculate few
eigenvalues close to an initial guess. To choose such initial shift (i.e. a characteristic
frequency of the instability), either engineering judgement is required or the resonant
behaviour of the flow when excited at frequencies in the vicinity of the instability can be
exploited [8, 9], which would be equivalent to solving Eq. (2). The closer the shift to the
target eigenvalue, the faster the algorithm converges. This however leads to the second,
even bigger challenge using shifted inverse methods. The linear system to be solved is
nearly singular. Using a direct sparse linear equation solver quickly becomes infeasible
for everything beyond two dimensional problems. Thus a preconditioned sparse iterative
linear equation solver is a possible alternative.

We use the shifted inverse method from [11] referred to as inverse correction. The equation
to be solved is (

∂Rf

∂wf

− σI

)
δφf = −

(
∂Rf

∂wf

− λI

)
φf (4)

3

IFASD-2015-186

where σ is the constant complex-valued shift close to the target eigenvalue λ and the
eigenvector is updated as

φf ← φf + δφf (5)

until the norm of the right-hand side converges below a given tolerance. The right-hand
side in Eq. (4) represents the residual vector of the eigenvalue problem based on the
current approximation to the eigenvector φf of unit length and eigenvalue based on the
Rayleigh quotient

λ = φHf
∂Rf

∂wf

φf (6)

The eigenvector update δφf is always initialised to zero, which is convenient since for
converging outer iterations the update will go to zero. The inner convergence is defined
relative to the convergence of the outer iteration giving a nearly constant number of inner
iterations. In this work, four orders of magnitude is chosen as stopping criterion of the
inner linear system.

As can be seen from this brief introduction of linearised aerodynamics, the efficient solu-
tion of large sparse linear systems of equations is at the heart of it. For convenience in
the following discussion, the coefficient matrix (i.e. fluid Jacobian matrix plus a complex-
valued shift) is denoted A, while the various right-hand side terms are called b.

3 SOLVING LARGE SPARSE LINEAR SYSTEMS OF EQUATIONS

The main challenge in using linearised CFD aerodynamics is solving large sparse linear
systems of equations. Restarted generalised minimal residual (GMRES) solver [12] was
implemented in the DLR–TAU code to solve the linearised equations. As mentioned in
the introduction, for stiff problems, restarted GMRES often suffers from stagnation unless
a large number of Krylov vectors is kept. It is not uncommon to keep several hundred
Krylov vectors in order to converge. This large memory requirement could then become
the bottleneck when solving large cases. To ease these difficulties, we implemented gen-
eralised conjugate residual solver with deflated restarting (GCRO-DR), which converges
almost like full GMRES but has small memory requirement. In addition, recycling a
certain Krylov subspace between different equations is possible for GCRO-DR and is thus
favourable for solving a sequence of linear equations with similar coefficient matrices.

In this section, both GMRES and GCRO-DR will be explained. Furthermore, GCRO-DR
combined with inter-equation recycling, dubbed GCRO-DR-R, is introduced.

3.1 GMRES

The baseline linear solver used is GMRES. The theory and implementation detail are well
documented in [12] and only a brief introduction is given here. When solving the linear
system

Ax = b

one first forms the Krylov subspace

Km(A,b) = span(b, Ab, A2b, . . . , Am−1b)

4

IFASD-2015-186

using the Arnoldi iteration. AftermArnoldi steps, a unit vector basis Vm = [v1,v2, . . . ,vm]
that spans the Krylov subspace is constructed satisfying the Arnoldi relation

AVm = Vm+1H̄m

where H̄m is an upper Hessenberg matrix. The solution x is approximated as

x = x0 + Vmdm

where the coefficient vector dm is solved through the least square problem minimising the
resulting residual r = b− Ax. It can be shown that

‖r‖ = ‖r0 − AVmdm‖ = ‖βv1 − Vm+1H̄mdm‖
= ‖Vm+1‖‖βe1 − H̄mdm‖ = ‖βe1 − H̄mdm‖

where e1 is the first standard basis vector of Rm+1 and r0 = b − Ax0 is the initial
residual. The least square problem is then reduced to a very low dimension m. The
restarted version simply forms the Krylov subspace and solves the least square problem
again from the updated initial solution and residual vectors.

In the DLR–TAU solver, GMRES is preconditioned using incomplete lower-upper (ILU)
factorisation due to its robustness compared to other options such as multigrid. Once the
matrices L and U are computed, the only modification to GMRES without preconditioning
is whenever a vector is multiplied by the coefficient matrix, the resulting vector is further
left-multiplied first by L−1 and then by U−1. The triangular matrices L and U are inverted
using forward and backward substitutions. Alternatively, right or split preconditioning
could also easily be achieved by plugging in these two additional matrix inversions in a
slightly different manner [12]. There seems to be no obvious advantage for any type of
preconditioning over the others, therefore we only used left preconditioning throughout
this work as the least modification is required. In addition, due to memory considerations,
a complex-valued version of ILU with low fill-in is used.

3.2 GCR

Generalised conjugate residual (GCR) solver is a Krylov subspace solver that is algorith-
mically identical to GMRES, but with different procedures. Again, for the theory and
the detailed implementation, refer to [12]. Only a brief introduction is given here.

Standard GCR constructs two vector bases

Um = [u1,u2, . . . ,um] and Cm = [c1, c2, . . . , cm]

satisfying
Cm = AUm and CH

mCm = I. (7)

The solution is approximated on the subspace spanned by the column vectors of Um

x = x0 + Umdm

subject to the constraint that the resulting residual is perpendicular to the subspace
spanned by the column vectors of Cm

CH
mr = CH

m (r0 − AUmdm) = 0

5

IFASD-2015-186

which is equivalent to dm being the minimiser of ‖r‖. Similar to the Arnoldi iteration
generating the Krylov vectors in GMRES, GCR uses a recursive procedure to generate
the column vectors of Cm and Um. At the i-th iteration, i ≥ 1, set

ui ← ri−1 and ci ← Aui (8)

which are first orthogonalised against Ci−1 if i 6= 1,

ui ← ui − (Ci−1C
H
i−1)ui and ci ← ci − (Ci−1C

H
i−1)ci

and then normalised by ‖ci‖. The solution and residual vectors are then updated as

xi ← xi−1 + ui(c
H
i ri−1) and ri ← ri−1 − ci(c

H
i ri−1). (9)

A preconditioned version of GCR is easily obtained by adding the matrix-vector multi-
plication step for the preconditioning matrices as in GMRES.

3.3 GCRO

Nested Krylov subspace solvers wrap one Krylov solver outside another and use the inner
solver to precondition the outer one. One of those nested solvers is GCRO, which uses
GCR for the outer loop and any Krylov subspace solver, such as GMRES, for the inner
loop. The motivation behind can best be explained by revisiting Eq. (8). Instead of
assigning the latest residual vector to ui, we could set

ui ← A−1ri−1. (10)

Then the solution is found immediately following the update step in Eq. (9) where the
residual vector is obviously zero. Although for Eq. (10) it is generally not possible to
invert the matrix A, it does imply that we could assign to ui an approximate solution to
the equation Ax = ri−1 to accelerate the convergence. To get the approximate solution,
GMRES(k) is used in place of Eq. (8) solving

(I − Ci−1C
H
i−1)Aui = ri−1

for a maximum k iterations with initial solution of zero. The term in the bracket preceding
A ensures that the Krylov subspace formed in the inner loop is normal to the Krylov
subspace in the outer GCR loop to guarantee monotonic residual reduction.

3.4 GCRO-DR and GCRO-DR-R

For nested Krylov subspace solvers such as GCRO, the inner loop generates a Krylov
subspace to approximately solve the equation, and the subspace is discarded when exiting
the inner loop. It would be advantageous to recycle some information from the discarded
subspace to aid the outer convergence. One approach is to truncate based on the prin-
ciple angle between the Krylov vectors constructed during the inner loop and select the
important ones to augment the outer Krylov subspace. The criterion to select them is
to check how much worse the inner loop convergence would have been if the inner loop
has stopped before those vectors are formed. One solver based on this idea is generalised
conjugate residual with optimal truncation [13]. Another approach is to select the interior

6

IFASD-2015-186

eigenvectors (eigenvectors corresponding to the smallest-in-magnitude eigenvalues) that
can be computed during the Arnoldi iteration from the inner loop and use them to aug-
ment the outer Krylov subspace. The two most important solvers following this idea are
generalised minimal residual with deflated restarting [14] and generalised conjugate resid-
ual with deflated restarting (GCRO-DR) [15]. Both are nested Krylov subspace solvers
with the main difference being that the former uses GMRES for the outer loop while the
latter uses GCR. Although the latter requires more memory, it has the advantage of recy-
cling eigenvectors both between restarts and between equations with different coefficient
matrices. Due to this flexibility, GCRO-DR is used in this work.

The algorithm of GCRO-DR is now explained. Standard GCRO-DR starts withm Arnoldi
iterations which produces the upper Hessenberg matrix H̄m and the Krylov vectors Vm.
The solution and residual vectors are first updated as in standard GMRES. To extract
the approximate interior eigenvectors of A, we solve the generalised eigenvalue problem

(Hm + h2m+1,mH
−H
m emeHm)pi = θipi

where the square matrix Hm is H̄m without the last row and then set

[y1,y2, . . . ,yk] =: Yk ← VmPk

where Pk = [p1,p2, . . . ,pk] with pi (1 ≤ i ≤ k) corresponding to the k smallest θi. The
matrices Ck and Uk are constructed from Yk by setting

Ck ← Vm+1Q and Uk ← YkR
−1.

where [Q,R] is the QR-factorisation of H̄mPk. It can be verified that the resulting Ck
and Uk satisfy the condition in Eq. (7). Next, we set v1 = r/‖r‖ and perform (m − k)
Arnoldi iterations using the linear operator (A − CkCH

k A) such that the Krylov vectors
are orthogonal to Ck as in standard GCRO. The key step is to combine Uk from the outer
GCR and Vm−k from the inner Arnoldi iterations to form a subspace to approximate the
solution. Thus, define

V̂m = [UkDk, Vm−k], Ŵm+1 = [Ck, Vm−k+1], Ḡm =

[
Dk Bm−k
0 H̄m−k

]
which satisfy the generalised Arnoldi relation

AV̂m = Ŵm+1Ḡm

where Dk = diag(‖u1‖−1, ‖u2‖−1, . . . , ‖uk‖−1) and Bk = CH
k AVm−k.

The solution is approximated over the subspace spanned by the columns of V̂m, i.e., we
solve for the coefficient vector dm to minimise the residual ‖r − AV̂mdm‖ which, due to
the Arnoldi relation, is equivalent to ‖ŴH

m+1r − Ḡmdm‖. The minimiser can be found
from solving a least square problem. Once dm is found, the solution and residual vectors
are updated. In addition, we compute θi and pi of the generalised eigenvalue problem

ḠH
mḠmpi = θiḠ

H
mŴ

H
m+1V̂mpi

The approximate interior eigenvectors of the coefficient matrix are Yk = V̂mPk with Pk
containing the k interior eigenvectors to the reduced system as its columns. To form Ck
and Uk, first perform QR-factorisation of ḠmPk and then set

Ck ← Ŵm+1Q and Uk ← YkR
−1.

7

IFASD-2015-186

The next cycle of Arnoldi iterations is then restarted with constraint Ck. Different from
standard GCRO, after Ck and Uk are formed, the solution and residual vectors are not
immediately updated in GCRO-DR. This is because the least square problem after the
inner Arnoldi iteration has included the basis Uk in the search subspace. The resulting
algorithm is denoted as GCRO-DR(m, k) where m is the dimension of the Krylov subspace
retained for approximating the solution while k is the number of eigenvectors recycled.
The total number of Krylov vectors that needs to be stored is then (m+ k).

In GCRO-DR, the eigenvectors computed from the inner loop, Yk, are ‘recycled’ to improve
the next restarted cycle. Due to the flexibility of GCRO, any set of vectors could be
recycled and regularised to form Uk and Ck, not only for the next restarted cycle, but also
for solving the next equation, when solving a sequence of equations. Instead of performing
m GMRES iterations to get k approximate interior eigenvectors, those from a previous
solve can be recycled using the QR-factorisation to generate Uk and Ck that satisfy the
condition in Eq. (7). We call this variant version that allows inter-equation recycling
GCRO-DR-R. The algorithm for GCRO-DR-R as shown in Appendix A is identical to
GCRO-DR except for line 3 [15].

The effectiveness of recycling the eigenvectors between equations strongly depends on how
good an approximation the eigenvectors from one equation are for another. For varying
right-hand sides, there are mainly three scenarios: i) identical coefficient matrices, ii)
diagonally shifted coefficient matrices and iii) similar but different coefficient matrices.
For the first case, GCRO-DR-R should be very effective as the spectral information of
the coefficient matrix does not change. For case 2, GCRO-DR-R is also expected to be
quite effective. Although the eigenvectors are preserved despite the shifted spectrum,
the smallest eigenvectors for (A − σ1I) are not necessarily the smallest eigenvectors for
(A − σ2I). Thus the deflation may not be as effective as in the first case. The last
case is the most general one and there is no theory guaranteeing that recycling should
work. It is only assumed that if the difference between two coefficient matrices is small,
the difference in the smallest eigenvectors should also be small and then recycling should
have some effect.

The other factor determining the effectiveness of recycling is the right-hand side. However,
a theory regarding the convergence due to the right-hand side does not seem to exist (for
a survey of the existing theories regarding the convergence properties of various Krylov
subspace methods, refer to [16]). Some attempts have recently been made to formulate
an asymptotic convergence bound taking into account the right-hand sides [17], however
the more useful transient convergence behaviour is still unclear.

4 RESULTS

The linear equation solvers outlined in the previous section are now applied to three
test cases to demonstrate their effectiveness in reducing the memory requirements and in
accelerating convergence. The governing equations of the flow are solved using the DLR–
TAU code and all linear systems are obtained from this solver’s discretisation scheme. For
the two dimensional aerofoil test cases, the Reynolds-averaged Navier-Stokes equations
are used together with the one equation turbulence model of Spalart–Allmaras. The
inviscid fluxes of the mean flow equations are discretised using the second-order central
scheme with scalar dissipation, while the first-order Roe scheme is used for the turbulence

8

IFASD-2015-186

CPU time (hour)
0 0.1 0.2 0.3 0.4

L
o
g

1
0

(R
e
s
)

-10

-8

-6

-4

-2

0

2

GMRES(50)
GMRES(100)
GMRES(200)
GMRES(464)
GCRO-DR(20,10)

Number of vectors stored
0 100 200 300 400 464

C
P

U
 t
im

e
 (

h
o
u
r)

0

0.2

0.4

0.6

0.8

1

GCRO-DR
GMRES

Figure 1: Case 1: Left: Convergence history using restarted GMRES and GCRO-DR; right: CPU time
of GMRES and GCRO-DR using different number of vectors with tolerance 1e-10.

equation. Viscous fluxes follow the full gradient approach with the gradients reconstructed
using the Green-Gauss theorem. The Euler equations are solved for the three dimensional
test case using the same central scheme with scalar dissipation. The matrix, which the
ILU factorisation is based, is formed by linearly blending the Jacobian matrices of first
and second order spatial discretisation [18]. Further more, ILU with zero fill-in is used
throughout this work, with one level of fill-in requiring appreciably more memory but
resulting in limited speedup.

4.1 Calculating frequency response for an aerofoil

The first test case is a two dimensional aerofoil undergoing harmonic excitation in pitch
and plunge modes at various frequencies in transonic flow. The freestream Mach number
is 0.76 with a Reynolds number of 10 million. The angle of attack is 3.5 deg. The aerofoil
case has 36k grid points, corresponding to 180k complex unknowns. The sparse Jacobian
matrix has 16.7 million non-zero entries.

To investigate basic properties of the different linear solvers, we first solve the linear
equation for a reduced frequency of 0.35 excited by the pitch mode. As will be explained
below, the resulting linear system at this frequency is most difficult to solve. The conver-
gence history for ten orders of magnitude residual drop using different solvers is plotted in
Fig. 1. The residual here and in the following paragraphs is the normalised L2 norm of the
preconditioned residual, defined as Res = ‖U−1L−1(b−Ax)‖/‖U−1L−1b‖. As reference,
full GMRES is first used and it converges with 464 iterations. Restarted GMRES is then
run using 50, 100, 200 Krylov vectors respectively. At least 100 vectors are needed to
avoid convergence stagnation and GMRES restarted with 200 vectors is found to be opti-
mal. Using more than 200 vectors slows down the convergence due to the increased cost
in orthogonalisation. On the other hand, GCRO-DR(20,10), requiring only 30 vectors to
be stored, converges significantly faster, reducing the CPU time of the best performing
GMRES solver by over a factor of three.

9

IFASD-2015-186

Figure 2: Case 1: Convergence history of GMRES(200), GCRO-DR(20,10) and GCRO-DR-R(20,10) for
the first three equation solves.

To examine the memory requirements and CPU time for both solvers for the same lin-
ear system, different numbers of Krylov vectors are tested. All solvers are required to
converge by ten orders of magnitude. Since there are two parameters m and k that can
vary independently in GCRO-DR, we simplify the parameter study by setting k = m/2.
Convergence stalls if less than 27 vectors are stored for GCRO-DR, above which the
CPU time almost linearly increases with the fastest convergence achieved when storing
30 vectors. Therefore, GCRO-DR(20,10) is used for the remaining computation for this
case. For GMRES, the restart number is decreased from m = 464 until the convergence
severely slows down and eventually stalls below m = 200. The two dashed lines in Fig. 1
show the respective smallest number of vectors needed by the two solvers. Note that the
reduced memory requirement is equivalent to storing six flow Jacobian matrices for this
two dimensional case.

Next, inter-equation recycling is investigated in Figs. 2 and 3. The frequency response
due to harmonic excitation in pitch and plunge modes is computed with three solvers:
GMRES(200), GCRO-DR(20,10) and GCRO-DR-R(20,10). The reduced frequency varies
from 0.1 to 0.6 with an increment of 0.05. For each frequency, the aerofoil is first excited
using the pitch and then the plunge mode. The order of solving the sequence of equations
is such that the coefficient matrices and their complex-valued ILU(0) preconditioner are
formed as few times as possible and the coefficient matrices vary monotonically to allow
effective recycling between equations. A total of 22 linear solves are performed. The
convergence criterion is again a residual drop of ten orders of magnitude.

As can be seen in Fig. 2, compared with GCRO-DR, GCRO-DR-R completely avoids
the initial phase of the slow convergence from the second linear equation solve due to
recycling. The effect however slows down and the asymptotic convergence of the nested
solvers is comparable, both outperforming GMRES. The CPU time breakdown of each
linear solve for all three solvers for different modes excited at different frequencies is shown
in Fig. 3. Compared to GMRES(200), GCRO-DR(20,10) reduces the overall CPU time
by 64% and using recycling between equations speeds up another 15%.

10

IFASD-2015-186

Reduced frequency
0.

10
0.

15
0.

20
0.

25
0.

30
0.

35
0.

40
0.

45
0.

50
0.

55
0.

60

C
P

U
 t

im
e

 (
h

o
u

r)

0

0.1

0.2

0.3

0.4

0.5
Pitch

GMRES(200)
GCRO-DR(20,10)
GCRO-DR-R(20,10)

0.
10

0.
15

0.
20

0.
25

0.
30

0.
35

0.
40

0.
45

0.
50

0.
55

0.
60

0

0.1

0.2

0.3

0.4

0.5
Plunge

Figure 3: Case 1: CPU time breakdown for various solvers for computing the frequency response.

4.2 Calculating shock-buffet onset for an aerofoil

The CPU time of GMRES for the frequency sweep in the previous case shows a peak at
the reduced frequency of 0.35 for both pitch and plunge modes, which is related to the
near resonance fluid motion. This resonance behaviour is more evident from the plot on
the left of Fig. 4 showing the magnitude of the unsteady lift derivative of the aerofoil
excited by both modes at different reduced frequencies. This motivates the computation
of the responsible fluid eigenvalue and eigenvector. To compute the eigen pair, inverse
correction method [11] is used with shift σ = 0.35i and a random initial guess for the
eigenvector.

The first outer iteration is solved using GMRES with different restarts and GCRO-DR,
for which the convergence history is shown on the right of Fig. 4. For GMRES, restarting
after every 300 vectors seems to be optimal. For GCRO-DR with m = 20 using 10
recycled eigenvectors, the memory required is only one tenth of that of GMRES, while
the convergence is accelerated by over 75%. Note that the convergence level used here is
ten orders of magnitude. In practice, since only the outer iteration convergence is related
to the actual convergence of the eigenvalue problem, the inner iteration convergence could
be relaxed to achieve better overall performance. It is found that converging four orders
of magnitude during inner iterations is sufficiently efficient, thus is chosen for the entire
calculation.

For the eigenvalue problem, GMRES(300), GCRO-DR(20,10) and GCRO-DR-R(20,10)
are used. Since the coefficient matrix does not change for constant shift, and only the right-
hand side is updated every time the inner iteration has converged, eigenvector recycling is
expected to be very effective. Shown in Fig. 5 is the convergence of all three solvers for the
first three outer iterations, converging the residual by four orders of magnitude. Similar
to case 1, the deflation technique significantly improves the convergence rate compared
to GMRES. Further more, by recycling eigenvectors between equations, the convergence

11

IFASD-2015-186

Reduced frequency
0.1 0.2 0.3 0.4 0.5 0.6

M
a

g
n

it
u

d
e

 o
f

c
o

m
p

le
x
 l
if
t

d
e

ri
v
a

ti
v
e

0

20

40

60

80

100

Pitch
Plunge

CPU time (hour)
0 0.5 1 1.5

L
o

g
1

0
(R

e
s
)

-10

-8

-6

-4

-2

0

GMRES(100)
GMRES(200)
GMRES(300)
GMRES(500)
GCRO-DR(20,10)

Figure 4: Case 2: Left: the complex lift derivative for 3.5 deg angle of attack excited by pitch and plunge
modes over the range of reduced frequencies; right: convergence history of different linear
solvers for the first outer iteration of the inverse correction solver.

CPU time (hour)
0 0.1 0.2 0.3 0.4 0.5

L
o
g

1
0

(R
e
s
)

-4

-3

-2

-1

0

1
Outer iter 1

GMRES(300)
GCRO-DR(20,10)
GCRO-DR-R(20,10)

0 0.1 0.2 0.3 0.4 0.5
-4

-3

-2

-1

0

1
Outer iter 2

0 0.1 0.2 0.3 0.4 0.5
-4

-3

-2

-1

0

1
Outer iter 3

Figure 5: Case 2: Converge history for the first three outer iterations.

stagnation at the initial stage when using GCRO-DR without inter-equation recycling
is completely removed from the second equation. Since the inner convergence is more
relaxed compared to case 1, the relative speedup of GCRO-DR-R over GCRO-DR is even
more pronounced. The CPU time of all three solvers for all nine outer iterations is plotted
on the left in Fig. 6. The convergence of the outer eigenvalue problem is also shown in
Fig. 6.

The evolution of the particular eigenvalue over the outer iterations is shown in Fig. 7
with the eigenvalues computed using Arnoldi method implemented in MATLAB. The
numerical values of the eigenvalue is also compared with the one from MATLAB on the
right of Fig. 7.

4.3 Calculating basis of reduced order model for an aircraft model

The XRF1 model is a wide-body passenger aircraft research configuration with a semi-
span of about 30 m and an overall length of about 65 m. Flow conditions are a freestream
Mach number of 0.85 at 1 deg angle of attack. The computational mesh for the Euler CFD

12

IFASD-2015-186

Outer iteration
1 2 3 4 5 6 7 8 9

C
P

U
 t

im
e

 (
h

o
u

r)

0

0.1

0.2

0.3

0.4

0.5

GMRES(300)
GCRO-DR(20,10)
GCRO-DR-R(20,10)

Outer iteration
0 2 4 6 8 10

L
o

g
1
0

(|
d

|)

-10

-8

-6

-4

-2

0

2

4

6

8

Figure 6: Case 2: Left: CPU time comparison of different solvers for all nine outer iterations; right:
converge of the eigenvalue problem.

Real(λ)
-0.1 0 0.1

Im
a

g
(
λ

)

0.3

0.4

0.5

MATLAB-Arnoldi
Inverse correction
Initial guess

-.01402 -.01397
.3535

.3538

Figure 7: Case 2: Left: Evolution of the tracked eigenvalue during outer iterations plotted along with the
eigenvalues computed using Arnoldi iterations implemented in MATLAB; right: the eigenvalue
during outer iterations compared to the one from Arnoldi iterations.

calculation has 0.74 millions nodes, equivalent to 3.7 million complex-valued unknowns
for the linear system. In terms of storage, the flow Jacobian matrix for the second order
spatial discretisation has around 451 million non-zero real-valued entries requiring around
11.3 GB memory to be stored with double precision.

Using ten mode shapes of the structure (the first mode, dominant in wing bending, as
mapped to the CFD surfaces is illustrated on the left of Fig. 8), ten eigenvalues are found
using the Schur complement method. The Schur complement method can efficiently
compute eigenvalues and the associated structural part of the right and left eigenvectors.

13

IFASD-2015-186

CPU time (hour)
0 5 10 15

L
o

g
1

0
(R

e
s
)

-6

-5

-4

-3

-2

-1

0

1

GMRES(50)
GMRES(100)
GMRES(200)
GMRES(300)
GCRO-DR(20,10)
GCRO-DR(25,10)
GCRO-DR(30,10)

Figure 8: Case 3. Left: aerodynamic surfaces of XRF1 for projected mode 1; right: convergence for
computing the first left eigenvector.

The remaining task is to find the fluid part of the eigenvectors using Eqs. (2) and (3).
Once both the right and left eigenvectors of the coupled problems are found, a reduced
order model can be constructed [4].

From previous experience, it is known that the adjoint (left) eigenvector problem is more
challenging. Thus, GMRES and GCRO-DR using different parameters are first used to
solve for the first left eigenvector with the convergence history shown on the right in Fig. 8.
The convergence criterion has been set to six orders of magnitude, which is found to be
sufficient to converge the unsteady lift derivative to within 1% accuracy. GMRES with 100
vectors is found to be optimal, i.e., using 50 vectors leads to convergence stagnation while
using more slows down the convergence due to the increased cost in orthogonalisation. For
GCRO-DR, there is only marginal variation in CPU time for the three combinations of
parameters used thus GCRO-DR(30,10) is chosen for all the remaining eigenvector solves.
Replacing GMRES(100) with GCRO-DR(30,10) reduces the total memory for the linear
solve from 18.2 GB to 11.4 GB, with the difference being the 60 less vectors needed to be
stored, while the CPU time is reduced by a factor of three.

The CPU time breakdown of the 20 eigenvector solves using GMRES(100) and GCRO-
DR(30,10) is shown in Fig. 9. Using deflated restarting speeds up the whole calculation
by a factor of two. However, the recycling technique does not seems to be effective for
this case. Using eigenvector recycling even slows down the convergence for left eigenvector
problems, while the speedup for the right eigenvector solves are marginal at around 6%.
This is presumably due to the fact that the approximate eigenvectors recycled from solving
the first eigenvector is no longer a good approximation for the eigenvectors of the second
linear system.

It was reported in [15] that GCRO-DR with recycling may not necessarily accelerate
the convergence even when recycling is applied to the same equation with both identical
coefficient matrices and right-hand sides. This same behaviour was found in this case

14

IFASD-2015-186

Left eigenvectors
1 2 3 4 5 6 7 8 9 10

C
P

U
 t
im

e
 (

h
o
u
r)

0

2

4

6

8

10

GMRES(100)
GCRO-DR(30,10)
GCRO-DR-R(30,10)

Right eigenvectors
1 2 3 4 5 6 7 8 9 10

C
P

U
 t
im

e
 (

h
o
u
r)

0

2

4

6

8

10

Figure 9: Case 3: CPU time for solving all eigenvectors using the three different solvers.

when repeatedly solving the first left eigenvector problem, i.e., solving the equation again
with recycled eigenvectors from the previous solve of the same equation does not speed up
convergence. Another feature of the convergence is that the left eigenvectors are in general
more difficult to solve compared to the right eigenvectors, even though their spectra are
identical. This implies that the right-hand side plays an important role in the convergence
in these cases [17]. Further investigation into this problem is underway.

5 CONCLUSIONS

In this paper, generalised conjugate residual solver with deflated restarting is applied
to a few typical problems of linearised aerodynamic analysis and the improvement over
the baseline generalised minimal residual method, regarding both the memory require-
ment and CPU time, is demonstrated. The cases investigated are i) frequency response
computation of an aerofoil undergoing pitch or plunge in transonic flow at near buffet
condition, ii) eigenvalue solve via the inverse correction method for the same aerofoil, and
iii) computing the left and right eigenvectors for an aircraft model. All the test cases in-
volve solving large sparse linear systems of equations arising from linear frequency domain
Navier-Stokes and Euler equations.

The deflation technique significantly reduces both the CPU time and the number of
Krylov vectors that need to be stored for all cases. Although recycling eigenvectors
between equation does not improve the asymptotic convergence rate, it does significantly
improve the transient convergence by overcoming the initial stagnation, making it ideal
for solving a sequence of linear systems of equations with relaxed convergence criteria,
such as computing the least stable eigenvalue of the near-buffet aerofoil case where the
convergence is accelerated by an additional factor of two. However, the convergence
acceleration is not effective for computing the eigenvectors for the aircraft case. This is
probably related to the right-hand sides and that the problem is not sufficiently stiff since
the flow is assumed to be inviscid and the mesh is quite coarse.

Future work includes implementing the recycling algorithm in DLR–TAU code, taking

15

IFASD-2015-186

advantage of the existing parallel infrastructure. A more realistic aircraft case in tran-
sonic flow with strong shock–boundary layer interaction will be investigated, where the
linear system is expected to be much stiffer, exploiting the superior property of the defla-
tion/recycling techniques.

6 ACKNOWLEDGEMENTS

The first author would like to thank Dr. Jens-Dominik Müller from Queen Mary University
of London for the discussion on Krylov subspace recycling at the beginning of this work.
The research leading to these results was co-funded by Innovate UK, the UK’s innovation
agency, as part of the Enhanced Fidelity Transonic Wing project.

7 REFERENCES

[1] Thormann, R. and Widhalm, M. (2013). Linear-frequency-domain predictions of
dynamic-response data for viscous transonic flows. AIAA Journal, 51(11), 2540–
2557.

[2] Timme, S., Marques, S., and Badcock, K. (2011). Transonic aeroelastic stability
analysis using a kriging-based Schur complement formulation. AIAA Journal, 49(6),
1202–1213.

[3] Da Ronch, A., Badcock, K. J., Wang, Y., et al. (2012). Nonlinear model reduction
for flexible aircraft control design. AIAA Paper 2012–4404.

[4] Timme, S., Badcock, K., and Da Ronch, A. (2013). Linear reduced order modelling
for gust response analysis using the DLR-TAU code. Proc. IFASD.

[5] Crouch, J., Garbaruk, A., and Magidov, D. (2007). Predicting the onset of flow
unsteadiness based on global instability. Journal of Computational Physics, 224(2),
924–940.

[6] Iorio, M., González, L., and Ferrer, E. (2014). Direct and adjoint global stability
analysis of turbulent transonic flows over a NACA0012 profile. International Journal
for Numerical Methods in Fluids, 76(3), 147–168.

[7] Sartor, F., Mettot, C., and Sipp, D. (2014). Stability, receptivity, and sensitivity
analyses of buffeting transonic flow over a profile. AIAA Journal.

[8] Nitzsche, J. (2009). A numerical study on aerodynamic resonance in transonic sepa-
rated flow. Proc. IFASD.

[9] Iovnovich, M. and Raveh, D. E. (2012). Reynolds-averaged Navier-Stokes study of
the shock-buffet instability mechanism. AIAA Journal, 50(4), 880–890.

[10] Thormann, R., Nitzsche, J., and Widhalm, M. (2012). Time-linearized simulation of
unsteady transonic flows with shock-induced separation. In 6th European Congress
on Computational Methods in Applied Sciences and Engineering.

[11] Rüde, U. and Schmid, W. (1995). Inverse multigrid correction for generalized eigen-
value computations. Technical Report, Universität Augsburg.

16

IFASD-2015-186

[12] Saad, Y. and Schultz, M. H. (1986). GMRes: A generalized minimal residual al-
gorithm for solving nonsymmetric linear systems. SIAM Journal on Scientific and
Statistical Computing, 7(3), 856–869.

[13] De Sturler, E. (1999). Truncation strategies for optimal krylov subspace methods.
SIAM Journal on Numerical Analysis, 36(3), 864–889.

[14] Morgan, R. B. (2002). GMRES with deflated restarting. SIAM Journal on Scientific
Computing, 24(1), 20–37.

[15] Parks, M. L., De Sturler, E., Mackey, G., et al. (2006). Recycling krylov subspaces
for sequences of linear systems. SIAM Journal on Scientific Computing, 28(5), 1651–
1674.

[16] Liesen, J. and Tichỳ, P. (2004). Convergence analysis of krylov subspace methods.
GAMM-Mitteilungen, 27(2), 153–173.

[17] Titley-Peloquin, D., Pestana, J., and Wathen, A. J. (2014). GMRES convergence
bounds that depend on the right-hand-side vector. IMA Journal of Numerical Anal-
ysis, 34(2), 462–479.

[18] McCracken, A. J., Timme, S., and Badcock, K. J. (2012). Accelerating convergence
of the CFD linear frequency domain method by a preconditioned linear solver. In 6th
European Congress on Computational Methods in Applied Sciences and Engineering.

COPYRIGHT STATEMENT

The authors confirm that they, and/or their company or organization, hold copyright on
all of the original material included in this paper. The authors also confirm that they
have obtained permission, from the copyright holder of any third party material included
in this paper, to publish it as part of their paper. The authors confirm that they give
permission, or have obtained permission from the copyright holder of this paper, for the
publication and distribution of this paper as part of the IFASD 2015 proceedings or as
individual off-prints from the proceedings.

17

IFASD-2015-186

APPENDIX A

Algorithm 1 Preconditioned GCRO-DR-R(A,x0,b,m, k, iter max, tol, U, L,Recycle)

1: r← U−1(L−1(b− Ax0)); iter← 0
2: if (Recycle=True) then % QR factorisation of recycled Yk
3: [Q,R]← QR(Yk); Ck ← Q; Uk ← YkR

−1

4: else % m Arnoldi iterations to calculate Yk
5: β ← ‖r‖; v1 ← r/β
6: for i = 1, 2, . . . ,m do
7: vi+1 ← U−1(L−1(Avi)); iter← iter + 1
8: for j = 1, 2, . . . , i do % Orthogonalisation
9: hj,i ← vHj vi+1; vi+1 ← vi+1 − hj,ivj

10: end for
11: hi+1,i ← ‖vi+1‖; vi+1 ← vi+1/hi+1,i

12: end for
13: Solve for dm that minimises ‖βe1 − H̄mdm‖
14: x← x0 + Vmdm; r← Vm+1(βe1 − H̄mdm)
15: Compute the k interior eigenvectors pi of (Hm + h2m+1,mH

−H
m emeHm)pi = θipi

16: [Q,R]← QR(H̄mPk); Ck ← Vm+1Q; Yk ← VmPk; Uk ← YkR
−1

17: end if
18: v1 ← r/‖r‖
19: for i = 1, 2, . . . , m− k do
20: vi+1 ← (I − CkCH

k)(U−1(L−1(Avi))); iter← iter + 1
21: for j = 1, 2, . . . , i do % Orthogonalisation
22: hj,i ← vHj vi+1; vi+1 ← vi+1 − hj,ivj
23: end for
24: hi+1,i ← ‖vi+1‖; vi+1 ← vi+1/hi+1,i

25: end for
26: Dk ← Diag(‖u1‖−1, ‖u2‖−1, . . . , ‖uk‖−1)
27: Bk ← CH

k (U−1(L−1(AVm−k))); Ḡm ←
[
Dk, Bk; 0, H̄m−k

]
28: V̂m ← [UkDk, Vm−k]; Ŵm+1 ← [Ck, Vm−k+1]
29: Solve for dm that minimises J(dm) := ‖ŴH

m+1r− Ḡmdm‖
30: x← x + V̂mdm; r← r− Ŵm+1Ḡmdm
31: Solve for the k interior eigenvectors pi in ḠH

mḠmpi = θḠH
mŴ

H
m+1V̂mpi

32: [Q,R]← QR(ḠmPk); Ck ← Ŵm+1Q; Yk ← V̂mPk; Uk ← YkR
−1

33: if (J(dm) < tol or iter > iter max) then
34: Yk = Uk; Terminate programme.
35: end if
36: Goto line 18

18

	Introduction
	Linearised frequency domain aerodynamics
	Solving large sparse linear systems of equations
	GMRES
	GCR
	GCRO
	GCRO-DR and GCRO-DR-R

	Results
	Calculating frequency response for an aerofoil
	Calculating shock-buffet onset for an aerofoil
	Calculating basis of reduced order model for an aircraft model

	Conclusions
	Acknowledgements
	References

