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Abstract: The increased-order modeling (IOM) approach and the related Dynresp 

aeroservoelastic simulation framework are expanded to include general frequency-domain 

sensors and generalized force feedback.  The expansion facilitates efficient applications to 

nonlinear gust-response simulations of flight vehicles while changing their wing sweep angle, 

the structural coupling between components and with flight mechanic effects that are normally 

not taken into account in common dynamic loads analyses.  The new general sensors are 

employed to express current generalized unsteady aerodynamic forces as response parameters 

during the simulations.  The responses are combined for time-domain response surfaces using 

Inverse Fast Fourier Transforms.  Interpolations in the response surfaces according to the 

prescribed sweep-angle variation allow gust response simulations while the wing sweep angle 

is changing, causing continuous changes in the aerodynamic panel model.  A modal coupling 

technique that is based on interface fictitious masses is used for defining the interface forces 

that satisfy the displacement compatibility constraints while accounting for the relative 

rotations between structural components.  The forces are applied in terms of time-domain 

changes in the generalized mass matrix.  The feedback force capabilities are used also for 

introducing flight-mechanic forces, such as induced drag, gravity effects and changes in local 

velocities due to yaw.  The new capabilities are demonstrated in two test cases: (a) dynamic 

response of an aircraft to discrete gust during changes in the wing sweep angle; and (b) 

dynamic response of a transport aircraft to continuous turbulence and maneuver commands 

with rigid-body flight mechanic effects. 

 

 

1  INTRODUCTION 
 

The calculation of aircraft loads in response to gusts and turbulence is usually separated into 

steady and dynamic contributions. These two are generally uncoupled and allow for the 

standard approach where different models and methodologies are used for each one. This paper 

deals with dynamic loads that are calculated in the industry using modal methods relying on 

linear structural and aerodynamic models (referred hereafter as the aeroelastic model).  The 

common methodology is expanded to deal with significant non-standard varying geometry and 

flight-mechanic effects and with excitation cases where the energy of the excitation lies on the 

validity boundaries of the model such as in continuous turbulence.  
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Generally speaking the linear hypothesis implies that the model geometry does not change in 

time and that forces do not follow the deformation. This means, for instance, that lift is always 

perpendicular to the initial position of the lifting surface. Continuing with the unsteady 

aerodynamic forces, they are calculated using a Doublet-Lattice method model, consisting of an 

adequate number of aerodynamic boxes. Each box generates lift perpendicular to its plane and 

a pitch moment. Forces and moments in directions other than local heave and pitch are not 

taken into account. These methodology limitations are of no importance in most problems, in 

particular in gust response where the mentioned models are considered proven, robust and 

rapid. They are designed to correctly represent the aircraft dynamic behavior up to a frequency 

of about 50 Hz, for a typical transport aircraft. 

  

The increased-order modeling (IOM) approach
1,2

, utilized in the Dynresp aeroservoelastic 

simulation code, supplement common linear frequency-domain (FD) models with time-domain 

(TD) feedback loops that simulate nonlinear effects or configuration changes.  The Dynresp 

code has been employed for various industrial loads applications with nonlinear elements.  

Among the industrial applications were dynamic loads with nonlinear control system
3
 and gust 

response of transport aircraft with free play in the elevator actuators
4
.    The procedure is 

expanded in this paper to accommodate model changes during the simulation that are 

associated with the aerodynamic geometry, with the coupling between structural components 

and with linear flight-mechanic effects that are normally not taken into account. 

 

Dynamic response simulations can be based on state-space time-domain equations, modified to 

agree with flight-mechanic coefficients obtained from other sources such as wind-tunnel 

measurements or CFD
5
.  Being based on rational approximations of the unsteady aerodynamic 

force coefficient matrices, such models are usually not compatible with common industrial 

dynamic loads procedures.  Other response simulations of morphing vehicles, such as the 

rotating wing in Ref. 6, were based on CFD.  The structural dynamic part of Ref. 6 used modal 

coupling of the separately calculated body and wing modes obtained with fictitious masses 

added at the wing-body interface degrees of freedom
7,8

.  A similar modal-coupling approach is 

used in this paper to obtain high-accuracy interface compatibility.  However, instead of a 

continuous modification of the generalized mass matrix, the nonlinear feedback loop of 

Dynresp is used for introducing the equivalent inertial forces based on sensed modal 

accelerations.   A static version of this modal coupling procedure was applied in Ref. 9.     

 

The aerodynamic changes are introduced by generating simultaneous response surfaces at 

various flight conditions.  Interpolation between the response curves and the application of 

feedback forces modify the aerodynamic forces during the simulation.  As detailed in the 

following sections, the aerodynamic response parameters are based on FD numerical sensors 

whose outputs transformed to TD using IFFT, which facilitates continuous application of 

aerodynamic force changes in the TD feedback according to current sweep angles.    

 

The new capabilities are demonstrated in two test cases: (a) dynamic response of a morphing 

aircraft to discrete gust during changes in the wing sweep angle; and (b) dynamic response of a 

transport aircraft to continuous turbulence and maneuver commands with rigid-body flight 

mechanic effects.  Dynamic loads associated with the aeroelastic response are calculated using 

the mode-displacement approach
10

 that is based on the time varying modal displacements.   

The application of fictitious masses
 
was shown in Ref. 11 to yield very accurate mode-

displacement section loads.  
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2  THE IOM PROCESS  

 

The IOM framework used in this work presents systematic methodology and computational 

tools that exploit the numerical advantages in dealing with linear systems while keeping the 

complexity of the added nonlinear elements as low as required for obtaining adequate accuracy 

in aeroelastic analysis. The model, schematically depicted in Figure 1, is based on a main 

linear block that is stable when disconnected from the nonlinear elements, and a nonlinear 

block that expresses all the nonlinearities as feedback loops.  The response calculations are 

performed in 3 stages: (a) response of the linear block with the nonlinear block disconnected; 

(b) addition of nonlinear effects using nonlinear elements and convolution integrals; and (c) 

complementary response of the linear block to inputs from the nonlinear block to generate the 

final output.   

 

 

  

Figure 1: Block Diagram of the simulation process in Dynresp 

The nonlinear block is used in our case for changing the modal coupling terms and the 

generalized aerodynamic forces when the sweep angle changes, as detailed in the following 

sections.  The input is a symmetric uniform "1-cos" vertical-gust front.    

 

The first stage is performed in the linear block in Figure 1, based on frequency-domain (FD) 

response to external excitation.  With no control system, the modal response is obtained by 

solving  

    
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where  ( )L i   is the FD modal displacements,  Gw i  is obtained by FFT of the input gust 

velocity profile   Gw t  and V is the flight velocity.   ( )A i  includes the generalized mass, 

damping, stiffness and aerodynamic matrices and q is the dynamic pressure.    hGQ i  is the 

vector of FD generalized forces due to unit-amplitude angles of attack induced by the gust 

velocity.  To allow the use of IFFT to transform the results into TD, the system has to be 

dynamically stable at the analyzed flight conditions.  The  =0 case, where  (0)A  is normally 

singular in rigid-body motion, presents a special problem that is resolved in Dynresp by either 

enforcing zero initial displacements or loads without calculating (0)L , or transforming the 

rigid-body displacements to flight-mechanic states
12

.     

 

The outputs ( )Ly i  of the main linear block in Fig. 1, which are inputs to the nonlinear block, 

can be generally expressed as         

       
 

( ) ( ) ( ) ( )
G

L L

w i
y i C i i D i

V


          (2) 

Frequency response of the displacement vectors  ( )L i   to unit  inputs  NLu i  from the 

nonlinear block are arranged in the  ( )LUx i  matrix and calculated by 

          
1

( ) ( ) ( )LU NLx i A i B i  


     (3) 

from which selected frequency-response functions ( )LUy i  of the linear output vector to unit 

inputs from the nonlinear block are calculated  by 

       ( ) ( ) ( ) ( )LU LU LU LUy i C i x i D i        (4) 

To complete the first stage and generate the interim outputs of the linear block in Figure 1, the 

linear FD responses of Eqs. (2) and (4) are transformed to TD by  

   ( ) ( )L Ly t IFFT y i                     (5) 

and  

   ( ) ( )LU LUy t IFFT y i                 (6) 

The second stage is performed in the nonlinear block of Figure 1.   The time t is set back to 

zero and a time-marching nonlinear computation of the outputs ( )NLu t  of the nonlinear block is 

performed in consecutives time steps.  The outputs  ( )Ly t  of the linear block are amended in 

each time step by the convolution integral  

      
0

( ) ( ) ( ) ( )

t

NL L LU NLy t y t y t u d    
   

(7)
 

and serve as inputs to the nonlinear functions (NLF) in the following time step 

         ( ) ( )NL NLu t NLF y t      (8) 

 

The computation process returns in the third stage to the linear block of Figure 1.  The second-

stage output  ( )NLu t  of Eq. (8) is converted to FD by FFT and the final response is calculated 

by 

        
1

( ) ( ) ( ) ( ) ( )NL L NL NLi i A i B i u i      


     (9) 

followed by  
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      ( ) ( )NL NLt IFFT i       (10) 

This final TD state response may be used for calculating any desired output that is a function 

of  ( )NLx t  within Dynresp, or exported for subsequent loads calculations. 

 

3  MODAL COUPLING WITH FICTITIOUS MASSES 

The simulation of gust response while the vehicle wings change their sweep angle is performed 

in this paper with the generalized coordinates in Eq. (1) based on separate sets of normal 

modes for the right wing and for the body-tail substructures.  Only symmetric modes of the 

body-tail unit are taken into account such that the resulting coupled motion is symmetric.  The 

separate modes are calculated with fictitious masses loading the wing-body statically 

determined interface coordinates in each substructure.  The modal coupling process formulated 

in this section sets the equations of motion, removes the fictitious-mass effects and apply 

displacement compatibility equations at the interface points to yield the coupled equations of 

motion.   

The body-tail finite-element mass and stiffness matrices,  ̅  and   ̅ , partitioned into body (B) 

and interface (I) coordinates, are used for setting the eigenvalues problems for extracting the 

separate body-tail modes  

2

( ) ( ) ( )

BB BI BB BIB B

BT B B T B
BI BIBI II F BI II

M M K K

M M M K K

       
                   

   (11) 

 

which are solved for the uncoupled low-frequency body normal modes [B] and the diagonal 

natural frequency [B] matrix. ( )B

FM contains the fictitious masses added to the 6 interface 

coordinates.   The first 3 frequencies in [B] are zero for the 3 symmetric rigid-body modes. 

Similar equations are solved for the separate wing modes and frequencies [W] and [W] that 

include 6 rigid-body modes.  In the formulation below, these body and wing modes are 

normalized to unit generalized mass.  

 

The modal equations of motion of the two substructures are first combined for a unified 

uncoupled free un-damped equation, with the fictitious masses removed,  

 

 
2

2

0 0
0

0 0

B B B B

W WWW

M

M

 



       
      

       

    (12) 

where the stiffness matrix is diagonal but the mass matrix is not, 

               ( ) ( );
T TB W

B BI F BI W WI F WIM I M M I M                

 

The modal coordinates of Eq. (12) are related to the discrete coordinates by  
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0

0

0

0

B B

IB BI B

W W W

IW WI

u

u

u

u





   
   

        
    
 

     

    (13) 

 

where the wing displacements are defined at the wing local coordinate system.  Compatibility 

between the interface displacements  IBu  and  IWu  implies the constraint equation  

 

(41)                  WI W R BI BT    

 

where  W  includes rigid and elastic modes,  ( )r

W  and  ( )e

W , and rotation transformation 

is 

 

 

cos( ) sin( ) 0 0 0 0

sin( ) cos( ) 0 0 0 0

0 0 1 cos( ) sin( ) 0

0 0 0 sin( ) cos( ) 0

0 0 0 0 0 1

RT

  
 
  
 
   
 

   
  

   (15) 

 

 

where  is the sweep angle, which is also, in our case, the rotation angle between the wing and 

body coordinate systems.   Eq. (14) implies the transformation from the uncoupled modal 

displacements to the coupled ones  

 

    hT         (16) 

 

where 

  ( )

( )

B

r

W

e

W



 



 
 

  
 
 

;           
1 1( ) ( ) ( )

0

0

r r e

WI R BI WI WI

I

T T

I

 

 
 

     
 
 

;         
( )

B

h e

W






  
  
  

   (17) 

 

The number of modal degrees of freedom is reduced as the wing rigid modes   
( )

 become 

dependent.  By the substitution of Eq. (16) in Eq. (12) and pre-multiplication by [ ] , a full 

coupled model structural equation of motion is obtained,  

 

       ( ) 0hh h hh hM K         (18) 

where  

       
2

( )2

0 0
( ) ( ) ( ) ;

0 0

T B B

hh hh e
W W

M
M T T K

M

  
       

    

         

where ( )e

W  is W  of Eq. (12), but with the 6 all-zero  rows and columns related to the rigid 

modes removed.  The modal displacements of Eq. (18) are related to the discrete displacements 

of the coupled structure by 
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 
( )

B

B

IB h e

W

W

u

u

u





 
    

    
   

 

      (19) 

where 

   
( ) ( ) ( ) ( ) 1 ( ) ( ) ( ) 1 ( )

0 0 0

0 0 0

0

B B

h BI BI

r e r r e r r e

W W W WI R BI W W WI WI

T

T 

    
   

       
              

   (20) 

 

 

Equation (18) is expanded in the following section to include damping, aerodynamic and 

excitation terms.  It can also be used for evaluating the coupling process, for which we can 

perform an eigenvalue analysis with the non-diagonal  hhM  and the diagonal  hhK  of Eq. 

(18).  It yields the natural frequencies     and the square matrix of eigenvectors   .     

and    h       can be compared to the natural frequencies and mode shapes extracted for 

the combined structure directly from the finite-element model. 

 

Eq. (18) can be written as 

        (0) ( )hh h hh h hh hM K M           (21) 

where  ( )hhM  =   ( ) (0)hh hhM M   such that the left side forms the baseline model of the 

linear block in Figure 1 and the inertial forces at the right side can be defined as feedback 

forces generated by the nonlinear block. 

 

 

4  GUST RESPONSE DURING SWEEP ANGLE CHANGE 

4.1: Linear response at 0   

The simulation of aeroelastic response to gust excitation, while the wing sweep angle changes, 

is divided in the IOM process to a linear response at 0   and the incremental response due to 

scheduled changes in  . The FD equation of motion for the linear part is Eq. (1) with (0)hhM  

and hhK  of Eq. (18), and with hhB  that reflects a uniform modal coefficient damping of 

0.01  .  The aerodynamic coefficient matrix ( )hhQ i  and gust column  hGQ i  in Eq. (1) 

are generated by an unsteady panel model (ZAERO in our case) at selected frequency values, 

and interpolated to all the frequency values required for the solution process.  The aerodynamic 

model in ZAERO is first generated for use in Eq. (1) with the aircraft geometry at 0  , with 

the respective modes (0)h  of Eq. (20).   

The aerodynamic matrices at other sweep angles are also generated in preparation for the linear 

run at several sweep angles between 0 and 60 deg. The ZAERO aerodynamic panel model at 

30deg  is shown in Figure 2. ( )hhiQ i  and  hGiQ i  are generated for the selected sweep 

angles considering the affected aerodynamic model and structural modes ( )h i  .  They are 

used in Dynresp for defining the linear outputs of Eq. (2) as 
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  

 

 

 

 

1 1
1

2 22

2

( ) ( )

( ) ( )

( ) ( )

( ) 0

L

L

L

L

h hG
hh

h hGhh

G

L

hn hhn hGn

acc

y i Q iQ i

y i Q iQ i
w i

i
V

y i Q i Q i

Iy i

 

 


 

  



    
    
    

        
    
    
        

   (22)  

such that  ( )
Lhiy i  reflects the generalized unsteady aerodynamic forces if   would change 

to 
i  and  ( )

Laccy i  is the vector of generalized accelerations.  Similarly to the aerodynamic 

matrices in Eq. (1), the FD coefficient matrices in Eq. (22) are defined at the selected 

frequency values and interpolated during the FD solution to all the frequency values at which 

Eq. (1) is solved.           

 

Figure 2: Aerodynamic model at 30deg   

Once the solution  ( )L i   and the output  ( )Ly i  are calculated, they are transformed to 

TD,  ( )L t  and  ( )Ly t , using IFFT.  In addition, the frequency response matrix  ( )LUy i  is 

calculated using Eqs. (3) and (4) with the inputs being unit-amplitude generalized forces and 

the outputs are those of Eq. (22).  IFFT of   ( )LUy i  yields the respective impulse response 

matrix  ( )LUy t  for the convolution process in the next section.      

4.2: Wing deployment effects 

The nonlinear block in Figure 1 is used for adding the effects of changing the sweep angle to 

the linear solution.  Eq. (1) is complemented with the generalized forces associated with the 

morphing process, which yields 

    
 

 ( ) ( ) ( ) ( )
G

NL h

w i
A i i B i F i

V


          (23) 

where ( )hF i  is the FD counterpart of the generalized force vector  
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          ( ) ( ) ( ) ( )
NL NLh hh acc hF t M y t q y t          (24) 

where   is a prescribed function of t. The variables in the right side of Eq. (24) are based on 

the convolution integral 

      
0

( ) ( ) ( ) ( )

t

NL L LU hy t y t y t F d         (25) 

where  ( )Ly t is detailed in Eq. (22), which indicates that the modal acceleration  ( )
NLaccy t  of 

Eq. (24) is the bottom partition of  ( )NLy t .  The generalized aerodynamic feedback  ( )
NLhy t  

of Eq. (24) is interpolated from the aerodynamic outputs of  ( )NLy t  in Eq. (25).   

The convolution process produces  ( )hF t  of Eq. (24), which is transformed at the end to FD 

using FFT.  Eq. (23) can be solved now for the final modal response by using Eq. (9) that 

becomes  

       
1

( ) ( ) ( ) ( )NL L hi i A i F i     


     (26) 

whose IFFT is used for obtaining  ( )NL t , from which other outputs of interest can be 

extracted, as discussed after Eq. (9).  

4.3: Dynamic loads 

The mode-displacement loads distribution method
10

 was used in this work to extract the net-

loads distribution on the wing 

      ( ) ( ) ( ) ( ) 2 ( )e e W e e

W W W W W F W W WF K M M                        (27) 

where ( )W

FM  is the matrix of fictitious masses at the interface coordinates, supplemented with 

zeros at all other degrees of freedom.  The coefficient matrices can be prepared from the wing 

finite-element mass of stiffness matrices and modal data before the simulation starts.  Since the 

integrated loads at the wing-body interface section should be zero when based on the free wing 

only, we can deduce from Eq. (27) that 

  

   ( ) ( ) 2 ( )W e e

Wroot F IW W WF M                     (28) 

 

 

5  NUMERICAL EXAMPLE OF VARIABLE WING SWEEP ANGLE 

 

5.1: Sweep angle change from 60 to 0 degrees 
 

Separate finite-element beam-type models were constructed for the wing and body-tail units in 

the configuration shown in Figure 2 with half-wing length of 1.5 m.  Normal modes were first 

calculated for the combined model, with the wing connected to the body at a single grid point 

in 6 degrees of freedom, and with symmetric boundary conditions applied at the center plane.  

The lowest natural frequency with =0 is 12.7 Hz of wing bending.   Fictitious masses (FM) 

were added at the connection points of the substructure models, and separate normal-modes 
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analyses were carried out in preparation for modal coupling at various sweep angles between 0 

and 60 deg.    

Previous applications of FMs
8,9 

indicated that the modal coupling results are insensitive to the 

size of the FMs, as long as the they are large enough to cause significant local deformations in 

the substructure normal modes taken into account, and not large enough to cause numerical ill 

conditioning.  To verify this feature, baseline FM set of 1.0 (Kg for translations of Kg-m
2
 for 

rotation) for all the wing interface coordinates and 10.0 for the body ones was established.  

These values are one order of magnitude smaller than the total masses of the respective 

substructures.  The stiffness and mass matrices of Eq. (18), at =0, were used for calculating 

the symmetric natural frequencies of the coupled structure using Matlab with various factors 

between 6 and 6*10
5
 multiplying the baseline set.  The resulting natural frequency of the 

coupled first-bending mode is compared in Figure 3 with the one obtained directly for the full 

ANSYS model, vs. the FM multiplication factor.  It can be observed that FM factors of 600 to 

60,000 yield similarly accurate results.  Hence the FM used in the calculations below were 

selected as 6000 for the wing and 60000 for the body.  All the errors of all the coupled natural 

frequencies up to 500 Hz were less 0.5% in the entire range of considered sweep angles.  

   

Figure 3 – Fictitious masses size sensitivity 

Gust response simulations were performed at V=200 m/sec, sea level, with a "1-cos" vertical 

gust with maximal velocity 18 m/sec. The 1-cycle gust starts at t=0.5 sec and last for T=0.077 

sec, which matches the period of the 1st wing frequency.  The wing sweep angle changes at a 

constant rate from=60 deg at t=0.5 sec to 0 deg  at t=1.5 sec.  The simulations were 

performed with 16 wing modes and 8 body modes taken into account. 

The time history of various aspects of the generalized aerodynamic force on the first bending 

mode over the entire range of possible sweep values are shown in Figure 4.  All the plots are 

for the same gust excitation and structural response. Each thin line reflects a 1st-wing-bending 

generalized aerodynamic force in the output vector  ( )NLy t  of Eq. (25) that would be applied 

if the sweep angle was fixed at a specific sweep angle.  The thick line reflects the actual 

generalized force that is interpolated from the thin-line response surface according to the 
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current sweep angle.  It starts on the =60 deg line at t=0.5 sec and slides towards the =0 deg 

at t=1.5 sec, which verifies the force feedback algorithm.  It can also be observed that the 1st 

bending response to the gust dies out in about 1 sec, and that the short-period response lasts 

much longer, as expected.  

 

Figure 4: Generalized aerodynamic force on the 1st wing bending mode 

Loads parameters right after the gust hits the vehicle in four different tscenarios are 

compared in Figure 5.  The nominal simulation at which  changes from 60 to 0 deg is 

compared to a simulation at the same conditions, but with  changing from 0 to 60 deg.  The 

cases of fixed sweep angles, with and with deg, are also shown in Figure 5.  The 

output parameters shown in Figure 5 are the wing-root net shear force, torsion moment, 

bending moment and the wing-tip vertical acceleration, all in the wing local coordinate system.  

The section loads were calculated using Eq. (28), and the tip acceleration is the last term of 

( )NLy t  in Eq. (25).  It can be observed that the short-period low-frequency response that 

dominated the aerodynamic response in Figure 4 has a minor effect on the net loads and 

accelerations in Figure 5.  It can also be observed that all the response parameters with a 

constant  have significantly larger peaks than those of  deg, but they also decay out 

faster.  This is because the lift coefficient is larger at low sweep angles, the aeroelastic effects 

have a larger effect in reducing the loads at high sweep angels, and also because of the gradual 

manner in which the gust hits the wing at high sweep angles.  The wing-root load peaks with  

changing from 60 to 0 deg are about 10% lower than those with fixed at 60 deg, and the 

peaks with  changing from 0 to 60 deg are about 10% lower than those with fixed at 0 deg. 

 

Generalized Force of the Wing's 1st bending mode

 = 0
o

 = 10
o

 = 20
o

 = 30
o

 = 40
o

 = 50
o

 = 60
o

Interpolated



IFASD-2015-183 

 

Page 12 of 17 

 

Figure 5:  Wing-root section loads and wing-tip vertical acceleration 

 

6  NUMERICAL EXAMPLE OF MANEUVER AND CONTINUOUS-GUST LOADS 

 

Continuous turbulence is described in terms of its Power Spectrum Density (PSD) by the von 

Kármán expression
13,14 

as a function of the frequency. Airworthiness regulations request the 

calculation of continuous turbulence loads making use of this spectrum with a scale of 

turbulence of 2500 ft. For a heavy transport aircraft at cruise speed, the von Kármán spectrum 

is depicted in Figure  6. It can be noted that the energy of the excitation is concentrated at low 

frequencies, well below the first elastic mode in the following example.  This means that rigid-

body modes are highly excited and that the low frequency response of the aircraft may be 

responsible for an important part of the total load.   

 

 

Figure 6: Von Kármán PSD example 
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Concerning the rigid-body modes
15

, standard aeroelastic models can not represent the 

Phugoid mode, as the flight speed is constant during the analysis. They can not accurately 

represent the Dutch Roll mode, as the contribution of in-plane motion and forces of the wing 

are not negligible. On the other hand the Short-Period mode is well represented, specially its 

frequency, although its damping prediction may be less accurate. 

 

The Dynresp code has been used to supplement the standard continuous turbulence loads 

calculations with forces modeling the effects not represented by the aeroelastic model. These 

forces depend on displacements, velocities, angles of attack and aerodynamic loads. The 

code allows for introducing a high number of sensors and control loops without being 

unpractical in terms of calculation time.  

 

The aim of this study is to assess the impact of these extra contributions on aircraft dynamic 

loads. It will be shown that they do not alter gust response loads as they only affect very low 

frequencies. The work has been focused on the response to lateral turbulence and rudder 

command.  The effects introduced are depicted in Figure 7. 
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Figure 7: Scheme of the added flight dynamic effects 

 

The following are brief descriptions of the effects in Table 7: 
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Gravity: This force is taken into account in the steady solution to which dynamic loads are 

added, but not in the dynamic loads calculation itself. However, when due to a gust or a 

control command, the aircraft rolls, the lift is no longer vertical with respect to the horizon. 

In body coordinates, gravity causes lateral acceleration in this case.  This has been 

introduced by applying, at each mass point, a lateral force proportional to the mass value and 

the roll angle. 

Yaw speed:  For an aircraft with yaw speed, the wing going into the wind increases its lift 

due to the increase of apparent speed and proportionally to the wing steady lift. To 

implement this effect, both the wing and the HTP have been split into strips, and forces have 

been applied proportional to the steady lift and the increase of speed of each strip. 

Sideslip angle on lifting surfaces:  When a lifting surface yaws, the apparent sweep angle of 

each semi-wing changes, changing in turn the local CLα
16

. If the angle of attack is constant, 

this induces a lift variation proportional to the yaw angle and the steady lift. This effect has 

also been implemented on each wing and HTP strips. 

Gust-induced angle of attack: Lift is perpendicular to the wind. During a gust, the local lift 

direction change is not taken into account in the standard methodology and is introduced 

here for each wing strip by sensing the local angle of attack. 

The impact of other effects have also been studied but resulted in negligible effects. These 

effects include propellers thrust variation with speed, drag variation due to lift changes in 

wing and VTP, and tail drag direction changes due to sideslip. 

   

The total number of feedback control loops implemented in Dynresp is 466.  The impact of 

these effects has been assessed by calculating two different responses: 

- Response to a rudder sinus-like doublet is shown in Figure 8. The subsequent aircraft 

trajectory calculated with the aeroelastic model has been compared with the one 

obtained with a six degrees of freedom non-linear flight simulator used for static and 

maneuver loads calculation. Rigid aircraft analyses have been used to facilitate the 

comparison. 

- Response to lateral continuous turbulence, expressed by the power spectral density 

(PSD) of the vertical tail plane (VTP) root bending moment is shown in Figure 9. 

Note that the number of feedback control loops may be reduced drastically by taking 

advantage of Dynresp direct generalized forces for introducing the gravity effect. Instead of 

one loop per mass, one loop per rigid body mode may be introduced, yielding similar 

results. 

 

Concerning the aircraft trajectory, the lateral translation (TY) calculated by the simulator 

(blue) tends to find a new equilibrium position, while the nominal case (red), tends to return 

to the initial position. The trajectory of the modified model (orange) replicates the simulator 

behavior.  The roll (RX) and yaw (RZ) rotation angle responses reflect the aircraft Dutch 

Roll motion. The oscillation frequency predicted by the simulator is higher than the one 

obtained in the nominal case. The effects included in the modified model augment the 

oscillation frequency and draw the model response closer to the simulator. 

  

The VTP root bending moment PSD of Figure 9 indicates that the main contribution of the 

added effects to the total load comes from frequencies below 1 Hz, and the peak corresponds 

to the Dutch-Roll mode. As indicated in Figure 8, the addition of the extra effects increases 

the Dutch-Roll frequency. Note that the peaks associated with the elastic modes remain 

unchanged. The inclusion of the extra effects not taken into account in standard lateral 

continuous turbulence calculations only affects the aircraft low-frequency response, brings 
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aircraft response closer to the actual trajectory and increases net loads on the VTP root by 

about 3%.  

 

 

 

  

 

 

Figure 8: Aircraft trajectory comparison as a response to rudder command 

 

 

 

 

Figure 9: VTP root bending moment PSD as a response to lateral continuous turbulence 
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7  CONCLUSIONS 

 

New features of the Increased-order-Modeling-based Dynresp framework facilitated the 

inclusion of direct generalized force inputs and outputs in aeroservoelastic response 

schemes.  The new output option allows the definition of common frequency-domain 

generalized aerodynamic forces as outputs of the linear model in a way that facilitates their 

modification by nonlinear feedback loops.  It led to the development of a procedure for 

obtaining dynamic loads to external excitation while the flight vehicle undergoes shape 

morphing.  Parallel generalized aerodynamic force sensors were used to create a dynamic 

response surface from which actual aerodynamic forces are extracted during the response 

simulation.  The generalized force inputs are then used to for feeding back aerodynamic 

corrections to yield adequately accurate response histories.  The process was applied to a 

flight vehicle that experiences a discrete-gust excitation while changing it wing sweep angle 

between 0 and 60 deg.  The simulation results demonstrated smooth and physically 

reasonable aerodynamic and net-load response curves during the morphing process, which 

validates the numerical process.  The generalized force feedback was also applied to apply 

the inertial forces needed in a wing-body modal coupling process that calculates the 

structural response while the coupling inertia terms are changing with the sweep angle.  

Fictitious masses added at the interface coordinates of both substructures with errors of less 

than 0.5% in the lowest 15 natural frequencies over the entire morphing range.  Increased-

order modeling has also been used to introduce terms usually neglected in continuous 

turbulence calculations that are important from flight dynamics perspective. The direct 

generalized force input has been used to reduce the number of feedback control loops. In the 

example presented, vertical tail net loads are increased by 3% due to the increase of low-

frequency response. 
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