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Abstract: The aeroelastic response of a cantilevered composite plate wing in incompressible
flow is studied. Uncertainties of the laminate ply angles are taken into account, with special
regard to desymmetrisation of the laminate by the uncertainties. The polar method is employed
for preliminary analysis as well as parameter space reduction. Arbitrary polynomial chaos is
used to decrease the number of calls to the aeroelastic solver.

1 INTRODUCTION

In aeroelastic design of aircraft structures, composite materials are employed more and more
often in order to increase their performance and to reduce their weight. These materials suf-
fer from a great number of uncertainties from various sources [1]. Studies showed that these
uncertainties affect the aeroelastic properties [2].

While there are possibilities to obtain stochastic properties from measurements on entire com-
posite layups [3, 4], a key uncertainty remains the error in the ply angles [5]. Scarth and
Cooper [6] achieved a significant breakthrough in estimating the aeroelastic response to layup
errors in symmetric laminates using lamination parameters.

In the present work, this research is extended to laminates of which the plies are desymmetrized
by the uncertainty in the layup angles. The polar method [7] is used to perform a preliminary
analysis of the composite material. Then, the uncertain material parameters are propagated to
obtain the aeroelastic response of a plate wing in incompressible flow, using a Rayleigh- Ritz
structural model combined with quasi-steady aerodynamics [8–10]. To reduce the number of
calls to the aeroelastic solver, a polynomial chaos approach is employed, taking advantage of the
reduction of the number of uncertain parameters by the polar method. As the polar parameters
are correlated, we use a Gram-Schmidt orthogonalization to construct the necessary polynomial
basis [11, 12].

2 AEROELASTIC MODEL

We consider a cantilevered composite rectangular plate wing, of which the instability behaviour
is computed using the Rayleigh-Ritz method. A scheme of the studied configuration can be
found in Fig. (1)
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Figure 1: Scheme of the studied cantilevered plate wing configuration

The Rayleigh-Ritz method is derived from the expressions for the potential and kinetic energy.
We neglect in-plane forces in this case and only take into account out-of-plane bending and
loads. The potential energy of a plate is given in that case as [6]

U =
1
2

∫ b

−b

∫ L

0
κ

T D̃κdxdy (1)

with the tensor of curvatures

κ =


−∂ 2h

∂x2

−∂ 2h
∂y2

−2 ∂ 2h
∂x∂y

 (2)

D̃ the bending stiffness matrix, b the half chord and L the half span.

The kinetic energy of the plate is given as

T =−1
2

ρd
∫ b

−b

∫ L

0

(
∂h
∂ t

)2

dxdy (3)

where d is the total thickness of the laminated plate.

Following a Rayleigh-Ritz approach, the out-of-plane displacement can be written as [8]

h(x,y, t) =
Nmodesx

∑
i=1

Nmodesy

∑
j=1

φi(x)ψ j(y)ĥi j(t) (4)

We will use the form functions for a clamped-free [CFFF] plate proposed by [8]

φi(x) =
( x

L

)i+1
,ψ j(y) =

(y
c

) j−1
(5)

These function definition is substituted into equations (1) and (3) expressions are inserted into
the Lagrangian equations
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d
dt

∂T

∂
˙̂hi j

− ∂T
∂ ĥi j

+
∂U
∂ ĥi j

=
∂ (δW )

∂ (δ ĥi j)
(6)

The virtual work is contributed by the aerodynamic lift and moment forces. For computing
them, we use the quasi-steady aerodynamic operator from [9], who give the lift and moment
terms for an infinitesimal wing section as

dL =
1
2

ρaU2caw

(
ḣ
U

+θ

)
dx (7)

dM =
1
2

ρaU2c2
[

eaw

(
ḣ
U

)
+M

θ̇

(
θ̇c
4U

)]
dx (8)

where U is the airspeed, ρa is the air density and c is the chord. aw = 2π
[
1−
( x

L

)]
is a term to

include wing tip effects. e is the nondimensional distance between the reference axis, which is
set to midchord here, and the point of attack of the lift and moment. This is 0.25 for strip theory
aerodynamics on flat plates. M

θ̇
is a term to include unsteady effects in the flow with respect to

the angular movement of the wing. [9] set it to M
θ̇
=−1.2, which we also do.

Note that the fact that this model does not account for camber, but is done for a flat plate
segment. This means we have to limit Nmodesy ≤ 2. The deflection angle θ can be deduced from
Eq. (4) via a small deflection and small angle hypothesis.

The equations can be written in matrix form as general eigenvalue problem [10]

(
I 0
0 A

)
˙̂h =

(
0 I

−(−C+E) B

)
ĥ (9)

where I is the identity matrix, A the structural inertia matrix, B the aerodynamic damping
matrix, C the aerodynamic stiffness matrix and E the structural stiffness matrix.

The system becomes unstable when the real part of the eigenvalues becomes positive, where the
behaviour is flutter when the imaginary part of the eigenvalues is non-zero.

3 THE POLAR METHOD

To obtain the polar constants, the tensor is transformed by a complex base change [13]. After-
wards, the polar components can easily computed as invariants. When this method is applied
to the plane stiffness tensor Q for any anisotropic material layer, the polar decomposition is
described as follows [14]

8T0 = Qxx−2Qxy +4Qss +Qyy (10)
8T1 = Qxx +2Qxy +Qyy (11)

8R0eı4Φ0 = Qxx +4ıQxs−2Qxy−4Qss−4ıQys +Qyy (12)

8R1eı2Φ1 = Qxx +2ıQxs +2ıQys−Qyy (13)

T0 and T1 represent the isotropic part of the stiffness, whereas R0 and R1 represent the anisotropic
behaviour. Φ0 and Φ1 denote the angles of the deviation of the material behaviour with respect
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to the reference axis. Quantities T0,T1,R0,R1 and (Φ0−Φ1) are invariants, whilst angles Φ0
and Φ1 depend on the choice of the reference frame.

The cartesian representation of the stiffness tensor can be obtained from the polar constants
as [14]

Qxx = T0 +2T1 +R0 cos(4Φ0)+4R1 cos(2Φ1) (14)
Qxy = −T0 +2T1−R0 cos(4Φ0) (15)
Qxs = R0 sin(4Φ0)+2R1 sin(2Φ1) (16)
Qyy = T0 +2T1 +R0 cos(4Φ0)−4R1 cos(2Φ1) (17)
Qys = −R0 sin(4Φ0)+2R1 sin(2Φ1) (18)
Qss = T0−R0 cos(4Φ0) (19)

Elastic symmetry Polar condition
Orthotropy Φ0−Φ1 = K π

4
R0-Orthotropy R0 = 0

Square Symmetry R1 = 0
Isotropy R0 = R1 = 0

Table 1: Conditions for elastic symmetries in terms of polar invariants [13]

As we are interested in the coupled bending behaviour of a composite plate, we will apply this
mechanism on the classical laminated plate theory. The lineic forces N and moments M are
linked to the lineic mid-plane strains ε0 and curvatures κ by the following matrix

(
N
M

)
=

(
A B
B D

)(
ε0
κ

)
(20)

where A is the membrane stiffness, D the bending stiffness and B describes the coupling be-
tween the membrane and the bending forces.

In the case considered, the plate is not subject to in-plane membrane forces (N = O). However,
the membrane stiffnesses contribute to the bending behaviour. This can be described by a
modified bending stiffness tensor

D̃ = D−BA−1B (21)

The polar formalism will be applied to this modified bending stiffness tensor, thus its polar
components are T̃0, T̃1, R̃0, R̃1,Φ̃0,Φ̃1, according to relations Eq. (10 - 13).

4 STOCHASTIC FRAMEWORK

Polynomial chaos approaches have long been used to reduce the computational cost of non-
intrusive stochastic analysis compared to the standard Monte Carlo method. However, the clas-
sical decompositions are limited to uncorrelated variables of a small number of distribution
families. Especially in the case of strong correlation, this makes it necessary to either decom-
pose the domain [15] or to decorrelate the input variables, for example by Karhunen-Loève
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decomposition [16] or Rosenblatt transformations [6]. However, these approaches require ei-
ther certain types of correlation or knowledge of the analytical form of the joint posterior CDF,
which may be tedious to compute.

In 2004, Soize presented a generalised method to derive the needed orthogonal polynomial basis
for polynomial chaos expansions [11]. Recently, it was shown that this approach can be used
with correlated input variables [12]. We will adopt this scheme in the following.

The random variables considered for the present analysis are the polar components of the bend-
ing tensor D̃

θ = {T̃0, T̃1, R̃0, R̃1,Φ̃0,Φ̃1} (22)

which gives us N = 6 random variables. Response surfaces will be generated from an orthogonal
polynomial basis of order P. Orthogonality is defined in the sense of a polynomial scalar product

∫
Θ

φi(θ)φ j(θ)p(θ)dθ = E{φi(θ)
2}δi j (23)

The M generated polynomials will then be used in the polynomial chaos representation

u(θ) =
M

∑
i=1

ûiφi(θ) (24)

The polynomial basis is generated using a Gram-Schmidt orthogonalisation process as follows
[12]

φ0(θ) = 1 (25)

φ j(θ) = e j(θ)−
j−1

∑
k=0

c jkφk(θ) (26)

where e j = {1,θ1,θ2, . . . ,θ6,θ
2
1 ,θ1θ2,θ1θ3, . . .} and the coefficients c jk are computed as

c jk =
〈e j(θ),φk(θ)〉
〈φk(θ),φk(θ)〉

(27)

〈·, ·〉 denotes a polynomial scalar product as defined in Eq. (23). The necessary integrals are
computed using Monte Carlo integration.

The expansion coefficients are fitted using least squares regression on a random set of points in
six-dimensional space.

The procedure has been validated against the test case of [12], where analytical solutions for an
example problem are given. Moreover, for a certain choice of parameters, the input becomes un-
correlated, which enables further validation of the algorithm in comparison to classical Hermite
polynomial chaos. This comparison is shown in Fig. (2)
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Figure 2: Error/Convergence of arbitrary polynomial chaos in comparison with classical Hermite polynomial chaos
as a function of the polynomial order. Test case from [12]

5 COMPOSITE BEHAVIOUR

The use of anisotropic materials means that in addition to aerodynamic coupling of the modes,
elastic mode coupling is to be expected. To be capable of interpreting the elastic contribution to
mode coupling, we examine the bending stiffness behaviour using the polar method.

For reasons of comparability, we will rely on the base material used by [6], which is an or-
thotropic layer made of unidirectional carbon fibres in an epoxy matrix. The elastic properties
are given in Tab. (2). The corresponding polar constants are given in Tab. (3).

E1[GPa] E2[GPa] G12[GPa] ν12 t[mm]
140 10 5 0.3 0.125

Table 2: Elastic moduli of base material [6]

T0[GPa] T1[GPa] R0[GPa] R1[GPa] Φ0[
◦] Φ1[

◦]
20.62 19.63 15.62 16.36 0.0 0.0

Table 3: Polar components of elastic behaviour of base material in Tab. (2)

From this base layer, layups are constructed, which again are chosen from [6]. They are given
in Tab. (4), along with the deterministic polar constants for the modified bending stiffness.

These stacking sequences are composed by 16 layers in symmetric configuration. They are thus
nominally uncoupled (B = O). In this case, D̃ = D (see Eq. (21)). From this table, we see that
for the nominal symmetric laminates, the isotropic components of the material behaviour do not
depend on the layup, whereas the anisotropic components change. Despite the regular layup
(i.e. angle-ply or quasi-isotropic orientations) of the laminates h) to j), the nominal bending
behaviour is not orthotropic, with considerable directional behaviour. this can also be seen
observing sin(4Φ0−Φ1), which can be considered as a measure of deviation from orthotropy.
Note that materials h) and i) have very similar behaviour except of the polar angles.

Next, we will introduce uncertainties to the angles of the laminate plies. As in [6], the nominal
ply angles are used as mean and the standard deviation is set to five degrees. In contrast to the
lamination parameter method presented there, the polar method does not require the laminate to
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Layup T̃0[Nm] T̃1[Nm] R̃0[Nm] R̃1[Nm] Φ̃0[
◦] Φ̃1[

◦] sin4(Φ0−Φ1)
b) [(302,−302)2]S 13.744 13.084 6.207 6.501 36.749 16.502 0.988
h) [02,902,452,−452]S 13.744 13.084 7.808 3.232 0.0 9.217 −0.6
i) [452,−452,02,902]S 13.744 13.084 7.808 3.232 45.0 35.783 0.6
j) [902,452,−452,02]S 13.744 13.084 1.9521 6.465 0.0 80.783 0.6

Table 4: Polar components of nominal bending stiffness for the test laminates with base layer from Tab. (2).

be symmetric to have the number of uncertain parameters reduced to six. Therefore, we allow
the angular uncertainties to desymmetrise the laminate, so N = 16 independent uncertainties
on the angles are considered. This is compared with a laminate where the ply angles are kept
symmetric artificially.

We first show the results for laminate b), which is designed to have stronger directional be-
haviour than the other example laminates. Gaussian kernel density estimations of the uncer-
tainty propagation are given in Fig. (3).
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Figure 3: Estimated probability density distribution of polar constants for material b) from Tab. (4) for symmetric
laminate and laminate desymmetrized by uncertainty. The vertical line shows the nominal deterministic
values.

As expected, the directional behaviour of the laminate is subject to high variation. The proper-
ties are well distributed around their nominal value.

The isotropic material properties remain constant in the case of a symmetrised laminate. When
the symmetry of the laminate is destroyed, they become also uncertain. The range of variation is,
however, still much smaller than that of the anisotropic/coupled stiffnesses. We explain this with
membrane/bending coupling setting in, furnishing stiffness against more complex movements
at the expense of stiffness against modes including only bending and torsion.

In this context, it is surprising that the range of variation of the polar parameters for coupling
is reduced when removing the symmetry constraint. This could be explained by compensation
of the random angles, where in the symmetric case, the spread of stiffness would be increased
because the plies have to move in the same direction.
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Figure 4: Estimated probability density distribution of polar constants for material h) from Tab. (4) for symmetric
laminate and laminate desymmetrized by uncertainty

For the laminate h), of which the polar property distributions are shown in Fig. (4), the spread
in the material behaviour is much smaller, which can be attributed to the more regular layup.
In contrast to laminate b), the distributions are less symmetric around the nominal bending
stiffness values. R0 is likely to decrease, whereas R1 has a tendency to increase. [6] show a risk
for instability mechanism switches for similar kinds of laminates. The difference found in the
anisotropic parameters could be an explanation for that. The cut in the distribution of the angles
comes from their definition range.
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Figure 5: Estimated probability density distribution of polar constants for material i) from Tab. (4) for symmetric
laminate and laminate desymmetrized by uncertainty

Laminate i), of which the uncertain properties are shown in Fig. (5) behaves similarly to lam-
inate h) shown in Fig. (5). The most notable difference is found in the polar angles, where
coefficient Φ0 tends to 45 degrees instead of 0. However, the difference between Φ0 and Φ1 is
identical.

8



0.0
5.0

10.0
15.0
20.0
25.0
30.0

13.4 13.6 13.8

p(
T 0
)

T0

0.0

0.5

1.0

1.5

2.0

0.0 1.0 2.0 3.0 4.0 5.0

p(
R

0)

R0

0.0

0.1

0.2

0.3

0.4

0.0 5.0 10.0 15.0 20.0

p(
Φ

0)

Φ0

0.0
5.0

10.0
15.0
20.0
25.0

12.8 13.0 13.2

p(
T 1
)

T1

0.0

0.5

1.0

1.5

2.0

4.0 5.0 6.0 7.0 8.0 9.0

p(
R

1)

R1

0.0

0.1

0.2

0.3

0.4

70.0 80.0 90.0

p(
Φ

1)

Φ1

sym. asym.

Figure 6: Estimated probability density distribution of polar constants for material j) from Tab. (4) for symmetric
laminate and laminate desymmetrized by uncertainty

Laminate j) has a similar structure as laminates h) and i), however, its polar constants reveal
quite different properties, as stated in Tab. (4). This also shows in the uncertain behaviour,
where the laminate exhibits a much higher spread in anisotropic properties. R0 has a tendency
to increase in this case, whereas R1 is distributed quite symmetrically around the nominal value.
The angular spread in Φ0 has a particularly high range of variation.

In order to illustrate the dependencies between the stochastic polar parameters, we plot in Fig.
(7) the scatter plots for laminate b).
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Figure 7: Scatter plots of selected combinations of polar parameters for laminate b)

The upper line shows an example of correlations of the polar parameters linked to the same
tensor part. The line below shows the correlations between polar parameters of the same type
for the different tensor parts. It is shown that the correlations between the polar parameters is
linked to the definition range, which itself depends on the material symmetry. Except for the
isotropic constants, the correlations between anisotropic constants of the same type are almost
linear.
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In conclusion, it has been shown that the uncertain material behaviour, especially with regard
to the spread of the anisotropic/coupled bending stiffnesses, depends very much on the chosen
layup strategy. Directional layups suffer more from the uncertainty than balanced ones. As this
kind of strategies is used heavily in aeroelastic design/tailoring to influence aeroelastic coupling,
we expect this to affect the results for the flutter velocity.

6 FLUTTER RESULTS

Now, the uncertain stiffnesses from the previous section are propagated through the model
presented in Section 2. The aeromechanical parameters are given in Tab. (5).

ρ[kg/m3] c[m] L[m] ρa[kg/m3] M
θ̇

e
1600 0.0762 0.3048 1.2574 −1.2 0.25

Table 5: Aeromechanical parameters used for computation of the flutter speed

Contrary to [6], only the flutter phenomenon is examined; thus, this study does not account for
divergence. The results for the four test laminates are shown in Fig. (8).

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

70 80 90 100 110 120 130 140 150

p(
U

f)

U f

b)

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

70 80 90 100 110 120 130 140 150

p(
U

f)

U f

h)

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

70 80 90 100 110 120 130 140 150

p(
U

f)

U f

i)

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

70 80 90 100 110 120 130 140 150

p(
U

f)

U f

j)

sym. asym.

Figure 8: Flutter results for the different laminates from Tab. (4). Uncertainties propagated by Monte Carlo Simu-
lation with 104 samples.

As could be expected from the study of the polar parameters, plate wings constructed from
laminates with higher directionality are more prone to uncertainties in the ply angles. Therefore,
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laminate b) exhibits the highest standard deviation in flutter velocity.

Changes in anisotropic bending stiffness have direct impact on the flutter speed. Most of the
uncertainty can directly be attributed to this effect. In cases where the uncertainty leads to
reduced mean anisotropic bending stiffness, as is the case for laminates h) and i), it is notable
that the mean flutter speed also has a tendency to decrease. In contrast, when the mean of the
anisotropic constants has a tendency to increase, the flutter speed also follows.

These tendencies are kept when the laminate symmetry is destroyed by the uncertainty in the ply
angles. However, the standard deviation of the flutter speed also follows the standard deviation
of the anisotropic constants and decreases.

The Monte Carlo simulation method used up to this point needs many calls to the aeroelastic
solver. For this case, these calls are cheap, but for more advanced models, a reduction in
the number of calls for the solver is desirable. We apply thus the surrogate model approach
presented in Section 4. The surrogate metamodel is constructed using 10000 samples of the
polar parameters for integration of the polynomials during the Gram-Schmidt orthogonalization.
This does not require any calls of the solver, so this step is computationally cheap. We use then
1000 Monte Carlo samples of U f obtained through the aeroelastic solver to fit the expansion
coefficients of the aPC models by ordinary least squares. As the solver is called, this step can
have a considerable cost in computation time. Finally, the aPC model is sampled to obtain an
estimation of the final probability density function.
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Figure 9: Comparison of Monte Carlo Simulation and third-order aPC results, 1000 samples for least squares
fitting of the response surface. Results are shown for desymmetrized laminates.

The comparison shown between Monte Carlo simulation and the arbitrary polynomial chaos in
Fig. (9) shows a good agreement for laminates b), i) and j). Only for laminate h), we see that the
probability distribution function is estimated too pointed. During tests, it was observed that the
convergence of the method for given polynomial order is mainly driven by two limiting factors.
First, there is the number of Monte Carlo samples used for the Gram-Schmidt orthogonalisation.
The noise of the Monte Carlo integration puts a "floor" to the precision that can be obtained.
Once this floor is reached, increasing the polynomial order further does not lead to a decrease in
error. Second, there is the number of samples used for the fitting of the expansion coefficients.
We found this number to be highly problem-dependent. The number of 1000 samples is a
worst-case scenario, some examples being reliably converged at 100 samples.

7 CONCLUSION

In this work, we studied the flutter behaviour of a cantilevered composite plate wing. The effect
of uncertainties in the ply angles were examined. We considered symmetric laminates as well as
laminates desymmetrised by the aforementioned uncertainties. We first analysed the composite
behaviour using the polar method, revealing important variations in anisotropic properties. With
the symmetry of the laminate destroyed, we also found variations in the isotropic properties,
whereas the standard deviation of the anisotropic properties decreased. The results allowed
direct conclusions regarding the flutter speed. Most notably, the critical flutter velocity was
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found to be strongly linked to the anisotropic behaviour. The decrease in standard deviation of
the anisotropic bending stiffnesses was also found in the flutter response.

A side effect of the use of the polar method is the reduction of dimensionality, which allowed
for the use of a polynomial chaos model to reduce the number of calls to the solver. To deal
with the correlation of the polar parameters, Gram-Schmidt orthogonalisation was employed in
order to construct the polynomial basis. To determine the expansion coefficients, least squares
regression was used. Despite the number of parameters is quite high, results show good agree-
ment with a Monte Carlo simulation. In comparison with the latter, the arbitrary polynomial
chaos method allowed to reduce the number of calls to the deterministic solver by at least a
factor of ten.

Further work will include studies on instability mechanism switching, as well as further im-
provements of the aPC surrogate model, including precision upgrades, reduction of the number
of calls to the solver and partitioning of the parameter space.
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