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Abstract: This paper describes the development of a new boundary-element method for
predicting the unsteady compressible flow past general configurations in subsonic flow. It
permits the actual geometry of the configuration to be represented and computes the cou-
pling between the steady and unsteady flow components. It adopts a description of the
unsteady deformation of the geometry that avoids many of the limitations inherent with
vortex- and doublet-lattice methods. The paper describes the issues that have been ad-
dressed in developing the method and, through 2D and 3D validation cases, demonstrates
advantages over some established methods.

1 INTRODUCTION

A number of well-established boundary element methods (BEM or panel methods) exist
for computing the steady compressible flow past complex configurations based on Green’s
functions for the Laplace equation after transformation of the Prandtl-Glauert equation.
Despite one of the most successful versions of the panel method being originally developed
as a particular form of a general unsteady formulation [1,2], very few methods for computing
unsteady flow about realistic geometries have followed. Notable exceptions are the time-
domain methods USAERO [3] and Eller [4], and the frequency domain versions of VSAERO
[5] and PANAIR [6].

By contrast, methods akin to the more approximate planar vortex lattice method (VLM)
for unsteady flows have thrived, in particular the doublet lattice method (DLM) [7]. More
recently, methods based on solution of the unsteady Euler and RANS equations have received
considerable attention, along with methods for the efficient utilisation of these CFD codes.
There is a gap in the spectrum of methods between DLM and full CFD.

This paper describes the development, testing and application of an unsteady version of
NEWPAN, a steady panel method that has been used extensively in aerospace, marine and
automotive applications. The purpose of developing an unsteady version of NEWPAN was
to permit rapid solutions of unsteady flow about the actual geometry preserving the ease of
use that NEWPAN has provided for steady flows.

2 FORMULATION

2.1 Core solver

The NEWPAN boundary element method for steady, compressible flows is based on the
Dirichlet formulation as described by Morino [1] extended to allow for unsteady, compressible
flows with solutions being obtained in the frequency domain.
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The fundamental approach is to represent the total velocity potential as the sum of a steady
and unsteady part and take the velocity potential as the real part of:

Φ(x, y, z, t) = φs(x, y, z) + exp(−iωt)φu(x, y, z)

Instead of just one parameter (the Mach number M , the ratio of onset flow speed U to
the undisturbed sound speed a) in steady flow, the solutions now depend on a frequency ω

through the frequency parameter k =
ωL

U
.

2.2 Compressibility correction

The Göthert Type 2 coordinate transformation has been used to reduce the second-order
spatial gradient terms so that they reduce to a Laplacian. A key issue in using this trans-
formation is that the normal to the surface in the untransformed (physical) space does not
transform to the normal to the surface in the transformed space. This means that the normal
velocity in the physical space comprises contributions from the normal and tangential veloci-
ties in the transformed space. The relative magnitude of the tangential velocity contribution
to the physical space normal velocity depends on the windward component of the normal
vector, so this effect is pronounced for blunt-nosed bodies.

2.3 Reduction to Helmholtz equation

A further transformation of the velocity potential is then performed that removes the first-
order spatial gradient from the Göthert-transformed equation and reduces the equation to a
Helmholtz equation.

The possible combinations of M and k and their interpretation in terms of the type of
solutions they correspond to are summarised in the following table where φ(x, y, z, t) is the
real part of exp(−iωt)φ(x, y, z):

M k k Equation CASE

0 0 0 (= Mk)
∂2φ

∂x2
+
∂2φ

∂y2
+
∂2φ

∂z2
= 0 Laplace (incompressible, steady and unsteady)

> 0 0 0 (= Mk) (1−M2)
∂2φ

∂x2
+
∂2φ

∂y2
+
∂2φ

∂z2
= 0 Prandtl-Glauert (compressible, steady)

0 > 0
ωL

a

∂2φ

∂x2
+
∂2φ

∂y2
+
∂2φ

∂z2
+ k

2
φ = 0 Static Helmholtz

> 0 > 0 Mk (1−M2)
∂2φ

∂x2
+
∂2φ

∂y2
+
∂2φ

∂z2
− 2ikM

∂φ

∂x
+ k

2
φ = 0 Translating Helmholtz

> 0 > 0
Mk√

1−M2

∂2φ̃

∂x2
+
∂2φ̃

∂y2
+
∂2φ̃

∂z2
+ k

2
φ̃ = 0 Transformed translating Helmholtz
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2.4 Helmholtz Solver

The final version of the transformed equation is a Helmholtz equation, as also used in acous-
tics studies. In the majority of boundary element methods for solving the Helmholtz equation
the integrals over the surface arising in the BEM formulation are evaluated using Gaussian
integration over each panel, sometimes with the use of parametric elements. This leads to
difficulties with the hyper-singular form of the integral if a Neumann formulation is used.
Here we take advantage of the fact that our discretisation is based on flat panels carrying
constant doublicity and source strength to reduce the surface integrals to edge integrals.
This has the additional advantage that as the solution procedure is based on the use of
collocation points in the panel centre the issue of hyper-singular integrals is avoided.

2.5 Spurious modes

Many acoustics studies using the boundary element method for solving the Helmholtz equa-
tion highlight the issue of ‘spurious modes’, where internal eigensolutions for thick bodies
contaminate the outer solution. In the context of a Dirichlet method this manifests itself as
internal solutions that have zero potential on the inside of the surface, but non-zero normal
velocity at the surface and vice-versa for Neumann formulations.

Two main methods are available for circumventing this problem. The first is the CHIEF [8,9]
method where additional collocation point are placed inside the body and the Dirichlet
condition of zero perturbation potential at those points is also enforced. This leads to an
over-determined equation set that is usually solved in a least-squares sense. A disadvantage
of this approach is that no guidance is available on the placing of the internal points in the
general case, and if they lie at nodal points of the solution then the method fails.

The other approach is due to Burton and Miller [10]. They prove that a linear combination
of the Dirichlet and Neumann formulation, where the two solutions are added via a complex
weighting term, will avoid the spurious solutions occurring. In simplistic terms as both the
Dirichlet (potential) and Neumann (velocity) boundary conditions are being applied both
these have to be correct value and so spurious solutions are nullified. This, of course, requires
the construction of the influence matrix for both the Dirichlet and Neumann problems but
results in the same size of square matrix as the Dirichlet problem.

The present method uses the Burton-Miller approach, as the underlying BEM method uses
Dirichlet and Neumann formulations interchangeably1 so the required influence functions are
already available. Furthermore, the Burton-Miller approach is ‘carefree’ is the sense that it
does not depend on the arbitrary selection of extra internal collocation points or knowledge
of where spurious solutions may occur.

2.6 Unsteady form of the Bernoulli equation

The general form of the Bernoulli equation for potential flow, referred to still-air axes, is:

1

2
∇Φ.∇Φ +

∂Φ

∂t
+

∫
dp

ρ
= H(t) (1)

1The Dirichlet formulation cannot be used for bodies of zero thickness, like a vortex lattice, hence we use
a hybrid method that permits the use of both thick and thin components in a configuration
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where Φ is the total velocity potential (both steady and unsteady components) and H(t) is
the total enthalpy that can vary with time but not in space. As this is expressed in an axes
system fixed in still air, and all fluid motions (and thus Φ) are assumed to decay to zero far
from the body, the value of H(t) is the constant Ho.

We may regard the total enthalpy as comprising a kinematic term:

1

2
∇Φ.∇Φ +

∂Φ

∂t

and a ‘thermodynamic’ term: ∫
dp

ρ

It is only the kinematic terms that concern us here. As we are concerned with the solution on
the (translating/deforming) surface it is convenient to work exclusively with surface values
of the velocity potential and the above Bernoulli equation has to be modified to account for
the motion of the surface. The most concise description of this effect is that the (inertial)
time derivative with inertial coordinates (X, Y, Z) fixed is related to the time derivative with
intrinsic body coordinates (ξη, ζ) fixed via:

∂

∂t

∣∣∣∣
X,Y,Z

=
∂

∂t

∣∣∣∣
ξ,η,ζ

− ~U.∇Φ

Where ~U is the inertial velocity of the point on the surface. As an example of the con-
sequences of this effect, we consider the kinematic part of the Bernoulli equation for thin
components, using the decomposition of the potential into the steady and unsteady parts
shown above. The result for the kinematic part of the unsteady pressure jump across a thin
surface is then found to be:

(−~Us +∇φs).∇(∆φu) + (−~Uu +∇φu).∇(∆φs)

where ~Us is the steady part of the body motion through the inertial space and ~Uu is the
unsteady part. The overbars denote the mean part and the ∆ are the jump terms (The
gradients implied by ∇ are therefore just taken in the surface). Note this is a product
involving the total mean tangential velocity (body motion plus perturbation) and the jump
in perturbation velocity across the surface.

The first term is the conventional term used in DLM, apart from the inclusion of the steady
velocity perturbation. We have an additional second term where ~Uu is parallel to the surface
for in-plane motions as is the term ∇φu. These are taken as a scalar product with ∇(∆φs).
In DLM there is no steady loading, so ∇(∆φs) is zero and this product vanishes. However,
for the general case these terms must be included in the pressure calculation across a thin
surface. This is a term that is important in the T-tail problem and is included naturally in
the present formulation.
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An important consequence of this treatment of the Bernoulli equation is that the conven-
tional aerodynamic influence coefficients (AICs) [11] relating pressures on the surface to the
aerodynamic downwash are not sufficient to define the loading on the surface. The case of
in-plane motions discussed above has no unsteady downwash but there is an unsteady load
induced, which the conventional AIC approach would neglect.

3 VALIDATION

Because of the special issues that arise with an unsteady compressible BEM, a large number
of test cases have been used in the development of USNEWPAN. Each tests a particular
aspect of the method as described below.

3.1 Testing of Helmholtz solver

Initial testing of the core Helmholtz solver was carried out against analytic solutions (acous-
tic scattering of a sphere, the flow induced by translating and oscillating sources inside a
translating sphere). Fig. 1 shows the analytic and computed results using the Dirichlet-only
form of the Helmholtz solver (i.e. the Burton-Miller method is not implemented) for the
scattering potential on the surface of a sphere subject to an incident acoustic wave is shown.
The frequency of the incident wave corresponds to the second eigenmode for interior waves
in a sphere. The real part of the solution is grossly in error and the error does not decrease
with increasing the number of panels. Furthermore this erroneous solution does not exhibit
any feature that would indicate it is in error if the exact solution was not known. The
eigenfrequencies for a sphere are well-known so the issue of spurious solutions can be antic-
ipated and have been used to generate this test case. Such eigenfrequencies are not easily
available for general bodies so there is a danger that incorrect solutions could be obtained
unknowingly. Fig. 2 shows results for the same case where the Burton-Miller hybrid scheme
is used and clearly shows the effectiveness of this approach.

3.2 Thick body tests

To test the calculation of pressures allowing for the motion of the body, analytic results
for the incompressible flow past an ellipsoid in arbitrary motion were derived. This rests
on the classical solution for the flow past ellipsoids described by Lamb [12]. As the flow
is incompressible and the body is non-lifting there are no history (‘circulatory’) effects in
the solution which is determined by the instantaneous motion of the body. From this an
analytic linearized solution of the flow past an ellipsoid at arbitrary incidence undergoing
small oscillations in pitch and heave was obtained2. In fact this extends work described by
Jones [14] in the 1920’s while investigating the pressures on airship hulls in turning flight.

Fig. 3 shows the real and imaginary (in/out phase) components of the pressure coefficient
on the windward generator of a pitching ellipsoid of axis ratio 4 in incompressible flow as
computed by USNEWPAN compared with the analytic solution. The agreement is excellent
showing that the treatment of the additional term in the Bernoulli equation due to body
motion has been correctly implemented.

2Geißler [13] obtained solutions for the same problem via a numerical approach and his results have been
used elsewhere to validate other methods.
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3.3 Thin Wing Validation

Given the support for thin (double sided) panels, it is possible to validate the unsteady
aerodynamic solver directly against solutions for a flat plate. Modes examined include heave,
pitch, an oscillating flap, and response to gusts.

If a subset of USNEWPAN capability is used, namely thin only and with no mean/steady
loading, then comparison may be made with the well established and popular Doublet-Lattice
Method [7]. In this case, direct comparisons with DLM were made for the three-dimensional
loading on a low aspect ratio wing, and also the two dimensional pressures and loadings at
the centreline for a high aspect ratio wing.

Figures 4 to 7 show the convergence behaviour for NEWPAN in comparison to DLM. The
case presented is an aspect ratio one rectangular wing, oscillating in pitch about its mid-
chord at a reduced frequency (based on semichord) of 2.0 and a Mach number of 0.8. This
follows the work of Rodden et al [15], who have studied DLM behaviours previously. An
implementation of DLM in use at DLR [16] was used in this comparison, which includes
the quartic approximation to the numerator of the downwash factor in the oscillatory kernel
function.

Models of the rectangular wing were prepared with differing box/panel densities, ranging
from 10 to 120. In all cases the full span wings had the same relative number of chordwise
and spanwise boxes (panels), but left/right symmetry was exploited to reduce problem size.
Hence the panel counts for DLM and NEWPAN are equal; DLM uses an equidistant spacing
hence maintains a box aspect ratio of 1.0, whereas NEWPAN uses a full-cosine distribution
over the chord and half-cosine across the semispan. Such a distribution is desirable for
NEWPAN but undesirable for DLM due to the high panel aspect ratios near the leading and
trailing edges.

Figures 4 and 5 show the the real and imaginary parts of wing lift coefficient, plotted against
1/N where N is the chordwise (and spanwise) panel density. Similarly, figures 6 and 7 show
the percentage error from the fully converged Re/Im lift coefficients, versus N . Rates of
convergence are higher, and percentage errors lower, when comparing NEWPAN to DLM.

Figures 8 and 9 show the effect on the loading at the centreline as the wing is increased in
aspect ratio, with plots of the real and imaginary parts of the centreline sectional wing lift
coefficients, respectively. The wing is oscillating in heave, at a reduced frequency (based on
semichord) of 2.0 and a Mach number of 0.8. As the aspect ratio increases, the solution
converges towards the analytic 2D solution due to Possio, although convergence of the real
part of the DLM result is less satisfactory. 40 chordwise by 20 spanwise (i.e. 800 total)
panels were used in each NEWPAN model, and 40 chordwise by 40 spanwise (i.e. 1600
total) panels in the case of DLM. Despite double the panel count wrt NEWPAN, DLM has
greater difficulty in cases with combinations of high reduced frequency and aspect ratio; this
is examined in more detail below. Results show that the choice of an aspect ratio of 20
should provide behaviour at the centreline very close to a two-dimensional result.

Two-dimensional analytic solutions, such as those due to Theodorsen and Possio [17–19],
may be used in this comparison by considering the results on the centreline of a very high
aspect ratio rectangular wing. Figures 11 to 15 show results for the sectional pressure
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distribution ∆Cp at the centreline of a thin wing of aspect ratio 20, at zero degrees mean
incidence, undergoing oscillatory motions or subject to an onset gust profile. NEWPAN
results are compared to those generated by DLM, and also to the 2D results from a code
solving Possio’s integral equation [20]. These cases are for a Mach number of 0.6 and a
reduced frequency (based on semichord) of 1.0.

Efforts were made to ensure that the chordwise and spanwise panel densities met or exceeded
the guideline minimums established by Rodden and others [15,21] for DLM (with a quartic
kernel approximation). For example, 20 boxes chordwise give 63 boxes per wavelength, and
40 boxes (semi-)spanwise give a box aspect ratio of 5. This gives a total number of boxes of
800. The NEWPAN equivalent models also used 800 panels. NEWPAN does not suffer from
panel aspect ratio constraints to anything like the same degree as DLM, and optimum results
on a thin wing are generally obtained by using a full-cosine distribution (bunched at leading
and trailing edges) in the chordwise direction, with a half-cosine distribution (bunched at the
tip) in the spanwise direction. This gives a maximum panel aspect ratio for this model of 510;
NEWPAN models with panel aspect ratios in the several thousands present no difficulties.

It is useful, due to the presence of the leading edge singularity, to plot a transformed form

of the pressure distribution i.e.

√
x− xLE

c
∆Cp rather than raw ∆Cp. This produces plots

with finite ranges where the differences between results are more readily apparent.

Figure 10 shows results for an oscillatory flap mode, with a hingeline at x/c = 0.8. NEWPAN
results follow the Possio results very closely. For the flap mode only, Possio results suffer
from a degree of waviness. DLM results are less good.

In an effort to improve the DLM results, the DLM model was refined further, to 40 boxes
chordwise and 60 boxes spanwise and hence 2400 boxes total. These values translate into
126 boxes per wavelength, and a box aspect ratio of 6.66. The corresponding DLM results
are shown in figure 11; USNEWPAN results are superior to refined DLM results, using a
third of the number of panels.

USNEWPAN execution time for this case on a modern desktop PC, taking advantage of
the multi-core CPU, was 12 seconds for results for the flap mode, or 13 seconds for a full
AIC. DLM execution time to compute the AIC was 40 seconds at the higher density, and 5
seconds at the lower density. Possio run time was 12 seconds. All run times are indicative
only.

For the remaining modes, the denser 2400 box models were used for the DLM, with 800
panels for the NEWPAN models.

Figure 12 shows results for centreline pressures for the wing undergoing a heaving motion,
while figure 13 shows the corresponding results for the response to a sinusoidal vertical gust,
also of frequency k = 1 (based on semichord).

The results for centreline pressures for the wing undergoing a pitching oscillation about
midchord are given in figure 14, again at k = 1.0.

Figure 15 also shows results for pitch, but at a higher frequency of k=4. This case demon-
strates the constraints that DLM suffers from when modelling high aspect ratio wings at
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high reduced frequency. The wavelength is now π/4, hence DLM requires a minimum 64
chordwise panels to achieve 50 boxes per wavelength. Likewise 64 boxes will be required
across the semispan to achieve a maximum box aspect ratio of 10. Hence the DLM model
has been run with 4096 boxes, in contrast to the NEWPAN model which still has 800 panels;
the smaller (and faster) NEWPAN model returns notably better results.

3.4 The Effect of Thickness and Mean Incidence

The formulation of the method allows direct comparison of thin and thick wing results
within the same solver. For thick wings, USNEWPAN returns surface pressures, i.e. Cp per
panel/vertex. For thin wings, USNEWPAN can return distinct Cp values for both the top
and bottom of the panel/vertex, in addition to the ∆Cp jump. Chordwise integration of the
sectional centreline pressures gives the sectional lift coefficients presented here.

Figure 16 shows the effect of wing thickness on the lift coefficient of a high AR wing pitching
about its midchord. Each line shows the variation in Real vs. Imaginary Cl as the reduced
frequency increases (in the clockwise direction) in the range 0.1 to 4.0, at a Mach number of
0.6. The zero thickness flat plate result is compared to those from wings of a NACA 4-series
basic thickness form, scaled to 6% and 12% thickness to chord ratio. The magnitude and
effect of thickness across the range of reduced frequencies is demonstrated.

Figure 16 also shows the effect of increasing the mean, steady incidence. Steady loading
affects the unsteady perturbation significantly, as shown by the effect of a 15 degree incidence
applied to the thin wing.

3.5 LANN wing

The LANN wing is Dataset 9 from the AGARD compendium of unsteady aerodynamic
measurements [22,23]. This is an isolated wing of aspect ratio 8, with a leading edge sweep
of 28 degrees, with a 12% thick supercritical aerofoil profile. It was tested in a wind tunnel
in steady flow and in additional tests with the wing undergoing a pitch oscillation about a
spanwise axis running through the 62.1% root chord location. Experimental data is available
in the Mach range 0.6 to 0.95.

Results from run number 22 are presented here, with a mean incidence of 0.6 degrees, Mach
number 0.621 and a reduced frequency based on (full) root chord of 0.266.

Comparisons with results from the Euler code EUVISC [24] are also shown.

Fig. 17 shows the wing planform, with three spanwise stations shown at 20%, 47.5% and
82.5% semispan. Steady and unsteady results are presented for each of these three spanwise
stations in turn in Figures 18, 19 and 20. In the first plot at each station, steady pressures
from NEWPAN and EUVISC are compared with experiment. Also shown are the M = 0
incompressible NEWPAN results, to demonstrate the effects of compressibility. Results are
excellent over the majority of the chord; errors at the suction peak are due to near sonic
local Mach number and at the trailing edge are due to local modification of the profile for
EUVISC and NEWPAN results to provide a thin trailing edge. The other two plots at each
spanwise station show the real and imaginary parts of the unsteady pressures per unit pitch
amplitude. Experimental results for the imaginary part (especially near the tip) are seen to
be too noisy to make firm comparisons with experiment.
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4 NEWPAN IMPLEMENTATION

NEWPAN/USNEWPAN provides a modern implementation of a boundary element method,
written in C++ with object-oriented design, dynamic memory allocation, and shared mem-
ory multi-threading using OpenMP.

Given the dependence of unsteady loads on the mean flow, the first stage of an analysis is
the computation of the steady solution (e.g. about the trimmed configuration with static
aeroelastic deformation). The oscillatory unsteady solution proceeds as a perturbation to
the full steady solution. The modelling flexibility of mixed thin and thick, structured and
unstructured patches is available throughout. The unsteady solution may be for specified
mode(s), or a complete AIC generated. Modal calculations can be requested for an arbitrary
input vector of vertex deflections. Rigid body modes are supported directly. Control surfaces
are defined via their geometry (hinge line and surface extents) in a panel independent fashion,
allowing control modes to be generated. Multiple Mach numbers and reduced frequencies
can be requested during a single run.

The AIC matrices are stored to an HDF5 dataset (Hierarchical Data Format). This provides
a powerful and convenient method of storing platform neutral binary data, with API’s freely
available for all common scientific programming languages such as C++, FORTRAN, Python
and MATLAB.

The AIC dataset provides all the matrices required to generate vertex-based force output
directly from any set of modal vertex-based deformations. Gust velocities and velocities
due to manoeuvre are also supported as input, and both panel-based and vertex-based
Cp’s can be output. In general the AIC matrices are complex, but solutions at a reduced
frequency of zero are also supported and lead to real-only matrices for use in quasi-steady
and static aeroelastic cases. The core AIC matrices are fully populated (number of panels
squared) and are specific to M ,k and steady trim. However some of the stencil matrices (e.g.
velocity potential to pressure coefficient) are sparse and are stored efficiently using COO
format. Furthermore, the contributions due to surface motion can be stored in a frequency
independent fashion, giving significant savings in storage requirements for AIC’s covering a
large range of reduced frequencies.

Previous work with USNEWPAN has also included support for the direct export of a NAS-
TRAN external aerodynamic database for use with a NASTRAN (SOL=145) input for flut-
ter calculations. Export to the NASTRAN database is performed via calls to the NastAero
library, implemented via the MSC.Nastran toolkit [11].

A NASTRAN coupled calculation has been performed on a complete Freedom 4 (FR-4) gen-
eral aviation aircraft configuration. A trim calculation was performed for a cruise condition,
and AIC’s exported to the NASTRAN database. The USNEWPAN derived aerodynamic
AIC’s were then used to perform a flutter calculation.

Figure 21 shows the FR-4 configuration, complete with instantaneous pressures at sections
through port and starboard tailplane due to a fuselage torsional mode, at different times
during the oscillatory cycle. Visualisation within the VIEWPAN post-processor enables
animation through the cycle, and the display of sectional pressure distributions as 2D plots
referenced within the 3D view.

9



IFASD-2015-181

5 CONCLUSION

A new boundary element method for unsteady, subsonic compressible flow past realistic ge-
ometries has been described. Fundamental issues of the possibility of spurious solutions,
careful treatment of the Bernoulli equation for moving surfaces and the avoidance of the
problem of hyper-singular integrals have been addressed. Comparison of the method with
results from analytic test cases show excellent agreement and comparisons with earlier nu-
merical methods show marked improvement in convergence behaviour.

The inadequacy of conventional AIC matrices solely relating pressures to the normal wash
has been discussed. The present formulation captures the terms associated with body motion
and steady loading. The implementation described enables generation of vertex based forces
directly from vertex based deformations, or velocities due to gusts or manoeuvre.
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Figure 1: Acoustic scattering: Dirichlet only Figure 2: Acoustic scattering: Burton-Miller

Figure 3: Pitching ellipsoid; a/b = 4
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Figure 5: AR = 1 Wing : Convergence
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Figure 6: Real Part of CL : Error level
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Figure 7: Imaginary Part of CL : Error level
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Figure 8: Wing Heave: Varying AR
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Figure 9: Wing Heave: Varying AR

Figure 10: Flap Mode: Centreline Cp Figure 11: Flap Mode: 2400 DLM boxes
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Figure 12: Heave Mode: Centreline Cp Figure 13: Centreline Cp due to vertical gust

Figure 14: Pitch Mode, k = 1: Centreline Cp Figure 15: Pitch Mode, k = 4: Centreline Cp
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Figure 17: LANN Wing: Sections at η = 0.2, 0.475, 0.825
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Figure 18: LANN Wing η = 0.200
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Figure 19: LANN Wing η = 0.475

-1

-0.5

 0

 0.5

 1
 0  0.2  0.4  0.6  0.8  1

C
p

x/c

α = 0.6°,  M = 0.62,  η = 0.825

NEWPAN M=0
NEWPAN M=0.62

EUVISC
LANN Expt

-20

-15

-10

-5

 0

 5

 10

 15
 0  0.2  0.4  0.6  0.8  1

C
p
(R

e
)

x/c

k = 0.266,  α = 0.6°,  M = 0.62,  η = 0.825

NEWPAN M=0
NEWPAN M=0.62

EUVISC
LANN Expt

-5

-4

-3

-2

-1

 0

 1

 0  0.2  0.4  0.6  0.8  1

C
p
(I

m
)

x/c

k = 0.266,  α = 0.6°,  M = 0.62,  η = 0.825

NEWPAN M=0
NEWPAN M=0.62

EUVISC
LANN Expt Upper
LANN Expt Lower

Figure 20: LANN Wing η = 0.825
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Figure 21: FR-4 GA Aircraft Flutter
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