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Abstract: Aeroelastic limit-cycle oscillations due to aerodynamic non-linearities are
usually investigated using coupled fluid-structure interaction simulations in the time do-
main. These simulations can become computationally expensive, especially if the global
bifurcation behaviour is of interest. To reduce the computational effort of parameter
studies, an extension of the well-known p-k method is developed. In this frequency do-
main method, the aerodynamic forces and moments are now not only dependent on the
frequency, but also on the oscillation amplitudes and the phase angle between the degrees
of freedom. The first harmonic components of the aerodynamic forces are interpolated
in the parameter space applying response surface modelling. The limit-cycle oscillation
amplitude and mode shape are then found iteratively. The amplitude-dependent p-k
method is verified and validated using an analytical testcase; the two-degree-of-freedom
van der Pol oscillator. Excellent agreement with the time domain solution and the an-
alytical solution is obtained. The amplitude-dependent p-k method is then applied to
a two-degree-of-freedom airfoil system where the aerodynamic forces are computed from
Euler simulations. Fluid-structure interaction simulations are performed for validation
of the method. Both methods show good agreement in the bifurcation behaviour of the
limit-cycle oscillation amplitude and mode shape.

1 INTRODUCTION

Limit-cycle oscillations (LCOs) are non-linear instabilities of an aeroelastic system. In
contrast to classical flutter, the amplitude of an LCO does not grow unbounded, but
remains constant due to the presence of a non-linearity. Limit-cycle oscillations are caused
by either structural or aerodynamic non-linearities or a combination of both. Although
their effect might not be immediately detrimental, as in the case of classical flutter, they
can lead to fatigue of the aircraft’s wings on the long term. In other words, if flutter is
tolerated, because an LCO of small amplitude occurs at freestream velocities larger than
the critical flutter speed, the flutter problem turns into a fatigue problem. Furthermore,
the aeroelastic system might become unstable already at velocities lower than the critical
flutter speed, i.e. limit-cycle oscillations might appear below the (linear) flutter boundary.
Linear theory, however, which is used to predict classical flutter, fails to predict these
instabilities.
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Several researchers [1–4] have studied the limit-cycle oscillations that occur on the F-16
aircraft if external stores are applied. The driving mechanism of these LCOs has not
been established yet, due the complicated non-linear behaviour. Aerodynamic sources of
non-linearity are thought to be related to shock wave dynamics, flow separation and/or
boundary layer transition. However, analysing the aerodynamic sources in detail is diffi-
cult by the use of numerical simulations, because of the high computational costs involved
in coupled fluid-structure interaction (FSI) simulations in the time domain. Moreover,
time domain simulations are not suited for detailed investigations into the bifurcation
behaviour of LCOs. Unstable LCOs, for example, cannot be found using time domain
simulations.

To ease the investigations into the behaviour of LCOs several alternative methods are used,
such as the harmonic balance method [5]. Recently neural networks have also been applied
to analyse limit-cycle oscillations with limited success ( [6–8]). Another approach is to
adapt the p-k-method, well-known in the context of a classical flutter analysis. Ueda et
al. [9] first applied an adapted version of the p-k method in combination with the transonic
small disturbance equations for predicting LCOs. They developed an extended non-linear
indicial approach for modelling the aerodynamic forces. Thereby it was assumed that the
frequency of the oscillation is low. The non-linear functions describing the aerodynamic
forces were superposed. Good agreement with time domain simulations was obtained
for small amplitude LCOs (< 0.5◦). He et al. [10] recently applied a similar extended
version of the p-k method, where superposition of the aerodynamic forces is also applied.
Computational Fluid Dynamics (CFD) was used to compute the aerodynamic forces and
hence the low frequency assumption is dropped compared to Ueda et al. [9]. The method
of He et al. [10] was successful if the non-linearity is weak. However, for stronger non-
linearities, deviations compared to other methods (time domain, harmonic balance) are
present.

In contrast to the methods of Ueda et al. [9] and He et al. [10], in this work an adapted
p-k method is presented in which the amplitude dependency of the aerodynamic forces is
taken into account directly by the use of harmonic forced motion oscillations. Hence, no
superposition of the aerodynamic forces is applied. The LCO is assumed to oscillate with
its first fundamental frequency (as in [9, 10]), i.e. the higher order harmonic components
of the LCO and the aerodynamic forces are neglected. The results of the adapted p-k
method are compared to time domain simulations results. Before applying the amplitude-
dependent p-k method to a CFD testcase, it is verified for an analytical testcase; a two-
degree-of-freedom (DOF) van der Pol-oscillator [11] system. Afterwards the method is
applied to a two DOF pitch/plunge airfoil system.

Section 2 describes the amplitude-dependent p-k method, the CFD code and the time
domain method used as a reference. Then, the results of amplitude-dependent p-k method
are shown and discussed in section 3 for the two DOF van der Pol-oscillator and the two
DOF airfoil system. Finally, conclusions are drawn.

2 METHODS

In this work two methods have been applied, a time domain and a frequency domain
method. The frequency domain method used here is an extension of the well-known p-k
method used for flutter computations. In the time domain fluid-structure coupling has
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been applied for validation of the frequency domain method. This section first describes
the aeroelastic systems considered in this work, then both methods will be presented.

2.1 van der Pol-oscillator

The van der Pol-oscillator is a classical example of a system with a non-linear damping
force and serves here as a model for non-linear aerodynamic forces. The standard van der
Pol oscillator with one degree of freedom has been extended to two degrees of freedom.
Furthermore, the non-linear damping force has been extended with a fourth order term.
The equations of motion are given by:

M~̈x+K~x = ǫ

[

µ− a1x
2
1 − b1x

4
1 µ− a2x

2
1

µ− a3x
2
2 µ− a4x

2
2 − b2x

4
2

] [

ẋ1

ẋ2

]

(1)

where ~x = [x1, x2]
T is now a vector with the displacements of the two degrees of freedom

and a1, a2, a3, a4, b1 and b2 are constants. M and K are the mass and stiffness matrices,
respectively and ǫ is a damping coefficient used to scale the damping.

2.2 Two degree-of-freedom airfoil system

The aeroelastic system considered in this work is an airfoil with two degrees of freedom;
pitch and plunge. A sketch of this aeroelastic system is shown in Figure 1. The equations
of motion of the system are given by:

[

m Sα

Sα Iα

] [

ḧ
α̈

]

+

[

dh 0
0 dα

] [

ḣ
α̇

]

+

[
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0 kα

] [

h
α

]

=

[

−L
M

]

(2)

where m is the mass, Iα the mass moment of inertia, Sα the static moment, kh the plunge
stiffness, kα the torsional stiffness, dh is the plunge damping and dα is the torsional
damping. The aerodynamic force vector ~f consists of the aerodynamic lift L and the
moment M . The vertical displacement is denoted by h and the angle of attack by α. The
airfoil used in this work is the NLR7301 airfoil. This airfoil has been used for various
wind tunnel tests [12–16] and numerical investigations [17–27].

Figure 1: Sketch of the airfoil model with two degrees of freedom
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2.3 CFD code and set-up

The aerodynamic lift and moment are determined using the DLR TAU-code [28] in its
Euler mode. This Computational-Fluid Dynamics (CFD) code is a finite-volume, cell-
vertex-based, unstructured solver for both the Reynolds-Averaged Navier-Stokes and the
Euler equations. For spatial discretisation a 2nd order central scheme [29] is used. Tem-
poral discretisation is realised by dual time stepping [30] with the 2nd order accurate
Backward Differencing Formula (BDF2) integration scheme for the physical time.

The airfoil used in this study is the supercritical NLR7301 airfoil with a blunt trailing
edge [31]. Its design Mach number is 0.72 and its design lift coefficient is 0.60. The
unstructured O-type mesh used for all CFD simulations has 1135 points. The farfield
boundary has been placed 100 chord lengths away from the airfoil, in order to avoid that
reflections falsify the low frequency responses. The time step size used for all unsteady
simulations is 1 · 10−4 s. This time step size was found to give time step size independent
results in a previous study [32].

2.4 Time domain

2.4.1 Fluid-structure coupling

Limit-cycle oscillations are computed in the time domain using fluid-structure coupling.
The time integration is performed using a BDF2 integration scheme. The coupling is
partitioned, however, it is strong. The forces and displacements are exchanged between
the CFD solver and the equation-of-motion solver at each pseudo time step. In order
words, at a certain time step, the forces of the previous physical or pseudo time step are
used to compute the new structural displacements. These are then fed back to the CFD
code to compute the new aerodynamic forces at the current pseudo time step, which then
lead to new displacements. These are again fed back to the CFD code. This process is
repeated for each pseudo time step until an equilibrium is established at a certain time
step. Then the solver advances to the next time step. In order to obtain the desired mean
angle of attack, the airfoil is “trimmed” at a certain angle of attack by subtracting the
static aerodynamic forces and (mean) angle of attack.

2.4.2 Harmonic forced motion oscillation simulations

Harmonic forced motion oscillation simulations are performed to obtain the frequency
response function (FRF), or the describing function (DF) in the non-linear case, of the
aerodynamic forces. The airfoil performs a harmonic motion, this can be either a pitching
motion, a plunging motion or a combination of both. Equations (3) and (4) represent the
time signal of the angle of attack α and the vertical position h.

h (t) = ∆h · sin (ωt+∆φ) (3)

α (t) = ∆α · sin (ωt) (4)

In equations (3) and (4), ∆α is the pitch amplitude and ∆h is the plunge amplitude.
The phase difference between both degrees of freedom is denoted by ∆φ. In contrast
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to the linear case, in which the principle of superposition can be used to compute a
combined pitch/plunge response, in the non-linear case both motions need to be simulated
simultaneously to account for non-linear higher order coupling terms. Furthermore, the
amplitudes of the both pitch and plunge as well as the phase difference between both
motions need to be taken into account. Hence, the outcome of the harmonic forced
motion oscillations described here, is not a describing function in the classical sense, since
the lift and moment are not only dependent on the frequency and the amplitude, but also
on the complex amplitude ratio between the degrees of freedom.

In the amplitude-dependent p-k method, only the first harmonics of the motion and the
aerodynamic response are taken into account. Although there are significant higher har-
monics in the aerodynamic response, the work they perform on the airfoil is negligible,
since the higher harmonics in the motion of the structure are very small compared to
the first harmonic component (see [33]). Furthermore, the higher harmonics in the aero-
dynamic response do not perform work on the first harmonic of the structural motion.
Therefore, taking into account the first harmonics of the aerodynamic forces is sufficient
if the LCO is (almost) first harmonic. If the LCO has significant higher order components
it is expected that the amplitude-dependent p-k method will fail to predict the correct
LCO amplitude. However, these LCOs were not observed from CFD simulations and
experiments with aerodynamic non-linearities only [13, 15, 16, 32, 33].

2.5 Frequency domain

The conventional p-k method, developed by Hassig [34], as used for classical flutter com-
putations cannot be used for predicting the occurrence of limit-cycle oscillations. At least
not in its original form, since the aerodynamic forces are no longer a linear function of
the displacements. In the extended p-k method a harmonic solution to the equations of
motion (2) of the form:

~x = ~̂xept, (5)

is assumed similar to the conventional p-k method. Here ~̂x indicates the complex-valued
eigenvector and p is a complex-valued eigenvalue, defined by:

p = δ + iω, (6)

where δ is the damping and ω the angular frequency. The non-dimensional reduced
frequency k is computed from the angular frequency via k = ωc/U∞. For the aerodynamic
response of the system only the first harmonic component is considered, since the other
harmonics are not of interest (as explained in section 2.4), i.e.:

~f =
~̂
feiωt =

~̂
fei

kU∞

c
t (7)

where
~̂
f is the complex amplitude vector of the aerodynamic force. Substituting the

assumed solution (equations (5) till (7)) into the equations of motion (equation (2)) yields:
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p2M~̂x+ pD~̂x+K~̂x =
~̂
f
(

k, ~̂x
)

. (8)

Now in the conventional p-k method the right-hand side vector is written as a Generalised
Airforce (GAF)-matrix times the eigenvector. In case of an LCO, this is no longer possible,
since the amplitude-dependency of the aerodynamic forces needs to be taken into account.
The aerodynamic force vector is now not only a non-linear function of the frequency, but
also a non-linear function of the mode shape, that is, of the amplitudes of both degrees
of freedom and the complex amplitude ratio. Therefore, ~̂x is now called the mode shape
vector and equation (8) needs to be solved iteratively using Newton’s method for example.

In order to uniquely determine the mode shape vector ~̂x one of the amplitudes (either
pitch or plunge) is pre-set. The mode shape vector then becomes:

~̂x =

[

∆h
∆α

· e(∆φ · i)

1

]

·∆α. (9)

Then equation (8) is solved for two unknowns: the complex eigenvalue p and the complex
amplitude ratio ∆h

∆α
· e(∆φ · i). This is done for each pre-set amplitude (∆α or ∆h, here

∆α has been used). Since the force vector depends on the frequency and on the mode
shape, the equations of motion need to be solved iteratively. Hence, similarly as for the
conventional p-k method the following steps are performed:

1. Choose a certain reduced frequency k and mode shape vector ~̂x (i.e. a complex
amplitude ratio ∆h

∆α
· e(∆φ · i))

2. Compute the aerodynamic force vector at this frequency and mode shape (by inter-
polation)

3. Solve the system of equations (8) for p and ~̂x

4. Take new k = ℑ(p) and ~̂x = [∆h
∆α

· e(∆φ · i), 1]T ·∆α
5. Iterate until converged

This procedure is repeated for each pre-set amplitude ∆α. The amplitude ∆α at which the
damping is zero is the LCO amplitude. The other LCO properties (plunge amplitude ∆h,
amplitude ratio (∆h/c)/∆α and the phase difference ∆φ) are determined from the mode

shape vector ~̂x and the reduced frequency is determined from p. Figure 2 schematically
presents the possible damping curves that result from a computation with the amplitude-
dependent p-k method. The pre-set amplitude is depicted on the horizontal axis. Positive
damping indicates a motion growing in amplitude, negative damping indicates a motion
decaying in amplitude. The blue curve shows a positive damping at low amplitudes,
then the damping becomes negative with increasing amplitude. The LCO that occurs at
zero damping is stable, it is an attractor. The red curve shows two intersections with
the horizontal axis. One from negative to positive damping and one from positive to
negative damping with increasing amplitude, i.e. an unstable and a stable LCO occur.
The unstable LCO is a repeller as indicated by the arrows.
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Figure 2: Sketch of damping versus amplitude

The amplitude-dependent p-k method as described here can be used to determine the
LCO amplitude when the describing function is known as a function of the frequency,
pitch amplitude, plunge amplitude and the phase difference between pitch and plunge. In
order to determine the aerodynamic lift and moment at each combination of amplitudes,
frequency and phase difference, a so-called response surface is built using harmonic forced
motion CFD simulations. Interpolation on this response surface is then applied during
the iterations of the amplitude-dependent p-k method.

The harmonic forced motion oscillation simulations are uniformly spaced in all four di-
mensions (reduced frequency, amplitude ratio, phase difference, pitch amplitude). For
interpolation the Matlab-toolbox DACE [35] has been used. Using this toolbox simple
Kriging has been applied. In Kriging, the model for an unpredicted site consists of the
sum of a regression model and a random process. In simple Kriging the regression model
is just a constant. The random process is assumed to have a zero mean. The covariance
of the random process is modelled using a so-called correlation function. In this work
two correlation functions were used: the linear and the spline correlation functions. More
details on Kriging can be found in [36].

3 RESULTS AND DISCUSSION

This section shows the results obtained from the amplitude-dependent p-k method. The
results are validated using FSI simulations. First, the results of the van der Pol-oscillator
testcase are shown and discussed. Then the results of the two-degree-of-freedom airfoil
system are shown and discussed.

3.1 van der Pol-oscillator

The equations of motion of the two-degree-of-freedom van der Pol system are given in
equation (1). These equations can be solved either in the time domain or in the frequency
domain. When the non-linear damping force vector is reduced to a non-linear damping
force in the first (or second) DOF only, an analytical solution is available. Therefore, for
validations purposes, the coefficients a2, a3, a4, b1 and b2 have been set to zero. The other
coefficients have been taken as follows: ǫ = 0.02, a1 = 0.3. The mass matrix has been set
to the identity matrix and the stiffness matrix is defined as:
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K =

[

20 −10
−10 10

]

(10)

The analytical solution for the LCO amplitude can be computed using the principle of en-
ergy conservation. Since the non-linear damping force is only present in the first equation,
the LCO amplitude of the other degree of freedom is computed using the absolute value
of the complex amplitude ratio. Equations (11) and (12) present the analytical solution
to equation (1).

∆x1 =

∣

∣

∣

∣

∆x1

∆x2
· ei∆φ

∣

∣

∣

∣

· 2

√

µ

a1
(11)

∆x2 = 2

√

µ

a1
(12)

The amplitude-dependent p-k method has been used to study the bifurcation behaviour
of the 2 DOF van der Pol oscillator by varying the parameter µ. Two unstable modes
were observed from all methods, one at an angular frequency of 1.95 rad/s and one at an
angular velocity of 5.14 rad/s. In Figure 3 the LCO amplitude is plotted as a function of
µ. The symbols show the LCO amplitude as obtained from the amplitude-dependent p-k
method, whereas the dashed lines show the analytical solution. ∆x1 and ∆x2 represent the
amplitudes of the first and second degree of freedom, respectively. The red pentagrams and
green hexagrams show the time domain results, for the first and second DOF, respectively.
Matlab’s ode45 solver has been used to obtained these time domain results.
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(a) Mode 1: ω = 1.95 rad/s
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Figure 3: Bifurcation diagrams of the two degree-of-freedom van der Pol oscillator system (ǫ = 0.02,
a1 = 0.3 and a2 = a3 = a4 = b1 = b2 = 0)

The LCO amplitude increases with increasing bifurcation parameter µ, i.e. a supercritical
bifurcation of the LCO amplitude occurs. Furthermore, excellent agreement is observed
between the analytical, time domain and the frequency domain solutions. Hence, the
amplitude-dependent p-k method can be used to estimate the LCO amplitude and the
LCO mode shape.
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The influence of a fourth order non-linear damping term in the van der Pol oscillator
system has been investigated. The following values for the coefficients a2 till b2 have
been used: ǫ = 0.002, a1 = −6, a2 = −2, a3 = −1, a4 = −4, b1 = 0.25 and b2 = 0.5.
Solving equation 1 a subcritical bifurcation is obtained, see Figure 4. Again both modes
become unstable. Mode 1 has an angular frequency of 1.96 rad/s and mode 2 an angular
frequency of 5.12 rad/s. The red pentagrams and green hexagrams in Figure 4(a) show
the time domain results. The second mode was not found from time domain simulations.
The black arrows in Figure 4(a) indicate path that is followed when µ is changed.
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(b) Mode 2: ω = 5.12 rad/s

Figure 4: Bifurcation diagrams of the two degree-of-freedom van der Pol oscillator system (ǫ = 0.002,
a1 = −6, a2 = −2, a3 = −1, a4 = −4, b1 = 0.25 and b2 = 0.5)

From Figure 4 it is observed that for both modes a subcritical bifurcation occurs, i.e. for
values of µ smaller than zero two LCOs exist, a stable and an unstable. For µ larger than
zero, only one LCO exists, a stable LCO. The blue arrows indicate that the stable LCO is
an attractor, whereas the unstable LCO is a repeller. This repellor can in principle not be
found from time domain simulations. For validation purposes, it has been determined here
by reversing the sign of the non-linear damping term in the time domain computations.

3.2 2 DOF airfoil system

The amplitude-dependent p-k method has been applied to a two-degree-of-freedom airfoil
system. The aerodynamic forces were computed using CFD simulations solving the Euler
equations. Harmonic forced motion simulations were performed sampling the parameter
space spanned by reduced frequencies, amplitude ratios, phase differences between pitch
and plunge and pitch amplitudes. The results are used to create a response surface, which
is used for the determination of the aerodynamic forces in the amplitude-dependent p-k
method. For validation, the LCO amplitude has been determined at several freestream
velocities from FSI simulations in the time domain. The testcase considered in this work is
at a Mach number of 0.74 and a mean angle of attack of −1.5◦. The structural parameters
used are given in Table 1.
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Structural parameter Value

Mass m 26.268 kg
Mass moment of inertia Iα 0.079 kg/m2

Torsional spring stiffness kα 6.646 · 103Nm/rad
Plunge spring stiffness kh 1.078 · 106N/m
Static moment related to EA Sα 0.331 kgm
Torsional damping constant dα 0.0687 kgm2/s
Plunge damping constant dh 45.764 kg/s

Table 1: Structural parameters for the 2 DOF NLR7301 airfoil system

The amplitude-dependent p-k method has been used to compute the LCO amplitude and
mode shape. The samples used for the creation of the response surface are shown in Table
2. The simplest possible sampling method, uniform sampling has been chosen for the
sampling. In addition to the non-linear samples shown in Table 2, samples at very small
amplitude (0.001◦) were computed from superposition of the linear frequency response
functions that were used for determining the linear stability. Note from Table 2 that
more samples are used for the pitch amplitude than for the other mode shape parameters.
This choice is based on the results of forced motion simulations with dense sampling of
a certain mode shape parameter, while keeping all other mode shape parameters fixed.
The magnitude and phase of the lift and moment varied the most with the reduced
frequency and pitch amplitude. Figure 5 shows the magnitude and phase angle of the lift
versus the pitch amplitude for an amplitude ratio of 0.5, a reduced frequency of 0.3 and
a phase difference of 5◦. The symbols show the samples of the forced motion simulations
in the time domain, the dashed blue line the linear interpolation and the dashed red line
the spline interpolation as obtained from DACE. The phase angle of the lift shows very
non-linear behaviour with varying pitch amplitude. Therefore it was decided to apply
dense sampling for this mode shape parameter. The magnitude of the lift shows a nearly
linear dependency on the pitch amplitude. Although, there is a non-linear variation of
the aerodynamic forces with the reduced frequency, as in a classical flutter analysis, no
dense sampling was applied for this parameter, since for this testcase the LCO reduced
frequency is close to the sample point at 0.3.

Mode shape parameter Values

Pitch amplitude ∆α(◦) 0.1, 0.5, 1, 1.5, 2, 3, 4, 5
Amplitude ratio (∆h/c) /∆α 0.1, 0.5, 1
Reduced frequency k 0.2, 0.3, 0.5
Phase difference ∆φ (◦) -10, -5, 5, 10

Table 2: Values of the mode shape parameters used for determination of the response surface of 2 DOF
NLR7301 airfoil system
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Figure 5: Magnitude and phase angle of lift versus the pitch amplitude at (∆h/c) /∆α = 0.5, ∆φ = 5◦,
k = 0.3

Using the samples as depicted in Table 2 (and the linear samples), the amplitude-dependent
p-k method has been applied using two different interpolation techniques. Kriging has
been applied for the interpolation with a linear correlation model and with a spline cor-
relation model. The amplitude at which the damping becomes zero has been determined
for several freestream velocities. The results are plotted in Figure 6 together with the
results from fluid-structure interaction simulations. Since it takes a lot of computational
effort to determine the LCO amplitude in the time domain, several FSI simulations at
various initial amplitudes have been performed for each freestream velocity. From each of
these simulations it has been determined whether the oscillation amplitudes of the system
where growing or decaying. In that manner, the bounds between which the LCO ampli-
tude lays have been determined. The blue circles and the red squares depict the lower
and upper bounds between which the LCO occurs. The blue circles at zero amplitude
show the results of FSI simulations for which the amplitude decays towards zero. The
green solid and blue dashed lines in Figure 6 show the frequency domain solution using
linear and spline interpolation, respectively. The linear flutter velocity obtained from the
p-k method (using linear interpolation) is plotted in Figure 6 with a green diamond at a
zero amplitude.
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Figure 6: LCO amplitude versus freestream velocity

From the time domain simulations it is seen that the LCO amplitude increases with
increasing freestream velocity, i.e. a supercritical bifurcation occurs. Below a freestream
velocity of approximately 196.73m/s all FSI simulations decay towards zero amplitude,
i.e. no LCOs occur. The agreement of the results of the amplitude-dependent p-k method
with the time domain results is very good when linear interpolation is applied. In case of
spline interpolation, the bifurcation diagram is shifted to slightly higher velocities (about
1m/s). This is explained by the interpolation of the response surface. It was observed
that the spline interpolation of the response surface is not optimal in all dimensions,
i.e. more samples are probably necessary for the spline interpolation to better predict
the LCO amplitude. From the linear curve it is clearly visibly at which positions a
sample has been placed (see for example the kinks at ∆α = 3◦ and 4◦). Hence, the
interpolation method needs to be improved (as was also seen from Figure 5(b)). When
linear interpolation is applied, both stable and unstable LCOs occur at small amplitudes.
This is attributed to the number of samples used for the generation of the response surface
and the interpolation method applied on the response surface. However, except for these
small amplitudes, the bifurcation type obtained with amplitude-dependent p-k method
is also supercritical. Figure 7 shows the other LCO mode shape parameters (amplitude
ratio, reduced frequency and phase difference between pitch and plunge) as obtained from
the amplitude-dependent p-k method versus the freestream velocity. For comparison the
time domain results are also shown.
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Figure 7: LCO mode shape versus freestream velocity

Figure 7 shows a supercritical bifurcation of the amplitude ratio with the freestream
velocity. The reduced frequency is monotonically decreasing with freestream velocity.
Although it should be noted that the variation of reduced frequency with freestream
velocity is minimal. The phase difference decreases with increasing freestream velocity,
meaning that the pitching and plunging motions tend to get more in phase. The small
positive phase difference indicates that pitch is leading plunge. The bifurcation behaviour
of the LCO mode shape is globally correctly predicted by the amplitude-dependent p-k
method as can be seen from Figure 7. The agreement between the FSI results and
those obtained from the p-k method with linear interpolation are very good. The results
obtained with spline interpolation show the same trends as the time domain results.
However, the curves are slightly shifted. For larger amplitudes the frequency domain
results come closer to the time domain results.

Since interpolation of the first harmonic of the aerodynamic forces is applied, it is inter-
esting to look at these forces during the LCO. Figure 8 shows the magnitude and phase
angle of the lift and moment during the LCO as a function of the freestream velocity.
Both time and frequency domain results are presented. Similar trends are observed. The
magnitude of the lift and moment are seen to increase with freestream velocity. The
phase of the lift first decreases sharply and then increases. This is also predicted by the
amplitude-dependent p-k method. The phase of the moment decreases monotonically.
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Figure 8: Magnitude and phase angle of aerodynamic forces during LCOs versus freestream velocity

Overall the agreement between the results of the amplitude-dependent p-k method and
the coupled time simulations is good for both testcases considered in this work. Hence,
the amplitude-dependent p-k method is suitable alternative for studying limit-cycle oscil-
lations.

4 CONCLUSION

In this work an alternative method for the prediction of limit-cycle oscillations has been
presented. This amplitude-dependent p-k method takes into account the first harmonic
of the aerodynamic forces as a function of the frequency, amplitude, amplitude ratio and
phase difference between the degrees of freedom. The method developed has been verified
and validated for two testcases: a two-degree-of-freedom van der Pol-oscillator and a
two-degree-of-freedom airfoil system.

The two DOF van der Pol oscillator testcase showed an excellent agreement between
the time domain, frequency domain and the analytical solution. Adding a fourth order
damping term, resulted in a subcritical bifurcation behaviour of the LCO amplitude. This
indicates that to obtain a subcritical bifurcation in a two DOF airfoil system, the aerody-
namic damping should locally be approximately a polynomial of order four. Furthermore,
this demonstrates that unstable LCOs can be found using the amplitude-dependent p-k
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method.

For the two degree-of-freedom airfoil system a response surface for the aerodynamic forces
has been built using harmonic forced motion simulations. This response surface has been
used to determine the aerodynamic forces during the iterations of the p-k method. From
both the time domain and frequency domain simulations a supercritical bifurcation is
observed. The agreement between the LCO amplitude and mode shape obtained from
both methods is good. Hence, the amplitude-dependent p-k method can be used to
estimate limit-cycle oscillations. Furthermore, taking into account only the first harmonic
component of the aerodynamic forces is sufficient for the LCOs observed in this work.
Therefore, once a response surface has been built for a certain Mach number and mean
angle of attack, structural parameter studies can be easily performed using the amplitude-
dependent p-k method.
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