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Abstract: As part of the ALPES (Aircraft Loads Prediction using Enhanced Simulation) 

project, this paper presents a way of building a reduced order model by using the Eigenvalue 

Realization Algorithm in the frequency domain, and applies it to model the aerodynamic 

response of a pitching airfoil in the transonic domain. With input data obtained with the TAU 

linearized frequency domain solver for a NLR7301 airfoil, the reduced order model shows a 

strong ability to reconstruct the frequency response. 

1 INTRODUCTION 

Computational Fluid Dynamics (CFD) has now a wide range of validity where it gives highly 

accurate results with regards to wind tunnel experiments. It is extensively used in the industry 

for steady analysis such as performance studies. However, unsteady aerodynamics has to be 

used for aircraft design and aeroelastic applications such as flutter speed or limit cycle 

oscillation prediction. More powerful computers have enabled the application of CFD for 

unsteady loads calculations, but the computational cost remains high, especially when it comes 

to viscous flows. 

System identification consists on building a mathematical description of the dynamic behavior 

of a system from measured data. The model aims at providing accurate prediction of the system 

comportment for a given input ( [1], [2], [3], [4] [5]). Whereas real systems are often costly to 

describe, models can capture their essential behavior. The modelling approach, so called inverse 

problem [6], consists on determining causes from knowing the effects. This is to opposite of a 

direct problem. As same effects can have different causes, inverse problems may have different 

solutions. Contrary to direct problems, there is not only one way of solving them; but a few 
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methods are generally applicable. These inverse problems can be linear (system of equations or 

integral equation) or non-linear. 

It then becomes obvious that models are useful and can be used to explain data, understand 

phenomena and predict behaviors. For many of them, a high number of degrees of freedom 

leads to extended calculation times. Then, reduced order models (ROM) aim at decreasing the 

CPU time by keeping a few degrees of freedom of the numerical model.  They nevertheless 

succeed in keeping good accuracy and stability. These ROMs enable [7] to simplify the study 

of the system, and to get command laws more easily. Model order reduction can be achieved 

using different methods; these depend on the physics of the system, the accuracy wanted and 

the information availability. The latest can be based on physical equations, engineering 

problems, datasets and so on. For systems whose model is strongly linked to the physics, order 

reduction can even be performed by hand, thinking about the independencies between the 

parameters; interpolation can also be used. 

 

While building a ROM, a first technique is to define projection bases and spaces. The idea is 

the use linear algebra and to construct a subspace orthogonal to the Krylov subspace; this can 

be performed thanks to the Gram-Schmidt orthonormalization method. Since it can be unstable 

[8] or a modified Gram-Schmidt can be used. In order to achieve this, Arnoldi developed an 

iterative algorithm [9]. If the system matrix is hermitian, the Lanczos method [10] is much 

faster. It is based on the Arnoldi method, but as the system matrix is symmetric, the algorithm 

is much simpler and the recurrence is shorter: each vector 𝑈𝑗+1 is directly calculated from the 

two previous ones 𝑈𝑗  and 𝑈𝑗−1. The Lanczos algorithm can also be combined with a Padé 

approximation, for a method called Padé via Lanczos (PVL). This method aims to preserve the 

stability of the system. In fact, the reduced order modeling techniques using the Padé 

approximation do not enable to carry this stability [11]. Other methods such as partial PVL [12] 

enable to correct the poles and the zeros of the reduced transfer function; it leads to an enhanced 

stability. Antoulas [13] uses the advantages of both Krylov subspaces and balanced truncation 

approaches. Finally, the Passive Reduced-order Interconnect Macromodelling Algorithm, 

while using the Arnoldi method guarantees the preservation of passivity and enables an 

enhanced accuracy [14].  

 

Another stream of scientific analysis uses the system response of different excitations to 

identify the reduced matrices. Based on Hankel singular values, several algorithms were 

developed for model reduction such as singular value decomposition (SVD). The idea is to 

eliminate the states requiring a large amount of energy to be reached, or a large amount of 

energy to be observed, as both correspond to small eigenvalues [15]. Gramians are introduced 

since they can be used to quantify these amounts of energy. The reachability gramian quantifies 

the energy needed to bring a state to a chosen value, whereas the observability gramian 

quantifies the energy provided by an observed state [16]. The value of these gramians obviously 

depends on the basis on which they are calculated. In the case of a stable system, it exists a 

basis in the state space in which states that are difficult to reach are also difficult to observe. 

Normally, the Hankel singular values decrease rapidly. The balanced truncation aims at 

truncating the modes that are not both reachable and observable. They correspond to the 

smallest Hankel singular values. The singular value decomposition is well-conditioned, stable 

and can always work, but can be expensive to compute. It implies to solve high-dimensional 

Lyapunov equations [17] ; the storage required is of the order O(n²), while the number of 

operations is of the order O(n3). Many balancing methods exist, such as stochastic balancing, 

bounded real balancing, positive real balancing [18]. The frequency weighted balancing [19], 

can be useful if a good approximation is needed only in a specific frequency range. However, 
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the reduced model is not necessarily stable if both input and output are weighted. These 

frequency weighted balancing methods have undertaken many improvements: the most recent 

one guarantees stability and yields to a simple error bound [20]. Based on Markov parameters, 

the Padé approximation (moment matching method) [21] has then been improved by Arnoldi 

and Lanczos [10] and is particularly recommended in the case of high dimension systems. 

 

In this paper the algorithm chosen is the Eigensystem Realization Algorithm [22], using the 

singular value decomposition of the Hankel matrix whose coefficients are the Markov 

parameters. The method proposed enables to build a model based on experimental data without 

knowing the system matrix. It is adapted for an input being given in the discrete frequency 

domain and uses a bilinear transformation to switch to the continuous space. A singular value 

decomposition is then performed to keep the dominant modes of the frequency response.  

 

For given flow conditions, the frequency response of the integrated aerodynamic coefficients 

is directly related to the frequency of the pitching motion. Hence, it is relevant to build a reduced 

order model of the frequency response in the frequency domain instead of performing a classical 

reduction in the time domain. After solving the system and transforming back in the continuous 

space, it is possible to reconstruct any motion in the time domain. The method is applied to a 

pitching airfoil in subsonic and transonic range, with no shock-induced separation. 

2 PROBLEM FORMULATION 

 MIMO in discrete and continuous spaces 

A discrete-time linear and stable MIMO model of n-th order, with r-input and m-output can be 

described using the following state space representation 

 

 
𝒙(𝑡)̇ = �̂�𝒙(𝑡) + �̂�𝒖(𝑡) 
𝒚(𝑡) = �̂�𝒙(𝑡) + �̂�𝒖(𝑡)  (1) 

 

𝒙(𝑡) ∈ ℝn represents the vector of different degrees of freedom (called state vector in control 

theory). It contains for example the unknown physical variables, such as velocity, pressure, 

density. 𝒚(𝑡) ∈ ℝp and 𝒖(𝑡) ∈ ℝm respectively represent the vector of the outputs of interest 

of the system, and the vector of inputs. Another convenient notation is also used for a discrete-

time model:  

 

 ∑ = (�̂� �̂�
�̂� �̂�

) (2) 

 

As far as a continuous-time is concerned, the matrices are written in this paper under the form  

 

 ∑ = (
𝐴 𝐵
𝐶 𝐷

) (3) 

 

Let the frequency response be given uniformly spaced between 0 and π, i.e. it is possible to 

provide the impulse response coefficients Gk for the N discrete frequencies 

 

 ω̂𝑘 = 
𝑘 𝜋

𝑁
, k ∈  [0 , N] (4) 
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These discrete frequencies can be transformed to equivalent continuous frequencies using the 

Bi-Linear transform. 

 

 ω𝑘 = 
2

𝑇
 tan

ω̂𝑘

2
 (5) 

 

This bijective function transforms a discrete frequency ω̂𝑘 ∈ [0 , π ]   in a continuous 

frequency  ω𝑘 ∈ [0 ,∞] . The bilinear transformation has multiple advantages: it keeps the 

controllability and the observability properties from discrete to continuous [23], and from 

continuous to discrete. There is then an equivalence in the stability of system described in 

discrete and continuous space, assuming that this system is asymptotically stable.  

 Singular Value Decomposition 

To map the whole unit circle, the algorithm extends the domain of the input data to the interval 

]π,2π] using the conjugate of Gk: 

 

 G𝑘+𝑁 = G𝑁−𝑘
 ̅̅ ̅̅ ̅̅ ̅ (6) 

 

The aim is then to perform a singular value decomposition of the Hankel matrix defined using 

the 2N-points inverse discrete Fourier transform (IDFT). The coefficients of the IDFT are 

defined such as 

 ℎ̂𝑖 = 
1

2𝑁
 ∑ G𝑘  𝑒𝑖2𝜋𝑗ωk/2N 

2𝑁−1

𝑘=0

 , 𝑖 ∈  [0 , 2N − 1]   (7) 

 

and enable to build the block Hankel matrix, i.e. a square block of with constant elements across 

the anti-diagonals 

 

 �̂� =

(

 

ℎ̂1 ℎ̂2 ⋯ ℎ̂𝑟

ℎ̂2 ℎ̂3 ⋯ ℎ̂𝑟+1

⋮ ⋮ ⋱ ⋮
ℎ̂𝑚 ℎ̂𝑚+1 ⋯ ℎ̂𝑚+𝑟−1)

 with m > n, r ≥ n and m + r ≤ 2N (8) 

 

As the Hankel block matrix is real, according to the SVD theory [24], it exists �̂� , Σ̂  and �̂� such 

as:  

 

 �̂� = �̂� Σ̂ �̂�𝑇  (9) 

 

The model reduction is obviously performed by keeping the largest singular values. This is 

done by separating  �̂� in 𝑈�̂� and �̂�𝑜 such as  

 

 �̂� = [ �̂�𝑠 �̂�𝑜] [
Σ̂𝑠 0

0 Σ̂𝑜

] [
�̂�𝑇

�̂�𝑜
𝑇] (10) 

 

The diagonal block matrix Σ̂𝑠 𝑐ontains the r highest singular value, r being the chosen size of 

the reduced order model. 
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 Calculation of discrete reduced A and C 

Once �̂�𝑠 has been built by truncation of �̂�, computing the discrete and reduced matrices �̂�𝑟 and 

�̂�𝑟 is achieved with [25]: 

 

 �̂�𝑟 =
(𝐽1 �̂�𝑠)

∗
(𝐽1 �̂�𝑠)

(𝐽1 �̂�𝑠)
∗
(𝐽2 �̂�𝑠)

  (11) 

   

 �̂�𝑟 = (𝐽3 �̂�𝑠) (12) 

where 

 

𝐽1 = [𝐼(𝑚−1)𝑝 0(𝑚−1)𝑝∗𝑝] 

𝐽2 = [0(𝑚−1)𝑝∗𝑝 𝐼(𝑚−1)𝑝] 

𝐽3 = [𝐼𝑝 0𝑝∗(𝑚−1)𝑝] 

(13) 

 Calculation of discrete reduced B and D 

Since the state-space model G can be written as 

 

 𝐺 = 𝐶(𝑧𝐼 − �̂�𝑟)
−1𝐵 + 𝐷, 𝑧 ∈ ℂ, (14) 

 

For N ≥ n, then 𝛺 is defined such as 

 

 
𝛺 =

[
 
 
 
 
Ĉ𝑟(𝑧0𝐼 − �̂�𝑟)

−1 𝐼𝑝

Ĉ𝑟(𝑧1𝐼 − �̂�𝑟)
−1 𝐼𝑝

⋮ ⋮
Ĉ𝑟(𝑧𝑁𝐼 − �̂�𝑟)

−1 𝐼𝑝]
 
 
 
 

∈  ℝ(𝑁+1)𝑝∗(𝑛+𝑝), ∀k ∈[0 , N], 𝑧𝑘 = 𝑒𝑗𝜔𝑘𝑡 

  

(15) 

So (14) can be written as 

 𝛺 [�̂�
�̂�

] = 𝐺 (16) 

 

Let �̌� be composed of the real and imaginary parts of 𝛺. 

 

 
�̌� =  [

𝑅𝑒(𝛺) 
𝐼𝑚(𝛺)

] 

 

(17) 

�̂�𝑟 ∈ ℝ𝑟,1 and �̂�𝑟 ∈ ℝ can are calculated by  

 

 [
�̂�𝑟

�̂�𝑟

] = �̌� �̌�𝑇 (�̌�𝑇  [
𝑅𝑒(𝐺) 

𝐼𝑚(𝐺)
])

−1

 (18) 

 

 Bilinear transformation  

The continuous-time system G defined as  

 

 𝐺(𝑧) = 𝐷𝑟 + 𝐶𝑟(𝑧𝐼 − 𝐴𝑟)
−1𝐵𝑟 (19) 
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can be transformed in a discrete-time system  

 

 �̂�(𝑧) = 𝐷�̂� + 𝐶�̂�(𝑧𝐼 − �̂�𝑟)
−1�̂�𝑟 (20) 

 

using the bilinear transformation [26]: 

 

 𝐴𝑟 = 
2

𝑇
 (𝐼𝑟 + �̂�𝑟)

−1 (𝐼𝑟 − �̂�𝑟) (21) 

 𝐵𝑟 = 
2

√𝑇
(𝐼𝑟 + �̂�𝑟)

−1 �̂�𝑟 (22) 

 𝐶𝑟 = 
2

√𝑇
 �̂�𝑟 (𝐼𝑟 + �̂�𝑟)

−1 (23) 

 𝐷𝑟 = �̂�𝑟 − �̂�𝑟 (𝐼𝑟 + �̂�𝑟)
−1 �̂�𝑟  (24) 

 Comparison between the sample data and the model built 

The model can be used to reconstruct the frequency response Gr on a chosen number Nr of 

equispaced discrete frequencies corresponding to the same number of continuous frequencies. 

 𝐺𝑘(𝑧) = 𝐷𝑟 + 𝐶𝑟(ω𝑘 𝐼𝑟 − 𝐴𝑟)
−1 𝐵𝑟 , ∀𝑘 ∈ [0 , 𝑁] (25) 

3 APPLICATION TO THE MODELLING OF A PITCHING AIRFOIL 

 Numerical model 

The aim is to model of the aerodynamic behavior of an airfoil in a pitching motion at different 

frequencies. The motion is sinusoidal and described by the following equation: 

 𝛼 =  𝛼𝑚 +  𝛼0 ∙ sin  (ω ∙ 𝑡 ) (26) 
 

where 𝛼𝑚 is the mean angle of attack, 𝛼0 the amplitude and ω the frequency of the motion.  

Let 𝑈∞ be the freestream velocity and c the airfoil chord, the reduced frequency is defined such 

as 

 𝑘 =  
ω ∙ c

𝑈∞
 (27) 

 

The order of magnitude of the range of reduced frequencies used in unsteady aerodynamic is 

between 10-2 and 10. The airfoil chosen is a NLR7301 since it is supercritical; then it is close 

to the profiles used in aircraft design. Moreover, the literature provides many results for 

validation. To be able to use CFD, two different meshes are created for viscous and inviscid 

simulations with TAU [27].  
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As far as the turbulence is concerned, Spalart-Allmaras [28] is selected as it combines good 

accuracy and robustness. The RANS equations are discretized in a central way, with a scalar 

dissipation scheme. Finally, the chosen relaxation solver is Backward Euler. 

The convergence is reached for every calculation performed in the following part. A far as 

unsteady RANS simulations are concerned, the behavior is checked by maintaining a value of 

y+ below 1. The numerical model has been validated after several comparisons to wind tunnel 

data [29]. for steady, quasi-steady and unsteady computations.  

The pressure coefficient is given by 

 
𝐶𝑝 =

𝑝 − 𝑝∞

1
2 𝜌∞𝑉∞

2
 

(28) 

 

When calculated at multiple points around the airfoil, it enables to plot the pressure distribution 

in subsonic and transonic cases (Mach=0.5 and Mach=0.68). The shock position is clearly 

visible for x/c=0.2. 

  

Figure 2: Cp distribution, steady Euler, α=0.5º 
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 Linearized frequency domain solver 

3.2.1 Basics 

In addition to the classical unsteady RANS and Euler computations, as the amplitude of the 

motion is small and the motion periodic, it is possible to use the linearized frequency domain 

solver [30].  

An unsteady governing equation of the fluid motion discretized in space can be written  

 
𝑑𝒖

𝑑𝑡
+ 𝑅(𝒖, 𝒙, �̇�) = 0 (29) 

 

where 𝑅 is the residual, written as a function of the flow solution u, the grid coordinates 𝑥 and 

the grid velocities �̇�. Under the assumption of a small amplitude of the unsteady 

perturbations, the RANS equation can be linearized around the steady state, i.e. it is seen as 

the superposition of the steady state mean and of the perturbation. 

 

 𝒖(𝑡) =  �̅� + �̃�(𝑡) , ‖�̃�‖ ≪  ‖�̅�‖ (30) 

 𝒙(𝑡) =  �̅� + �̃�(𝑡),           ‖�̃�‖ ≪  ‖�̅�‖ (31) 

 

and transformed in the frequency domain, since the perturbation is assumed to be periodic and 

can expressed as 

 �̃�𝑘(𝑡) = ∑𝑅𝑒(�̂�𝑘

 

𝑘

𝑒𝑗𝑘𝜔𝑡) (32) 

 

where �̂�𝑘 are the complex Fourier coefficients of the motion, 𝜔 the frequency, k the mode and 

j complex number such as  

 𝑗 = √−1 (33) 

 

After replacing the linearized values of u(t) and x(t) in (29), the following system is obtained  

 

 𝐴𝒙 = 𝑏 𝑤ℎ𝑒𝑟𝑒 𝐴 = (

𝜕𝑅

𝜕𝑢
−𝜔𝐼

𝜔𝐼
𝜕𝑅

𝜕𝑢

) , 𝑏 = (

𝜕𝑅

𝜕𝑥
−𝜔

𝜕𝑅

𝜕�̇�

𝜔
𝜕𝑅

𝜕�̇�

𝜕𝑅

𝜕𝑥

)(
�̃�𝑅𝑒

�̃�𝐼𝑚
) (34) 

 

 

The Jacobian 𝜕𝑅/𝜕𝑢 is theoretically calculated in TAU, but the right hand term is evaluated 

by using central finite differences [31]. 
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3.2.2 Results 

The model enables to give fast and accurate values for the magnitude and phase of the 

aerodynamic coefficients. The figure 3 shows the lift magnitude obtained in transonic domain 

(Mach=0.68, αm=0.5, α0=0.15) for different types of calculations at different reduced 

frequencies in the range of interest.  

 

Figure 3: Viscous and inviscid validation of the LFD solver 

 

The LFD solver is highly accurate, especially for inviscid computations, as soon as the 

amplitude of the pitching is small, which is the condition for the linearization ; it presents the 

advantage to be much faster than an unsteady Euler simulation (30 times faster in average, 

estimated on the calculation launched at the university of Bristol). It will then be used in the 

following part to provide the input to build the reduced order model.  

 Choice of T 

As defined in (5), T is governing parameter of the bilinear transformation 

 ω𝑐 = 
2

𝑇
 tan

ω𝑑

2
  (35) 

 

According to the theory, ωd has to be chosen equispaced between 0 and π. The choice of T is 

important as it has a major importance in the relationship between continuous and discrete 

frequencies. As it is easier to think in terms of reduced frequency, ωd is transformed in kd. 
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Figure 4: Choice of the sampling 

 

T has to be chosen such as the continuous reduced frequencies are in the range of interest of the 

model input. T=0.006 provides continuous reduced frequencies mostly in the interval [1,100] 

(Figure 4), and the model will not be able to reconstruct accurately the magnitude and phase of 

the aerodynamic coefficient for low frequencies. The same remark can be applied for T=0.6, 

where the information will be poor at high frequencies. However, T=0.06 seems to be a good 

choice as the corresponding reduced frequencies cover well the aerodynamic range of interest. 

 Reduced order model 

3.4.1 Input data 

In order to assess the quality of the reduced order model, three values of T are chosen, and for 

each of those, 256 LFD calculations are launched. They enable to build ROMs of different sizes 

in a systematic way with a different number of input data. The error between the prediction of 

the model and the LFD calculation for both magnitude and phase of CL and CM is calculated 

and plotted. As the discrete frequencies are equispaced, it is straight forward to use a cross-

validation. This technique enables to estimate the performance of the model depending of the 

number of training points and the size of the model built. N=256 being the number of training 

points, different models are created with 𝑁/2𝑖 samples, i ∈ [2,4,8,16].  

 

For each model, the quality is judged by reconstructing each magnitude and phase 

corresponding to the N frequencies of the training set and by comparing it to the LFD results. 

To represent the model performance, a root-mean-square error is calculated (Figure 5).  
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Figure 5: Root-mean-square error in lift and moment, T=0.06 
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For the different reduced order built, the RMS error appears has the same trend for the lift and 

for the pitching moment. The error becomes obviously smaller when increasing the number of 

input frequencies, but 64 input points seems highly satisfactory. Moreover, a ROM size of 20 

or more guarantees a really good accuracy for both magnitude and phase. 

The following plots show the frequency response reconstructed by two models of size 9 and 

23, and has to be compared to the values obtained with the LFD solver. 

 

Figure 6: Comparison between the frequency responses of two different ROM, N=32, Mach=0.68 

The small number of sample points leads to inaccuracies for k≈5 in magnitude and phase. 

Moreover, as far as the lift phase is concerned, the model experiences difficulties to reconstruct 

the low frequencies, due to a lack of input point in this region. However, the performance is 

already good in general. 

 

With double the input points, the model gives the following frequency response 

 

Figure 7: Comparison between the frequency responses of two different ROM, N=64 
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Even with a very small model (Nr=9), the error observed before for k≈5 as well as for the low 

frequencies has been corrected. 

The advantage of this method is that it reconstructs the aerodynamic coefficients for any 

frequency between 0 and infinity. Therefore, for a given frequency, it is straight forward to 

reconstruct the aerodynamic coefficients during a period using the magnitude and the phase 

given as an output by the model. Two reduced order model of size Nr=3 and Nr=15 have been 

built with 32 samples, and the result is compared to the value given by a LFD calculation for 

the same frequency.  

 

Figure 8: Lift and moment reconstruction, k=0.5, N=32, r=[3,5] vs LFD 

 

As expected, since the error observed in figure 5 is small, the reconstructed lift and moment as 

a function of the angle of attack is really accurate when compared to the LFD reference, even 

if the model has been built with only 32 input frequencies. 

 

4 CONCLUSIONS 

A method has been presented to build a low order model in the frequency domain. It has been 

tested on aerodynamic results of a pitching airfoil and shows its ability to reconstruct the 

frequency response with a really good accuracy, even for very low orders and for a small 

number of sample points. As explained in this paper, T has however to be chosen carefully so 

that the input frequencies maps well the region of interest. Because of the equispaced nature of 

the discrete frequencies, the model accuracy is really high in the middle range of frequencies, 

but slightly lower for high or low frequencies. An idea to correct this will be to modify the 

method so that input points can be non equispaced. It will be the target of a future paper. 
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