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Abstract: In this work, the static aeroelastic behavior of high aspect ratio wings undergoing 

large static deformations has been investigated analytically. Towards this end, a nonlinear 

structural model based on a simple one-dimensional nonlinear beam theory originally 

developed by Minguet and Dugundji [1] is used. An efficient evaluation of large static 

deformation of High Altitude Long Endurance (HALE) airplane is developed by merging the 

wing, fuselage, and tail structures based on the beam model. This paper also discusses 

coupling the beam model with several aerodynamic models to investigate the static 

performance of the high aspect ratio wing. Comparisons of the aerodynamic tools are made in 

terms of numerical efficiency, simplicity and further applications. Among these aerodynamic 

modeling, unsteady vortex lattice method (UVLM) is given a special attention since it offers 

convenient and accurate prospects in analyzing the dynamic behavior of the HALE aircraft. 

1 INTRODUCTION 

The prediction of the dynamic and aeroelastic behavior of the high aspect ratio wing under 

various flight conditions is a major task in designing the high altitude long endurance (HALE) 

airplane. In particular, an accurate and efficient structural model of the high aspect ratio wing 

that is capable of handling nonlinear large deflections is necessary. The aeroelastic behavior 

of HALE airplane can be analyzed by combining the nonlinear structural model with general 

aerodynamic theories. 

The structural model used in this paper to deal with deflections and rotations of the flexible 

wing without any limitation on the magnitudes originates from a previous work by Minguet 

and Dugundji [1]. In this formulation, Euler angles are utilized to account for the large 

deformation, and does not rely on any approximate expansion of these angles. No ordering 

scheme is introduced and all geometric nonlinearities are retained fully [2]. A total of twelve 

nonlinear partial differential equations that represent compatibility and equilibrium constitute 

a two-point boundary value problem with proper boundary conditions at the root and tip of 

the beam. The stress-strain relation in its most general form that includes various couplings 

mailto:liulu02@u.nus.edu
mailto:tsllaikl@nus.edu.sg


IFASD-2015-147 

2 

due to the use of composite materials are presented. The static solutions of these differential 

equations can be obtained by a numerical integration scheme such as Runge-Kutta algorithm 

combined with a Newton-Raphson type iteration [3]. 

Based on the aforementioned work, a new model capable of free vibrational and aeroelastic 

analysis for a high aspect ratio wing-fuselage-tail combination has been developed and is 

introduced in this paper. Every substructure of the airplane, i.e., wing, fuselage, tails, is 

assumed to behave like a high aspect ratio beam, which is appropriate and acceptable for the 

HALE aircraft. The predescribed beam model is applied to each substructure respectively, 

while the interactions and relations at the junctions between adjacent parts are established. 

Later, the structural beam model will be combined with a vortex element model based on the 

unsteady vortex lattice method (UVLM) for aeroelastic analysis. Currently, the use of UVLM 

has been gaining a ground in the study of non-stationary problems in which free-wake 

methods become a necessity because of geometric complexity, such as flapping wing 

kinematics, morphing wings, and rotorcraft among others [4]. The pioneering works in the 

development of UVLMs were carried out by Belotserkovskii, Rehbach, and researchers at 

Virginia Tech and Technion as stated by Roccia et al [4]. Katz and Plotkin [5] provide a 

comprehensive description of the UVLM and its applications. The present numerical model is 

an extension of the widely used three dimensional general unsteady vortex-lattice model [5] 

and provides an attractive compromise between computational cost and fidelity. 

2 STATIC LARGE DEFLECTION BEAM MODEL 

2.1 Assumptions  

To completely represent the nonlinearities due to arbitrarily large deflections and rotations, a 

set of twelve first-order, nonlinear differential equations developed by Minguet and Dugundji 

[1] is used in the present analysis. Before presenting all the necessary equations for the large 

nonlinear static deflection modeling, one the basic assumptions of the classical beam theory 

will be briefly reviewed. The first assumption is that the beam is much longer in one direction 

and its cross-section is undeformable, and hence will not change the shape under loads. This 

allows one to reduce the problem to one-dimensional model where all the displacements are 

functions of only one coordinate, namely the beam arc length s measured along some 

reference line. This assumption is true for HALE airplane and will therefore be retained here. 

Based on this assumption, the beam position in space is completely describable by the 

position of its reference line. As shown in Fig. 1, two coordinates systems are introduced: the 

global coordinates system (x,y,z) that remains fixed in space at all times and the local axes 

system (ξ, η, ζ) that follows the beam cross-section during its motion. For the time being, it 

will be assumed that the transverse shear strains in the cross-section can be neglected so that 

the cross-section is presumed to remain orthogonal to the reference line.  

2.2 Basic Equations 

The governing equations are obtained by considering equilibrium, strain-displacement 

compatibilities, linear stress-strain relations of a beam element, and are not based on any 

ordering schemes that typify most of moderate deflection equations. For thorough derivation 

of the equations see Minguet and Dugundji [1]. All of the equations are derived based on the 

following transformation matrix that transforms the global coordinates into the local ones (see 
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Fig. 1). To describe the deformation of the beam, the reference line position is identified by 

its three displacements u, v, w measured along the global axes. The attitude of the 

cross-section, and thus of the local axes system, is described with the use of the three Euler 

angles 𝜓, 𝛽, 𝜃 via the use of a transformation matrix T from the global to the local axes. 

 

Figure 1: Illustration of Local and Global Axes and of Euler Angles 
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The transformation matrix is orthogonal and related to the rotation or curvature matrix as 

follows: 

         TT T



1
  (4) 

 
 

  
d T

T
ds

   (5) 
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with  [𝜔] = [

0 𝜔𝜁 −𝜔𝜂

−𝜔𝜁 0 𝜔𝜉

𝜔𝜂 −𝜔𝜉 0
] 

𝜔𝜉 = twist rate  

𝜔𝜂 = bending curvature around  η axis  

𝜔𝜁 = bending curvature around  ζ axis  

Then the following compatibility equations can be found from (5): 

 
d

ds   


            sin tan cos tan    

 
d

ds  


       cos sin   (6) 

 
d

ds  
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 

 
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sin cos

cos cos
   

For this large deflection problem, the beam deformed position is taken into account while 

evaluating equilibrium equations for a differential element of the beam reference line. On 

every cross-section, the internal force and moment vector can be defined in the local 

coordinate: 

 F F l F l F l    1 2 3   (7) 

 M M l M l M l    1 2 3   (8) 

Equilibrium equations can be derived by considering an infinitesimal element of length ds 

with forces F⃗  and moment M⃗⃗⃗  acting on one side and F⃗ + dF⃗  and M⃗⃗⃗ + dM⃗⃗⃗  on the other 

side as shown in Figure 2. Distributed loads measured in the global coordinate P⃗⃗ G, M⃗⃗⃗ G, like 

gravity, and distributed loads measured in the local coordinate P⃗⃗ L, M⃗⃗⃗ L, like aerodynamics are 

considered as applied on this element. 

  

Figure 2: Illustration of Force and Moment Equilibrium 
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The following three nonlinear force equilibrium equations and three nonlinear moment 

equilibrium equations can be written: 

 G G G LdF
F F T P T P T P P

ds        1
2 3 11 1 12 2 13 3 1    

 G G G LdF
F F T P T P T P P

ds         2
1 3 21 1 22 2 23 3 2   (9) 

 G G G LdF
F F T P T P T P P

ds        3
1 2 31 1 32 2 33 3 3    

 G G G LdM
M M T M T M T M M

ds        1
2 3 11 1 12 2 13 3 1    

 G G G LdM
M M T M T M T M M F

ds          2
1 3 21 1 22 2 23 3 2 3   (10) 

 G G G LdM
M M T M T M T M M F

ds         3
1 2 31 1 32 2 33 3 3 2    

Next, a set of compatibility equations relating coordinates and Euler angles can be derived 

using the transformation matrix: 

  

 
T

dx ds

dy T

dz

   
   
   
      

1

0

0

  (11) 

  
dx

ds
   1 cos cos    

  
dy

ds
   1 cos sin   (12) 

  
dz

ds
 1 sin    

where ε is the axial strain along the reference line and x,y,z represent the global coordinates 

of the deformed reference line. 

Finally, a set of generalized stress-strain relations are incorporated via the following six linear 

equations. 
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1 44 45 46
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  (13) 

Here 𝛾𝜉𝜂 and 𝛾𝜉𝜁 represent the two transverse shear strains. In its most general form, the 

above stiffness matrix can be full, i.e., there can be elastic couplings between all of the force 

resultants, three moment resultants and all of six strain components. The calculations of the 

two shear strains are ignored in the current analysis. 

2.3 Boundary Conditions 

The twelve differential equations and the general stress-strain relations constitute a two-point 

boundary value problem. For a cantilevered beam, all the forces and moments are known at 

the tip of the beam, and all angles and displacements are given at the root of the beam: 

 
   

   

T T

TT

r r r r r r

F F F M M M

x y zx y z     





1 2 3 1 2 3 Tip:    0 0 0 0 0 0

 Root:             

@

@
  (14) 

2.4 Solution Procedure 

All the necessary equations have now been obtained for the static large deflection modeling. 

Everything considered, there are twelve unknowns, i.e., three force components, three 

moments, three angles and three displacements, after eliminating the curvatures and strains by 

inverting stress-strain relations. Corresponding to these twelve unknowns, there are also 

twelve first-order nonlinear differential equations. 

To solve the system, these equations are first discretized by dividing the beam into a finite 

number of elements. The twelve equations are integrated from the tip to the root of the beam 

using a simple and fast Runge-Kutta algorithm. In the numerical integration, one has to guess 

boundary values of coordinates and Euler angles at the tip and all the coordinates and Euler 

angles at the root need to be as close to the prescribed values as possible. Since the initial 

guesses are not perfect, there will be nonzero residues when the integration reaches the root. 

A Newton-Raphson type algorithm can then be employed to produce a better set of tip 

boundary values based on the current values: 

  n n
r t

X X f   (15) 

where 𝑋𝑡
𝑛 = [𝜃 𝛽 𝜓 𝑥 𝑦 𝑧]𝑇 at the tip, 𝑋𝑟

𝑛 = [𝜃 𝛽 𝜓 𝑥 𝑦 𝑧]𝑇 at the root. 

  n n nn
t t t

X X J RX
   

11   (16) 

where                          𝑅𝑛 = 𝑓(𝑋𝑡
𝑛) − 𝑋𝑟  
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𝑋𝑟 = [𝜃𝑟  𝛽𝑟 𝜓𝑟  𝑥𝑟 𝑦𝑟 𝑧𝑟]
𝑇 

and J is Jacobian matrix and the subscript 𝑛 refers to the 𝑛th iterative values. The 𝑛th 

boundary values 𝑋𝑡
𝑛 at the tip will eventually march to the true solution. 

2.5 Validation of the Beam Model for Large Static Deflections 

An experimental result on a very flexible Titanium beam obtained by Pai [6] is used to verify 

the implementation of the beam theory. The dimensions of the beam are 479.0 × 50.8 ×
0.45 mm, with mass density 4430 𝑘𝑔 𝑚3⁄ , Young’s modulus 127GPa, and Poisson’s ratio 

0.36. Experiments in [6] were performed with an undeformed beam in the vertical direction 

and clamped at one end in a horizontal position. Under the influence of gravity only, the 

experimental value of the static vertical deformation of the beam tip is -0.127m. The 

analytical value obtained using the present beam model is -0.126m, which is about 27.1% of 

its length. The error is less than 0.8% and the computation time on MATLAB is within one 

second. For this loading, only 3 iterations of Newton-Raphson procedures are needed and 3 

elements are sufficient to get an accurate enough result. 

3 EXTENSION TO WING-BODY-TAIL CONFIGURATION 

The advantage of the beam model to consider large deformations can be extended to the 

whole HALE airplane if we split the airplane into regions of small and large deformations, 

typically, fuselage/vertical fin and wings/tail. Whether the displacements are small or large, 

the beam model can be directly applied to each substructure respectively.  

3.1 Structural Wing-body-tail Model 

For simplicity, the nose of the fuselage is assumed to be fixed. It is acceptable to assume that 

the fuselage, the wing, the vertical fin and the tail all behave like a high aspect ratio beam. At 

junctions, for one substructure the junction is considered to be root of the beam model, and a 

deformed shape of the other substructure will give the boundary condition of the beam at the 

junction. If the location of the junction is at a non-root position of the beam, the force and 

moment at the root of the other beam models at the junction will be regarded as applied loads 

to this beam at the junction. Take the junction between the fuselage and the wing as an 

example. The deformed shape of the fuselage at the junction, including the Euler angles and 

global coordinates will be the root boundary of both the left side and the right side of the wing. 

Since all the subsections share the same global coordinate, the coordinate of the fuselage at 

the junction [𝑥, 𝑦, 𝑧]𝑓𝑢𝑠𝑒𝑙𝑎𝑔𝑒will be directly used as the coordinate boundary conditions at the 

root of the two sides of wing. 

    
- -

TT T

j j jr r r r r rleft wing right wing fuselage
x y zx y z x y z       (17) 

But since each beam model uses its own local coordinates, the Euler angles of the fuselage at 

the junction [𝜃, 𝛽, 𝜓]𝑓𝑢𝑠𝑒𝑙𝑎𝑔𝑒 need to be modified according to the relationship between 

those local coordinates, which will be retained during deformation. Suppose 

[𝑇]𝑓𝑢𝑠𝑒𝑙𝑎𝑔𝑒−𝑙𝑒𝑓𝑡_𝑤𝑖𝑛𝑔   and [𝑇]𝑓𝑢𝑠𝑒𝑙𝑎𝑔𝑒−𝑟𝑖𝑔ℎ𝑡_𝑤𝑖𝑛𝑔  represent the transformation matrices 

from the local coordinate of the fuselage to that of the left wing and the right wing, 
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respectively. The Euler angle boundary conditions at the root of the wings can be calculated 

from the following equations: 

 
      
      

 _

_

TT

j j jfuselage left wingr r r left wing fuselage

TT

j j jfuselage right wingr r r right wing fuselage

T TT

T TT

    

    





   

   

  (18) 

Now we have the complete boundary conditions for both sides of the wing. The static solution 

of both sides of the wing gives the force at the root in their local coordinate, 

[𝐹1, 𝐹2, 𝐹3]𝑙𝑒𝑓𝑡−𝑤𝑖𝑛𝑔, [𝐹1, 𝐹2, 𝐹3]𝑟𝑖𝑔ℎ𝑡−𝑤𝑖𝑛𝑔. Together with the Euler angles at the root, the 

force and moment can be transferred into global coordinate. 

 
      

      

G T

r r rleft wing left wingleft wing

G T

r r rright wing right wingright wing

TF F F F F F

TF F F F F F

  

  



 



 





1

1 2 3 1 2 3

1

1 2 3 1 2 3

 
  (19) 

And the force applied to the fuselage at the junction in local coordinate will be: 

         1 2 3 1 2 3 1 2 3

TG G G

j j jfuselage left wing right wingfuselage
TF F F F F F F F F  

 
      (20) 

The moment applied to the fuselage can be calculated in a similar fashion. 

In order to take the interactions between adjacent parts into consideration, the calculation of 

each part needs to be performed in a certain sequence. First, assume some arbitrary values for 

the loads applied to the fuselage at junction A (the junction between the fuselage and the wing) 

and at junction B (the junction between the fuselage and the vertical fin), under which the 

static deformation of the fuselage can be obtained using the beam theory. According to the 

deformations at junction A and B, the boundary conditions for the wing and the vertical fin 

can be calculated. The static solution of the wing that satisfies the boundary condition then is 

calculated. Meanwhile, assume a value for the load that applies at the junction between the fin 

and the tail, with which the static deflection of the vertical fin that satisfies the boundary 

condition at junction C (the junction between the fuselage and the fin) can be calculated. Also 

the deformation of the fin at the junction between the fin and the tail gives the boundary 

condition of the tail. Then the deformation of the tail can be obtained. After the above 

procedure is completed, the loads applied to the fuselage and the vertical fin at the three 

junctions can be updated using present static solutions. Under the new loads, the previous 

procedures are repeated until the deformation of the whole airplane and the loads at every 

junction remain unchanged. Then the static solution of the whole airplane is obtained. 

3.2 Analysis Results 

For demonstration, a simple wing-body-tail beam model and load conditions proposed in [7] 

are used here. The configuration and properties are shown in Table 1. 

Substructure Length(m) EA(N) kGA(N) EI(N ∙ m2) 

Fuselage 12 5 × 108 108 5 × 106 
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Wing 30 5 × 108 108 106 

Vertical Fin 3 5 × 108 108 5 × 106 

Tail 6 5 × 108 108 5 × 105 

Table 1: Geometry and Property of the Wing-Body-Tail Configuration 

The configuration is clamped at the nose and constant normal (initially vertical) 

follower-forces are applied on the wings and horizontal tails. The wing is flexible and the 

fuselage will go through a much smaller deformation which is consistent with the 

configuration of the HALE airplane. Four different load levels are applied and the 

corresponding deformations are shown in Fig. 6. For each load level, it is found that the 

whole procedure needs a moderate number of iterations and the time consumed is within a 

few minutes depending on the load level and number of nodes used. 

 

Figure 3: Deformation of wing-body-tail configuration for follower distributed load on wing and tail. 

4 AERODYNAMIC MODELING 

The aerodynamics will generate forces and moments in the local body frame. In this section, 

three aerodynamic models are introduced and coupled with the nonlinear beam model. For an 

accurate representation of the aerodynamics in the presence of three dimensional effects and 

large beam deformations, a UVLM model is introduced. A vortex lattice model that assumes 

planar wakes and a simple two dimensional thin-strip model is also used for comparison. 

4.1 UVLM Modeling 

A vortex element method, based on the unsteady vortex lattice method, has been developed in 

the present work for investigating the unsteady aerodynamics of a high aspect ratio beam. The 

developed UVLM algorithm uses three-dimensional velocity smoothing functions to 

regularize the Biot-Savart law, the free-wake model to simulate wakes dynamics for different 

wing geometries and dynamics, the vortex shedding model to simulate vorticity shedding 
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from separating flows at high angle of attack. Verification studies conducted show that the 

present UVLM is in par with the CFD calculations based on the Euler equations and the 

Navier-Stokes equations in terms of solution accuracy, but requires only a fraction of 

computational load. This renders the present UVLM code a suitable design tool for large 

static deformation studies. 

4.1.1 Governing Equations 

The unsteady, incompressible flow of Newton fluids is governed by the continuity and 

momentum equations, 

  u 0   (21) 

   p
t

 
 

     
 

u
uuu

2   (22) 

where 𝐮 is the vector velocity, 𝑝 and 𝜌 are the fluid pressure and density and 𝜇 is its 

dynamic viscosity. A vortex line is a curve that is tangent to the vorticity vector 𝜔 ≡ ∇ × 𝐮 

at each of its points. The circulation (or strength) Γ around a simple closed contour C is 

defined as the line integral of the velocity along that contour 

 
C

dl  uΓ   (23) 

4.1.2 Biot-Savart Law 

The inverse of Eq. (23) is needed to compute the velocity induced by the vorticity. From the 

continuity equation (21) and the definition of the vorticity (23), it follows that 

  u2   (24) 

Then, the velocity 𝐮 at a point x may be recovered using an integral over the volume V 

where vorticity 𝜔(𝐱′) is non-zero (see for example Saffman [8] for details ) and can be 

reduced to a surface integral (𝜔d𝑉 = 𝛾d𝑆), 

      
V S

dV dSx  
 

    
' '

' '

' '

x - x x - x
u x x

x - x x - x
3 3

1 1

4 4
  (25) 

which is known as the Biot-Savart law. In the presence of solid boundaries, an extra term 

(∇𝜙) must be added to the right-hand side of (25) associated with the homogeneous solution 

of (24). Typically, this contribution is computed with a boundary element method. The vortex 

panel method discussed later is applied in this work. 

Vortex filaments are space curves with finite circulation and a zero cross sectional area. For 

these cases (𝑑Ω = 𝑑𝑠𝐧 ∙ 𝑑x′), the circulation can be taken out of the integral, 

     
 

 
C u

u duu
u


 


x

u K x xx Γ   (26) 



IFASD-2015-147 

11 

where a vortex filament is represented with a time-dependent, parametric space curve 𝐶(𝑢), 

x(𝑢) is the position vector of a point u on 𝐶(𝑢), 𝐊(𝐫) = (
1

4𝜋
|𝒓|3) 𝐫 is the Biot-Savart 

kernel, 𝐫 = 𝐱 − 𝐱(𝑢) and x is the position vector of a point where the velocity u is evaluated. 

4.1.3 Velocity Smoothing Functions 

The integrand in Eq. (25) is singular as 𝐫 → 0. This results in unphysically high induced 

velocity at a point very near to a vortex filament. A smoothing method is used to regularize 

the Biot-Savart law so as to remove the singular part from computations.  

In the smoothing method, the singular Biot-Savart kernel 𝐊(𝐫) is replaced with a mollified 

kernel 𝐊𝝈(𝐫) which removes the singular behavior at the vortex center line, 

  
 

  
r

K rr
r

3

g
  (27) 

where g𝝈(𝐫) = g𝟑(𝜌) is a three-dimensional velocity smoothing function [9] with 𝜎 the 

core size and 𝜌 the relative distance of a point with respect to a point on a filament, 

The regularized Biot-Savart law can now be written as 

     
 

   
 

 
C Cu u

u udu duu
u u

 
   

  
x x

u K rx xx
r

3

3
Γ Γ

g
  (28) 

Given a three-dimensional vorticity smoothing function 𝜁3(𝜌) , the associated 

three-dimensional velocity smoothing function g𝟑(𝜌) can be found from [9] 

    t dtt


  
2

3 30
g   (29) 

4.1.4 Vortex Panel Method and Aerodynamic Forces 

The vortex panel method is based on linear potential flow, which reduces the continuity 

equation to Laplace’s equation, 

  2 0   (30) 

Using the Green's theorem, a solution can be obtained by distributing elementary solutions on 

the problem boundaries (which may include wakes shed from solid boundaries). Solid 

geometry is represented using a finite set of quadrilateral panels with constant distribution of 

circulation strength Γ𝑖 per panel.  

Under the assumption that the wake panel's strength Γ𝜔 remains unchanged at the value 

when it is shed, a system of linear equations can thus be formed, 

 A bΓ=   (31) 

where 𝑎𝑖𝑗 is the unit influence of panel j at the collocation point of panel i.  



IFASD-2015-147 

12 

Solution of Eq. (31) will provide the velocity potential and the velocity components. Once the 

flowfield is determined the resulting pressures can be computed by the Bernoulli equations 

[10]. The pressure coefficient can be computed for each panel as 

 
 

 ref
p

ref ref ref
ref

p p
C

u u u tu

 




 
     


u r

2

02 2 2
2

2 2
Ω

1

2

  (32) 

where −[𝐮𝑜 + Ω × 𝐫] is the kinematic velocity of the undisturbed fluid due to the motion of 

the wing as viewed in the body frame of reference. 

The total pressure force is obtained by integrating the pressure difference over all panels: 

 
k k

N N
t t

S S
k k u lu l

u u
p S S

t t

 


 

         
           

        
  f = n n

2 2

1 1

d d
2 2

  (33)  

4.1.5 Wake Modeling Methods 

Wake modeling concerns the transport of vorticity in the wake, the mechanism by which such 

vorticity is shed from solid boundaries, and its interactions with solid boundaries. Various 

wake modeling methods have been devised. Because the wake is vortical in nature, either 

fulamentary or sheety in spatial characteristics, vortex method is the method of choice to 

model its dynamics. Vortex filaments and vortex sheets are often used to represent the wake 

mathematically. A method that approximates the vortex sheets using simple elements is use 

dto compute velocity induced by vortex sheets. The relaxation free wake model [11] which 

uses an iterative or relaxation solution method is in use to find the force-free shape of the 

wake. 

4.2 Vortex Lattice Modeling 

The second model is a linear unsteady vortex lattice aerodynamic model in discrete time 

domain. For the static calculation investigated here, the time derivatives are skipped to 

calculate the steady-state result efficiently. Mode shapes and slope of mode shapes are 

utilized to calculate the aerodynamic forces of the entire wing. In this vortex lattice model, all 

the vortex sheets are assumed planar, which is correct only when the deflection is small.  

4.3 Simple Aerodynamics 

The third aerodynamic model is a simple two dimensional one based on incompressible, 

inviscid flow. Drag and side force are ignored. The lift and moment are calculated based on 

local angle of attack. The 2D airfoil lift curve slope 2𝜋 is used and the lift is calculated at the 

aerodynamic center. The moment is calculated around the elastic axis of the airfoil, which 

will be used as the reference line of the beam model. 

4.4 Coupling with Beam Model 

Combination of all the afore-mentioned structural and aerodynamic modeling techniques 

provides a full description of the large static deformation of flexible beam in a free airflow. 

Our main concern is in the evaluation of all the aerodynamic loads in situations with large 
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beam deflections and effect of elastic deformations on the aerodynamic lift and moment 

distribution. 

Coupling with the CFD model is quite straightforward. With an initial angle of attack and the 

undeformed shape of the beam, the CFD model produces loads at every FEM grid point. The 

beam model is defined based on the FEM model. One corresponding node is generated on the 

reference line to each FEM grid point on the beam. Then the aerodynamic forces and 

moments are transferred to the reference line and the loads applied to the reference line only 

are obtained. Since the force offered by the CFD model is a point load, to obtain the 

equivalent distributed loads, every element along the reference line is divided into two 

identical elements and each load is distributed around that node, i.e., on the two adjacent 

elements (only one adjacent element for node at the tip and root). The static deformation of 

the reference line is calculated under this load and the deformations of those corresponding 

nodes are picked out. With the assumption that the cross-section behaves rigidly, the 

displacement of 𝑖th FEM grid point [𝑢 𝑣 𝑤]𝐹𝐸𝑀−𝑖
𝑇  can be expressed as: 

 
 

 

Ti
ini initial i

Ti
pre present i

T T

T T

  

  








  (34) 

           0 0 00 0 0 0 0 0

TT T T Ti i
pre iniFEM i beam i FEM iFEM i beam i

T T x y zu v w x y z x y z x y z
   
    (35) 

where [𝜃 𝛽 𝜓]𝑖𝑛𝑖𝑡𝑖𝑎𝑙−𝑖
𝑇  and [𝜃 𝛽 𝜓]𝑝𝑟𝑒𝑠𝑒𝑛𝑡−𝑖

𝑇  represent the Euler angles at the corresponding 

node of 𝑖th FEM grid point before and after deformation respectively. [𝑥0 𝑦0 𝑧0]𝑏𝑒𝑎𝑚−𝑖
𝑇  and 

[𝑥 𝑦 𝑧]𝑏𝑒𝑎𝑚−𝑖
𝑇  are the coordinates at the corresponding node of 𝑖th FEM grid point before 

and after deforming respectively. [𝑥0 𝑦0 𝑧0]𝐹𝐸𝑀−𝑖
𝑇  is the coordinates of the FEM node before 

deformation. Then the displacements used in the CFD part are updated and the new forces and 

moments on each grid point are calculated. The prescribed procedure is repeated till the 

displacements or the forces don’t change anymore. 

Since the Vortex Lattice model calculates the lift and moment of the whole beam, a method 

similar to calculating the stiffness matrix is implemented here to calculate the aerodynamic 

forces on each element. In the Vortex Lattice model, the beam is divided into a finite number 

of panels spanwise and chordwise. Those panels along the same chord are regarded as one 

element and lift and moment are calculated on each element. Two kinds of mode shapes are 

utilized: a unit transformation of one single element and a unit rotation of one single element. 

Together with an initial angle of attack, the transformation mode shape gives the lift on that 

transferred element and the rotation mode shape gives the moment on that rotated element. 

The loads applied on the beam model can be obtained by adding up those forces and moments 

together. Like the CFD model, the loads are point loads and the number of nodes is doubled 

due to the need of distributing the loads. Then the static deformation and the angle of attack of 

each element are calculated using the beam theory. With the updated angle of attack, the new 

lift and moment are obtained. The above procedure is repeated till the deformations and the 

loads no longer change. 

For large deformations, the relationship between Euler angles and local angle of attack is 

developed here. For a general aircraft orientation, the angle of attack alpha and sideslip 

gamma are defined in Figure 4: 
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Figure 4: Definition of angle of attack α and side slip γ 

The inflow can be described in the local coordinate as follows: 

    sin cos cos cos sin
T

T L
V          (36) 

For an initial angle of attack α0 and sideslip 𝛾0, the inflow can be described in the global 

coordinate as follows:  

      0 0

0 0 0 0 0 0 00sin cos cos cos sin cos sin
T T

T G
V

      
      (37) 

The local inflow rotates to the global coordinate via the transformation matrix: 

    T TL G
TV V    (38) 

The local angle of attack can be obtained from the above equation:  

 
   

   

3,3 3,2

2,3 2,2

sin cos
arctan

sin cos

T T

T T

 


 

 
    

  (39) 

The coupling procedure with the simple aerodynamics model is similar to coupling with the 

Vortex Lattice model. The beam is also divided into a number of elements. With an initial 

angle of attack or a built-in angle at the beam root, the lift and moment around the reference 

line on each element can be calculated. Under this load, the beam model is used to calculate 

the deformation of the reference line, based on whose result the new local angle of attack can 

be obtained and is passed back to calculate the aerodynamics on each element. This procedure 

is repeated until the deformation of the beam or the aerodynamics loads become steady. 

4.5 Analysis Results of Large Deflection under Different Aerodynamics 

The flat beam specimen with [0/90]3𝑠 lay-up with no elastic couplings proposed in [1] is 

used with the three different aerodynamic models. The beam is 0.56m long in span direction 

and 0.03m chordwise. The beam is 1.49 × 10−3𝑚 thick and the density is 1530 𝑘𝑔 𝑚3⁄ . 

The stress-strain is diagonal since there this no coupling. And 𝐸11 = 3.7 × 106𝑁, 𝐸22 =
8.7 × 106𝑁 , 𝐸33 = 2.9 × 105𝑁 , 𝐸11 = 0.183𝑁 ∙ 𝑚2 , 𝐸11 = 0.707𝑁 ∙ 𝑚2 , 𝐸11 = 276𝑁 ∙
𝑚2. 
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For comparison, an initial angle of attack of 5 degree is used to generate large deformation. 

The comparison of the static deformations, including the Euler angles and displacements of 

the reference line, and the aerodynamic force and moment applied on the reference line in the 

global coordinates at speed equal to 20m/s and 23m/s are shown in Figure 5-12. 

 

Figure 5: Euler angles of the reference line at speed 20m/s 

 

Figure 6: Displacement of the reference line at speed 20m/s 
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Figure 7: Force in global coordinate applied on the reference line at speed 20m/s 

 

Figure 8: Moment in global coordinate applied on the reference line at speed 20m/s 

 

Figure 9: Euler angles of the reference line at speed 23m/s 
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Figure 10: Displacement of the reference line at speed 23m/s 

 

Figure 11: Force in global coordinate applied on the reference line at speed 23m/s 

 

Figure 12: Force in global coordinate applied on the reference line at speed 23m/s 
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As can be seen from the figures, the results of the three models match well. The CFD model 

produces a slightly smaller deformation due to the 3D effect, vortex sheets roll-up reducing 

the lift. These 3D effects will increase as the deformation increases.  

Figure 13 shows the developing history of half span using the CFD model at speed 20m/s. It 

took only 6 iterations for the model to converge to the static position. 

 

Figure 13: Developing history of half span at 20m/s 

The flutter speed can be roughly estimated based on the natural frequencies vs. tip deflection 

plots in Minguet’s and Dugundji’s work which is shown in Figure 14. For all the three 

different aerodynamics employed, the tip deflection is about 11% of the beam length at speed 

20m/s. From Figure 14, it can be seen that the torsional natural frequency decreases from 

85Hz to 42Hz for this amount of the tip deflection. Based on a simple 2D approximation, the 

flutter speed is proportional to the torsional frequency. Thus, the flutter speed is found to be 

about 54m/s at this tip deflection. Since the tip deflection goes up as the flow speed increases. 

Using the same method, the flutter speed of this beam is estimated to be around 27 m/s with 

tip deflection at that speed.  

 

Figure 14: Changes in natural frequencies for [0/90]3𝑠 beam with increasing tip deflection 
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As for static divergence, for an idealized rectangular cantilever wing it can be estimated using 

the following equation[13]: 

 
2

div

GJ
U

cs ae




   (40) 

where c is the chord length, GJ is the torsion stiffness, a is the lift-curve slope and e is the 

ratio expressing the eccentricity of the aerodynamic center. For the beam under study here, 

the static divergence speed is about 45m/s when using 2π as the lift-curve. Based on the 

estimation of static divergence speed and flutter speed we decided not to increase the air 

speed beyond  23m/s.  

5 CONCLUSION 

In this present paper a methodology has been developed for dealing with the nonlinear large 

deformation of HALE plane using a set of twelve nonlinear differential equations based on 

the use of Euler angles and transformation matrix together with Newton-Raphson iteration 

technique. This structural model is an important step towards building numerically-efficient 

methodology to investigate the aeroelastic behavior of the HALE airplane. 

The studies employing the three different aerodynamic modeling methods have looked into 

the importance of three-dimensional effects on wings with large deflections. The mutual 

effects between elastic deformation and lift distribution are analyzed by coupling the 

structural model and the aerodynamic model. The outcomes of the present study provide good 

guidelines for flutter analysis in the future. 
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